导热和对流换热过程的强化与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立在整体性能的描述和评判基础上的传热强化的目标是适应和促进高热流。传热强化的途径是依靠各种强化技术来改变热量在空间内的输运过程,通常是通过设计热过程的局部行为而实现整体性能的强化。当考虑局部设计的约束条件时,传热强化则表现出从整体到局部的过程优化的特征。也就是说,为使传热整体性能达到最优如何去设计过程的局部行为。本文以导热和对流换热的过程为研究对象,借助变分原理解决传热强化理论研究的基本问题,并为具体强化技术的选择和实施提供理论指导。
    对于导热强化,提出并理论证明了温度梯度全场均匀化是控制导热系数空间最优分布的基本原则。基于这一原则,提出并采用了仿生方法来寻找一定量的高导热材料在导热空间内的构造形式,以使给定温差下的传热量达到最大。对于对流换热强化,提出并理论证明了场协同方程是控制着流动阻力一定下传热整体性能达到最优时的速度场。对于翅片强化对流换热,提出用填充率、扩展量和伸展方向这三个物理量在空间内的分布来描述翅片系统的一般结构,并建立了相应的热量输运模型。在此基础上,提出并理论证明了低阻力高传热的翅片结构的优化设计应遵循的三个基本原则。
    为了用数值方法研究传热过程的优化,发展了一种基于同位网格的流场计算的双速度算法以及描述各优化原则的迭代过程。针对具体模型的计算结果表明过程优化可带来显著的传热强化效果,对强化技术研究具有理论指导意义。在仿生优化中,通过数值模拟复现了一个确定性的简单原则控制下的纷繁复杂的高导热材料几何形状的演变过程。在速度场优化中,数值模拟结果明确地指出设计具体强化方式时该如何去“掺混”流体以使传热强化效果达到最大。随着对流换热空间的几何形状、边界特征和流动总阻力的变化,最优速度场表现出的流态结构由量变到质变的过程充分证明了速度场与热流场之间的相互协同关系,从而进一步丰富和发展了对流换热的场协同理论。在翅片结构优化中,数值模拟结果提供了应在何处去扩展翅片面积以及扩展多少等详细的局部构造信息。基于理论分析的结果,设计加工了两种带有纤毛状翅片结构的强化换热管,实验测试结果表明,它们具有高传热和低阻力的优越特性,支持了翅片结构优化的结论。
The goal of heat transfer augmentation established on the description and judge of the whole heat transfer performances can be stated as the desire to encourage or accommodate high heat fluxes. Almost all the augmentation techniques are used to vary the local behavior of heat transfer so as to improve the whole performance. Considering the constraint conditions, heat transfer augmentation appears the feature of optimizations from whole to local, namely, in order to realize the best whole heat transfer performances, how to design the local behavior of the heat transfer process? Taking heat conduction and convection optimizations as the research objects, this dissertation is to solve the above foundational problems by means of variation principle in the field of heat transfer augmentation, and explore some theoretical conclusions to direct the selection and actualization of augmentation techniques.
    For the augmentation of heat conduction, the principle of temperature-gradient uniformity governing the optimal distribution of the thermal conductivity is presented and proved theoretically. Based on this principle, bionic optimization technique is introduced to search the optimal spatial distribution of the high-conductivity material in pursuit of the maximum heat transfer at a given temperature difference. For connective heat transfer augmentation, the field-coordination equations are given and theoretically proved to achieve the optimal heat transfer performance at a constant flow resistance. For fin system, the spatial distributions of three defined physical quantities, filling ratio, extend measure and stretch direction, are described for general fin structures. Based on which the heat transfer between fin system and fluid is modeled mathematically. Finally, three foundational principles are presented for the optimal design of the fin system with lower flow resistance and higher heat transfer rate.
