SUNIST球形托卡马克的MHD不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形托卡马克是环径比A(A=R/a,R和a分别是等离子体的大环半径和小环半径)接近1的非传统托卡马克装置,其由于结构紧凑,更易实现高β(β=2μ0

/B~2,等离子体的热能与磁能之比)值,更好的磁流体稳定性(magnetohydrodynamic stabilities,简称MHD稳定性)等优势,近20多年来得到了广泛的重视和研究。实验研究表明球形托卡马克仍然发生各种MHD不稳定性,如垂直位移不稳定性(vertical displacement event, VDE),锯齿振荡(sawtooth),扭曲不稳定性(kink modes),新经典撕裂模(neoclassical tearing mode, NTM),边界定位模(ELM),内部重联事件(IRE)及各种微观不稳定性等。因此研究MHD不稳定性发生的基本条件和物理机制,探索避免或控制MHD不稳定性的可行途径,提高球形托卡马克运行参数,是球形托卡马克研究中一个重要而基础的问题。
     SUNIST是我国建立的第一个球形托卡马克装置,自2002年放电以来,已经观察到了丰富的MHD不稳定性现象,如Mirnov振动,内部重联事件(IRE)等。然而对扰动基本特征,如扰动的模数,频率未有系统的分析和研究。本文利用磁探针诊断对SUNIST球形托卡马克上的Mirnov扰动进行了测量和分析,利用奇异值分解(SVD)方法对扰动的环向和极向模数进行了分辨,并给出了放电过程中的模数时间演化过程。
     理论和实验研究表明适当的等离子体旋转和剪切流的存在将改善球形托卡马克上的MHD不稳定性。我们通过在真空室内部加带偏压的电极来实现等离子体粒子运动的改变。偏压电极用来产生一个径向方向的电场Er,然后通过E×B漂移来改变粒子运动。由于外加电场在高温等离子体中渗透长度的有限性,此法对比较靠近等离子体边界的扰动有较好的结果。
Spherical tokamak is different from traditional toakamak as its aspect ratio A (A=R/a, R and a are the major and minor radius of device) is closed to 1. In last 20 years, it has attracted a more and more attention and has been widely studied owing to its advantage of compact construction, easily accessed high P, better magnetohydrodynamic (MHD) stabilities. Results of experiments show that MHD instabilities still happen in spherical tokamak, such as vertical displacement event (VDE), sawtooth, kink mode, neoclassical tearing mode (NTM), ELM, internal reconnection events (IRE) and microscope instabilities. It is primary and significant that to study the conditions and mechanism of MHD instabilities, explore the the possible method to avoid or suppress the occurrence of the MHD instabilities and improve the operation parameters of spherical tokamak..
     SUNIST is the first spherical tokamak build in China. Various MHD instabilities events have been observed on it since the first discharging in 2002, such as Mirov fluctuations and IRE. However, the detail investigation of the instabilities features, such as the mode numbers and the frequency is lacke up to now. The Mirnov fluctuations are measured and analysed by magnetic measurement system on SUNIST Spherical Tokamak. The toroidal and poloidal numbers of Mirnov fluctuations are distinguished by using singular value decomposition (SVD), and the time evolution of the mode numbers during a discharge is presented.
     The theoretical and experimental research indicated that proper plasma rotation and shear flow will improve MHD instabilities on spherical tokamak. The change of plasma movements is realized by a biased electrode. The electrode produces a electric filed through the radius direction Er, and changes the movements of the grain by ExB drift. As the electric filed can penetrate only a limit length in the high temperature plasma, it is found that the biased electrode has a better result for fluctuations close to plasma boundary.

引文
[1]Edward Teller.聚变(第一卷).原子能出版社,1987
    [2]Y-K.M. Peng, D.J. Strickler. Features of spherical torus plasmas. Nuclear Fusion,1986, Vol.26:769-777
    [3]Peng Y K M. The physics of spherical torus plasmas. Physics of Plasmas, 2000,7:1681.