    To perform the optimization analysis, a new numerical simulation method, named as dual-velocity algorithm for flow calculation on collocated grids,is developed and the iterative formulas of the optimization principles are presented. Numerical simulations on specific heat transfer problems are performed to show the
    
    remarkable augmented effects resulting from process optimization, and to recognize the theoretical significances of process optimization to the study of heat transfer augmentation. Dominated by the deterministic simple principle, numerical simulations of bionic optimization show picturesquely the evolution procedure of numerous and complicated shapes of high-conductivity material. In the velocity field optimization, the optimal velocity fields are able to direct augmentation techniques how to blend or to mix fluid so as to realize the maximum effect of heat transfer augmentation. With the variations of the configurations, boundary conditions or flow resistance, the trend from quantitative variation to qualitative variation of the optimal flow state is full proof of the coordination between the velocity and heat flux fields, which enriches and develops further the field-coordination theory. In the fin-structure optimization, numerical results can offer detailed constructional information about the optimal fin system, for example, where fin needs to extend its surface, and how much area fin extends, etc. Furthermore, two kinds of heat transfer enhancement tubes with fiber fins are designed and tested. The results show that the two enhancement tubes developed by means of the fin system augmentation principle are of superior performances of lower flow resistance and higher heat transfer, which is coincident with the prediction in fin-structure optimization.
引文
[1] Bergles A E. Handbook of heat transfer applications. New York: McGraw-Hill, 1985
    [2] Bergles A E. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes. ASME Journal of Heat Transfer, 1997, 119: 8~19
    [3] 顾维藻, 神家锐, 马重芳, 等. 强化传热. 北京: 科学出版社, 1990
    [4] Chen G. Heat transfer in micro- and nanoscale photonic devices. Annu. Rev. of Heat Transfer, 1996, 7: 1~57
    [5] Aung W. Cooling technology for electronic equipment. New York: Hemisphere, 1988
    [6] Peterson G P, Ortega A. Thermal control of electronic equipment and devices. Advances in Heat Transfer, 1990, 20: 181~314.
    [7] Chu R C, Simons R E. Cooling technology for highperformance computers: IBM Sponsored University research. In: Cooling of electronic systems, Kakac S, Yüncü H and Hijikata, eds., Kluwer, Dordrecht, The Netherlands, pp. 97~122
    [8] Ageorges C, Ye L, Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites. Composites Part A-Applied Science and Manufacturing, 2001, 32(6): 839~857
    [9] Sinnott S B, Andrews R. Carbon nanotubes: Synthesis, properties and applications. Critical Reviews on Solid State and Materials Sciences, 2001, 26(3): 145~249
    [10] Webb R L, Bergles A E. Heat transfer enhancement: second generation technology. Mechanical Engineering, 1983, 115(6): 60~67
    [11] Bergles A E, Some perspectives on enhanced heat transfer second Generation heat transfer technology, ASME Journal of Heat Transfer, 1988, 110: 1082~1096
    [12] O'Connor J P, You S M. A painting technique to enhance pool boiling heat transfer in saturated FC-72, ASME Journal of Heat Transfer, 1995, 117: 387~393
    [13] Ciofalo M, Collins M W. Predictions of heat transfer for turbulent flow in plane and rib-roughened channels using large eddy simulation. Proceedings of the Seventh National Congress on Heat Transfer, bologna, Italy, 1989, pp. 57~72
    [14] Eckels S J, Doerr T M, Pate M B. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth and a micro-fin tube: part I-evaporation, ASHRAE Transactions, 1994, 100(Part 2): 265~281
    
    
    [15] Eckels S J, Doerr T M, Pate M G. Heat transfer and pressure drop of R-134a and Ester Lubricant mixtures in a smooth tube and a micro-fin tube: part II-condensation, ASHRAE Transactions, 1994, 100(Part 2): 283~294
    [16] Fiebig M, Sanchez M A. Enhancement of heat transfer and pressure Loss by winglet vortex generators in a fin-tube element, Compact Heat Exchangers for Power and Process Industries, 1992, HTD-v201, ASME, New York, NY, pp. 7~14
    [17] Bergles A E, Lee R A, Mikic B B. Heat transfer in rough tubes with tape-generated swirl flow, ASME Journal of Heat Transfer, 1969, 91: 443~450
    [18] Eason R M, Bayazitoglu Y, Miade A. Enhancement of heat transfer in square helical ducts. Int. J. Heat Mass Transfer, 1994, 37(14): 2077~2087
    [19] Fukusako S, Yamada M, Kimoshita K, et al. Boiling heat transfer in liquid-saturated porous bed. Proceedings of the 1991 ASME-JSME Thermal Engineering Joint Conference, JSME, Tokyo, Japan and ASME, New York, NY, 1991, v2, pp. 281~288
    [20] McGillis W R, Carey V P. On the role of marangoni effects on the critical heat flux for pool boiling of binary mixtures. ASME Journal of Heat Transfer, 1996, 118: 103~109
    [21] Lee J H, Singh R K. Mathematical models of scraped surface heat exchangers in relation to food sterilization, Chemical Engineering Communications, 1990, 87: 21~52
    [22] Soria J, Norton M P. The effect of transverse plate vibration on the mean laminar convective boundary layer heat transfer rate. Experimental Thermal and Fluid Science, 1991, 4: 226~238
    [23] Hong J S. The study of ultrasonic enhancement in phase-changer process. ASME paper No. 93-HT-2, 1993
    [24] Ohadi M M, Nelson D A, Zia S, Heat transfer enhancement of laminar and turbulent pipe flow via corona discharge. Int. J. Heat Mass Transfer, 1991, 34: 1175~1187
    [25] Inagaki T, Komori K. Experimental study of heat transfer enhancement in turbulent natural convection along a vertical flow plate-part I: the effect of injection or suction. Heat Transfer Japanese Research, 1993, 22: 387~397
    [26] Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-I: unconfined circular jets. Int. J. Heat Mass Transfer, 1997, 40(6): 1481~1490
    [27] Ma C F, Zhuang Y, Lee S C, et al. Impingement heat transfer and recovery effect with submerged jets of large Prandtl number liquid-II: initially laminar confined slot jets. Int. J. Heat Mass Transfer, 1997, 40(6): 1491~1500
    
    