    [4]A Sykes, R Akers, L Appel, etc. High-pperformance of the START spherical tokamak. Plasma Phys. Control. Fusion,1997, Vol.39:B247-B260
    [5]Alan Sykes. Overview of recent spherical tokamak results. Plasma Phys. Control. Fusion,2001, Vol.43:127-139
    [6]R Maingi, M G Bell, R E Bell, etc. Recent results from the National Spherical Torus Experiment. Plasma Phys. Control. Fusion,2003, Vol.45: 657-669
    [7]A R Field, P G Carolan, etc. H-mode plasmas in the MAST spherical tokamak. Plasma Phys. Control. Fusion,2002, Vol.44:A113-A121
    [8]A Sykes. Progress on spherical tokamak. Plasma Phys. Control. Fusion, 1994, Vol.36:B93-B106
    [9]John Wesson, Tokamak (the second edition). Oxford.1985
    [10]C. Mercier, Nucl. Fusion 1,47 (1960)
    [11]H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids,6,459 (1963)
    [12]Mirnov S. and Semenov I. Investigation of instabilities of plasma column in'Tokamak-3'device by correlation Techniques, At. Energy (USSR) 30, 1971:20
    [13]von Goeler S, Stodiek W and Sauthoff N. Studies of Internal Disruptions and m=l Oscillations in Tokamak Discharges with Soft—X-Ray Tecniques Phys. Rev. Lett.1974,33:1201
    [14]ITER Physics Basis 1999 Chapter 3:MHD stability, operational limits and disruptions, Nucl. Fusion 39 2137
    [15]Strait E.J. et al 1995 Phys. Rev. Lett.74 2483
    [16]Taylor T.S. et al 1995 Phys. Plasmas 2 2390
    [17]T. C. Hender, in Plasma Physics and Controlled Nuclear Fusion Research 2006 (Proc.21st Fusion Energy Conference, Chendu,2006) IAEA-CN-149 /EX/P8-18
    [18]Garofalo A.M. et al 2000 Proc.18th Int. Conf. on Fusion Energy 2000 (Sorrento, Italy,2000) (Vienna:IAEA) CD-ROM EXP3-01
    [19]Boozer A.H.2001 Phys. Rev. Lett.86 5059
    [20]Garofalo A.M. et al 2001 Nucl. Fusion 41 1171
    [21]Boozer A.H.2003 Phys. Plasmas 10 1458
    [22]Pustovitov V.D.2003 Proc.30th EPS Conf. on Controlled Fusion and Plasma Physics (St. Petersburg, Russia,2003) vol 27A (ECA) P-4.167
    [23]H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids,6,459 (1963)
    [24]White, R.B. Resistive instabilities and field line reconnection. Handbook of plasma physics vol.1, section3.5. North Holland Amsterdam(1963)
    [25]J. D. Callen et al, in Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna,1987), Vol.2,157
    [26]R. Carrera et al, Phys. Fluids,29,899 (1986)
    [27]ITER Physics Basis, Chapter 3:MHD stability, operational limits and disruptions,Nucl. Fusion 39,2251 (1999)
    [28]Zohm H. et al 2001 Phys. Plasmas 8 2009
    [29]Morris A.W. et al 1992 Proc.19th EPS Conf. on Controlled Fusion and Plasma Physics (Innsbruck, Austria,1991) vol 16C-I(ECA) p 423
    [30]Zohm H. et al 1999 Nucl. Fusion 39 577
    [31]Isayama A. et al 2000 Plasma Phys. Control. Fusion 42 L37
    [32]La Haye R.J. et al 2002 Phys. Plasmas 9 2051
    [33]Petty C.C. et al 2004 Nucl. Fusion 44 243
    [34]Warrick C.D. et al 2000 Phys. Rev. Lett.85 574
    [35]G. Laval, R. Pellat, and J. S. Soule, Phys. Fluids 17,835 (1974)
    [36]K. McGuire, R. Goldston, M. Bell et al, Phys. Rev. Lett.50,891 (1983)
    [37]L. Chen, R. B. White, and M. N. Rosenbluth, Phys. Rev. Lett.52,1122 (1984)
    [38]B. Coppi and F. Porcelli, Phys. Rev. Lett.57,2272 (1986)
    [39]R. Betti, and J. P. Freidberg, Phys. Rev. Lett.70,3428 (1993)
    [40]K. L. Wong et al., Phys. Rev. Lett.66,1874 (1991)
    [41]W. W. Heidbrink et al, Nucl. Fusion 31,1635 (1991)
    [42]D. Borba et al, Nucl. Fusion 40,775 (2000)
    [43]K. L. Wong, J. R. Wilson, and Z. Y. Chang, Plasma Phys. Controlled Fusion 36,879 (1994)
    [44]Y. Kusama et al, Nucl. Fusion 38,1215 (1998)
    [45]Zohm, H., Edge localized modes (ELMs), Plasma Phys. Control. Fusion 38 (1996) 105
    [46]Wagner, F., Becker, G, Behringer, K., et al., Phys.Rev. Lett.49 (1982) 1408
    [47]Kamada, Y, Ushigusa, K., Naito, etc, ELMy H-mode with high-N and high-p in JT-60U, Plasma Phys. Control.Fusion 36 (1994) A123.