    [28] Gau C, Lee C C. Implingement cooling flow structure and heat transfer along rib-roughened walls. Int. J. Heat Mass Transfer, 1992, 35(12): 3009~3020
    [29] Balaras C A. A review of augmentation techniques for heat transfer surfaces in single-phase heat exchangers. Energy, 1990, 15(10): 899~906
    [30] 陈庚, 罗棣庵. 用大空隙率多孔体强化管内换热的研究. 工程热物理学报, 1995, 16(3): 245~248
    [31] 陈听宽, 田永生, 陈宣政, 等. 顺排翅片管束加扰流件强化传热和阻力特性的试验研究. 化工机械, 1994, 21(3): 125~131
    [32] 胡振军, 神家锐. 离散倾斜肋的传热强化及流动特性. 工程热物理学报, 1995, 16(3): 327~332
    [33] 王泽宁, 周强泰. 不同宽度扭带传热与阻力特性试验研究. 热能动力工程, 1996, 11(3): 224~227
    [34] 顾维藻, 涂建平, 刘文艳, 等. 燃气轮机涡轮叶片冷却通道内的流动与传热研究. 工程热物理学报, 1996, (17)3: 323~327
    [35] 姚志彪. 环形管内涡旋流动特性及传热机理研究. 化学工程, 1997, 25(1): 17~19
    [36] 高文元, 孙以苓, 盛展武. 固流体波面板换热器振动强化传热的研究. 石油化工设备, 1997, 26(4):7~10
    [37] 张正国, 王世平, 林培森. 花瓣形翅片管的强化传热研究概况. 石油化工设备, 1997, 26(4): 1~14
    [38] 胡振军, 神家锐. 扰流元诱发的二次流及其在强化传热中的应用. 工程热物理学报, 1997, 18(1): 69~72
    [39] 姚寿广, 周根明, 朱德书. 内插螺旋线圈管的强化传热试验及结构优化研究. 动力工程, 1998, 18(5): 29~31
    [40] 杜建通, 邹同华. 电场强化对流换热及其应用. 低温工程, 1999, (1): 27~30
    [41] 沈文生, 陈烈强, 马晓茜等. 强制对流开槽翅片的传热性能研究. 流体机械, 1999, (7): 51~55
    [42] 李瑞阳, 施伯红, 郁鸿凌, 等. EHD强化水平管外沸腾传热的试验研究. 工程热物理学报, 2000, 21(1): 97~100
    [43] 解旭斌, 王维城, 王栋. 高效传热管内凝结换热性能及阻力性能的实验研究. 工程热物理学报, 2000, 21(6): 742~745
    [44] 崔海亭, 姚仲鹏, 杨英俊. 单头“W"形螺旋槽管传热与流体力学特性研究. 热能动力工程, 2001, 16(2): 151~152
    
    
    [45] Wang S, Li Z X, Guo Z Y. Novel concept and device of heat transfer augmentation. Proceedings of The 11th International Heat Transfer Conference, July 1998, Korea
    [46] 凯斯 W M,伦敦 A L. 紧凑式热交换器. 北京: 科学出版社, 1997
    [47] 周昆颖. 紧凑换热器, 北京: 中国石化出版社, 1998
    [48] Yilmaz M, Comakli O, Yapici S. Enhancement of heat transfer by turbulent decaying swirl flow. Energy Conversion and Management. 1999, 40(13): 1365~1376
    [49] Bali T, Ayhan T . Experimental investigation of propeller type swirl generator for a circular pipe flow. International Communications in Heat and Mass Transfer. 1999, 26(1): 13~22
    [50] Saha S K, Dutta A, Dhal S K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int. J. Heat Mass Transfer, 2001, 44(22): 4211~4223
    [51] Kiml R, Mochizuki S, Murata A. Effects of rib arrangements on heat transfer and flow behavior in a rectangular rib-roughened passage: application to cooling of gas turbine blade trailing edge. Journal of Heat Transfer-Transactions of the ASME, 2001, 123(4): 675~681
    [52] Willett F T, Bergles A E. Heat transfer in rotating narrow rectangular ducts with heated sides oriented at 60 degrees to the r-z plane. Journal of Tubomachinery-Transactions of the ASME, 2001, 123(2): 288~295
    [53] Murata A, Mochizuki S. Comparison between laminar and turbulent heat transfer in a stationary square duct with transverse or angled rib turbulators. Int. J. Heat Mass Transfer, 2001, 44(6): 1127~1141
    [54] Asmantas L A, Nemira M A, Trilikauskas V V. Coefficients of heat transfer and hydraulic drag of a twisted oval tube. Heat Transfer-Soviet Research (USA), 1985, 17(4): 103~109
    [55] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles. Izvestiya an Sssr: Energetika i Transport (USSR), 1989, 27(4): 137~145
    [56] Dzyubenko B V, Stetsyuk V N. Principles of heat transfer and hydraulic resistance in twisted tube bundles, Power Engineering (USSR), 1989, 27(4): 128~136
    [57] Cho Y W, Chung S H, Shim J D, et al. Fluid flow and heat transfer in molten metal stirred by a circular inductor. Int. J. Heat Mass Transfer, 1999, 42(7): 1317~1326
    [58] Kemmere M F, Meuldijk J, Drinkenburg A H, et al. Development of batch emulsion polymerization processes. Chemical Engineering Communications, 2001, 186: 217~239
    [59] Kern D Q, Kraus A D. Extended Surfaces Heat Transfer. New York: McGraw-Hill, 1972
    
    
    [60] Aziz A. Optimum dimensions of extended surfaces operating in a convective environment. Appl. mech. rev., 1992, 45(5): 155~173
    [61] Kraus A D. Sixty-five years of extended surface technology (1992-1987). Appl. mech. rev., 1988, 41(7): 321~364
    [62] Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int. J. Heat Mass Transfer, 1997, 40(4) :799~808
    [63] Ledezma G A, Bejan A, Errera M R. Constructal tree networks for heat transfer. Journal of Applied Physics, 1997, 82(1): 89~100
    [64] Dan N, Bejan A. Constructal tree networks for the time-dependent discharge of a finite-size volume to one point. Journal of Applied Physics, 1998, 84(6): 3042~3050
    [65] Ledezma G A, Bejan A. Constructal three-dimensional trees for conduction between a volume and one point. Journal of Heat Transfer-Transactions of the ASME, 1998, 120(4): 977~984
    [66] Neagu M, Bejan A. Constructal-theory tree networks of "constant" thermal resistance. Journal of Applied Physics, 1999, 86(2): 1136~1144
    [67] Neagu M, Bejan A. Three-dimensional tree constructs of "constant" thermal resistance. Journal of Applied Physics, 1999, 86(12): 7107~7115
    [68] Bejan A. From heat transfer principles to shape and structure in nature: Constructal theory. Journal of Heat Transfer-Transactions of the ASME, 2000, 122(3): 430~449
    [69] Almogbel M, Bejan A. Constructal optimization of nonuniformly distributed tree-shaped flow structures for conduction. Int. J. Heat Mass Transafer, 2001, 44(22): 4185~4194
    [70] Nelson R A, Bejan A. Constructal optimization of internal flow geometry in convection. Journal of Heat Transfer-Transactions of the ASME, 1998, 120(2): 357~364
    [71] Bejan A, Almogbel M. Constructal T-shaped fins. Int. J. Heat Mass Transfer, 2000, 43(12): 2101~2115
    [72] Bejan A, Errera M R. Convective trees of fluid channels for volumetric cooling. Int. J. Heat Mass Transfer, 2000, 43(17): 3105~3118
    [73] Almogbel M, Bejan A. Cylindrical trees of pin fins. Int. J. Heat Mass Transfer, 2000, 43(23): 4285~4297
    [74] Guo Z Y, Wang S. Novel concept and approaches of heat transfer enhancement. In: Cheng P ed. Proc. of Symposium on Energy and Engineering, Hong Kong, 2000. New York: Begel House, 2000, pp. 118
    [75] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement. Int. J. Heat Mass Transfer, 1998, 41(14): 2221~2225
    
    
    [76] Guo Z Y. Mechanism and control of convective heat transfer - Coordination of velocity and heat flow fields. Chinese Science Bulletin, 2001, 46(7): 596~599
    [77] 李德玉. 回流和冲击射流流动中流动过程和热过程相互作用的研究. [博士学位论文]. 北京: 清华大学工程力学系, 1997
    [78] Zhao T S, Experimental study on heat transfer in porous medium. To be published in Int. J. Heat Mass Transfer
    [79] Wang S, Guo Z Y, Li Z X. Heat transfer enhancement by using metallic filament insert in channel flow. Int. J. Heat Mass Transfer, 2001, 44(7): 1373~1378
    [80] Guo Z Y, Zhang C M. Thermal drive in centrifugal fields-mixed convection in a vertical rotating cylinder. Int. J. Heat Mass Transfer, 1992, 35(6): 1635~1644
    [81] 杨茉, 赵明, 殷俊, 等. 场协同与对流换热的稳定性. 中国工程热物理学会传热传质学学术会议论文集, 青岛, 2001, pp. 136~140
    [82] 王建刚, 杨茉, 赵明, 等. 底部加热的低Prandtl数流体自然对流的分岔. 中国工程热物理学会传热传质学学术会议论文集, 青岛, 2001, pp. 141~150
    [83] 吴明, 何亚玲, 陶文铨, 等. 场协同理论对脉管制冷机研究的指导. 中国工程热物理年会论文集: 传热传质学, 青岛, 2001, pp. 161~165
    [84] 杨世铭. 传热学. 北京: 高等教育出版社, 1987
    [85] 徐建平. 变分方法. 上海: 同济大学出版社, 1999
    [86] Bejan A. Convection heat transfer. 2nd ed. New York: J. Wiley, 1995
    [87] Morega Al M, BejanA. Heatline visualization of forced convection in porous media. International Journal of Heat and Fluid Flow, 1994, 15(1): 42~47
    [88] Morega, Al M, Bejan A. Heatline visualization of forced convection laminar boundary layers. Int. J. Heat Mass Transfer. 1993, 36(16): 3957~3966
    [89] 埃克特. 传热与传质分析, 北京: 科学出版社, 1983
    [90] MacDonald N. Trees and networks in biological models. Chichester, UK: Wiley,1983
    [91] Mandelbrot B B. The fractal geometry of nature. San Francisco: Freeman, 1982
    [92] 楼允东. 组织胚胎学. 北京 : 中国农业出版社, 1996
    [93] 候晖昌. 河流动力学基本问题. 北京: 水利出版社, 1980
    [94] 钱宁. 河床演变学. 北京: 科学出版社, 1989
    [95] Poligogine I. 从存在到演化: 自然科学中的时间及复杂性. 上海:上海科学出版社, 1986
    [96] 仲维卓, 华素坤. 晶体生长形态学. 北京: 科学出版社, 1999
    [97] 韩启德, 文允镒. 血管生物学.北京: 北京医科大学、中国协和医科大学联合出版社, 1997
    
    
    [98] 达尔文 C R. 物种起源. 西安 : 陕西人民出版社, 2001
    [99] 范培华 刘书田. 微积分 北京 : 北京大学出版社, 2001
    [100] Biot M A. Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. Journal of Applied physics, 1955, 23(11): 1385~1391
    [101] Lardner T J. Biot's variational principle in heat conduction. AIAA Journal, 1963, 1(1): 196~206
    [102] Vujanovic B, Strauss A M. Heat transfer with nonlinera boundary conditions via a variational principle. AIAA Journal, 1971, 9(2): 1971:327~330
    [103] 李如生. 非平衡热力学和耗散结构. 北京: 清华大学出版社, 1986
    [104] Glansdorff P, Prigolgine I. 非平衡系统的自组织. 北京: 科学出版社, 1986
    [105] 汪富泉, 李后强. 分形: 大自然的艺术构造. 济南: 山东教育出版社, 1996
    [106] 沈小峰. 混沌初开: 自组织理论的哲学探索. 北京 : 北京师范大学出版社, 1993
    [107] 阿巴兹 V S,拉森 P S. 对流换热. 北京: 高等教育出版社, 1992
    [108] 郭治安, 沈小峰. 协同论. 太原: 山西经济出版社, 1991
    [109] 哈肯 H. 协同学: 自然成功的奥秘. 上海: 上海科学技术出版社, 1988
    [110] Haken H. Synergetics: an introduction : nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. Berlin: Springer, 1983
    [111] Haken H. Laser theory. Berlin: Springer, 1984
    [112] 哈肯 H. 协同学引论: 物理学、化物学中的非平衡相变和自组织. 北京: 原子能出版社, 1984
    [113] Murray M. Heat dissipation through an annular disk or fin of uniform thickness. J. Appl. Mech. 1938, 5:A78
    [114] Gardner A. Efficiency of extended surfaces. Trans. ASME, 1945, 67: 621~631
    [115] Ghai M L, Jakob M. Local coefficients of heat transfer on fins, ASME Paper 1950, 18: 50~55.
    [116] Ghai M L. Heat transfer in straight fins. Proceedings of Deneral Discussion on Heat Transfer, Institution of Mechanical Engineers, London, 1951, pp. 203~204
    [117] Huang L J, Shah R K. Assessment of calculation methods for efficiency of straight fins of rectangular profile, ASME HTO, vol. 182, Advances in Heat Exchanger Design, Radiation and Combustion, 1991, pp. 19~30
    [118] Razelos P, Imre K. The optimum dimensions of circular fins with variable thermal parameters, ASME J. Heat Transfer 1980, 102: 420~425
    
    
    [119] Razelos P, Imre K. Minimum mass convective fins with variable heat transfer coefficients. J. Franklin inst.1980, 315: 269~282
    [120] Brighham B A, Vanfossen G J. Length to diameter ratio and row number effects in short pin fin heat transfer. J. Eng. for Gas Turbines and Power, 1984, 106: 241~245
    [121] Sparrow E M, Stahl T J, Traub P. Heat transfer adjacent to the attached end of a cylinder in crossflow, Int. J. Heat Mass Transfer, 1984, 27(2): 233~242
    [122] Babus'Haq R F, Akintunde K, Probert, S D. Thermal performance of a pin-fin assembly, Int. J. Heat Mass Transfer 1995, 16(1): 51~55
    [123] Snider A D, Kraus A D. General extended surface analysis method. Journal of Heat Transfer, 1981, 103(4): 669~673
    [124] Hamburgen W R. Packaging a 150-W bipolar ECL microprocessor. IEEE Transactions on Components, 1993, 16(1): 28~33
    [125] Plawsky J L. Transport in branched system: Ⅰ. Steady-state response. Chem. Eng. Commun., 1993, 123:71~78
    [126] Plawsky J L. Transport in branched system: Ⅱ. Transient response. Chem. Eng. Commun., 1993, 123: 87~93
    [127] Lee D J, Lin W W. Second-law analysis on a fractal-like fin under crossflow. AICHE Journal, 1995, 41: 2314~2317
    [128] Lin W W, Lee D J. Diffusion-convection process in a branching fin. Chemical Engineering Communications, 1997, 158: 59~64
    [129] Lin W W, Lee D J. Second-law analysis on a pin-fin array under cross-flow. International Journal of Heat and Mass Transfer, 1997, 40: 1937~1942
    [130] 刘正帅. 拓扑学基础. 开封: 河南大学出版社, 1992
    [131] 变压器制造技术丛书编审委员会. 变压器试验. 北京 : 机械工业出版社, 1998
    [132] 陶文铨. 数值传热学. 西安: 西安交通大学出版社, 1988
    [133] Pantankar S V. Numerical Heat Transfer and Fluid Flow. McGraw-Hill: New York, 1980.
    [134] Prakash C, Patankar S V. A control volume-based finite-element method for solving the Navier-Stokes Equation using equal-order velocity-pressure interpolation. Num. Heat Transfer, 1985 8: 259~280
    [135] Rihe CM, Chow WL. A numerical study of the turbulent flow past isolated airfoil with trailing edge separation. AIAA J. 1983, 21: 1525~1532
    [136] Peric M, Kessler R, Scheuer G. Comparison of finite-volume numerical methods with staggered and colocated grids. Computers & Fluids, 1988, 16: 389~403
    
    
    [137] Thiart G D. Finite difference scheme for the numerical solution of fluid and heat transfer problems on nonstaggered grids. Num. Heat Transfer: Part B, 1990, 17: 43~62
    [138] Thiart GD. Improved finite-difference scheme for the solution of convection-diffusion problem with the SIMPLEN algorithm, Num. Heat Transfer: Part B, 1990, 18: 81~95
    [139] Mansour M L, Hamed A. Implicit solution of the incompressible navier-stokes equations on a non-staggered grid. J. Comput. Physics, 1990, 86: 147~167
    [140] Acharya S, Moukalled F H. Improvements to incompressible flow calculation on a non-staggered curvilinear grid'. Num. Heat Transfer: Part B, 1989, 15: 131~152
    [141] 陶文铨. 计算传热学的近代进展. 北京: 科学出版社, 2000
    [142] Fujino S, Takeuchi T. ILU factorization well suited to the vector processor using a variant of the 5-point difference scheme. Comput. Phy. Commun. 1995, 85(3): 371~381
    [143] White F M. Viscous Fluid Flow, 2nd ed., McGraw-Hill: New York, 1991, pp. 119~122
    [144] Fusegi T, Hyunb J M, Kuwahara K, et al. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass Transfer, 1991 34: 1543~1557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700