    [48]Zohm, H., Osborne, T.H., Burrell, K.H., Chu, M.S., Doyle, E.J., Gohil, P., Hill, D.N., Lao, L.L.,Leonard, A.W., Taylor, T.S., Turnbull, A.D., ELM studies on DIII-D and a comparison with ASDEX results, Nucl. Fusion 35 (1995) 543
    [49]Oyama N. et al 2001 Plasma Phys. Control. Fusion 43 717
    [50]Oyama N. et al 2004 Nucl. Fusion 44 582
    [51]Connor J.W.1998 Plasma Phys. Control. Fusion 40 531
    [52]Kass T. et al 1998 Nucl. Fusion 38 111
    [53]Zohm H. et al 1995 Nucl. Fusion 35 543
    [54]Perez C.P. et al 2004 Nucl. Fusion 44 609
    [55]T.E. Evans, M.E. Fenstermacher, R.A. Moyer etc 2008 RMP ELM suppression in DIII-D plasmas with ITER similar shapes and collisionalities Nucl. Fusion 48 024002
    [56]Y. Liang, H. R. Koslowski, P. R. Thomas etc. Phys. Rev. Lett.98,265004 (2007) Active Control of Type-I Edge-Localized Modes with n=1 Perturbation Fields in the JET Tokamak
    [57]J. Manickam, N. Pomphery, and A. M. M. Todd, Nucl. Fusion 27, 1461(1987)
    [58]S. Ishida et al, Phys. Rev. Lett.79,3917 (1997)
    [59]T. Ozeki et al, Plasma Phys. Control. Fusion 40,871 (1998)
    [60]Sykes A, Del Bosco E, Colchin R J, et al. First results from the START experiment. Nuclear Fusion,1992,32(4):694-699.
    [61]Strait E J, Taylor T S, Turnbull A D, et al. Wall Stabilization of High Beta Tokamak Discharges in DIII-D. Physical Review Letters,1995,74(13):2483.
    [62]Gryaznevich M, Akers R, Carolan P G, et al. Achievement of record beta in the START spherical tokamak. Physical Review Letters,1998,80(18): 3972-3975.
    [63]Greenwald M. et al 1988 Nucl. Fusion 28 2199.
    [64]Ribeiro, C., in Controlled Fusion and Plasma Physics (Proc.25th Eur. Conf. Prague,1998), Vol.22C, European Physical Society, Geneva (1998)741.
    [65]T. C. Hender, S. J. Allfrey, R. Akers, et al. Magneto-hydro-dynamic limits in spherical tokamaks. PHYSICS OF PLASMAS VOLUME 6, NUMBER 5(1958)
    [66]K. G. McClements, M. P. Gryanevich, S. E. Sharapov et al. Physics of Energetic Particle-Driven Instabilities in the START Spherical Tokamak, Plasma Phys. Controlled Fusion,41 (1999) 661-678
    [67]Sykes A, Team S, Team N B I, et al. The spherical tokamak programme at Culham. Nuclear Fusion,1999,39(9 y):1271-1281.
    [68]Castle, G.G., Morris, A.W., in Controlled Fusion and Plasma Physics (Proc. 23rd Eur. Conf. Kiev,1996), Vol.20C, European Physical Society, Geneva(1996)
    [69]Ono, M., et al., in Fusion Energy 1996 (Proc.16th Int. Conf. Montreal, 1996), Vol.2, IAEA, Vienna(1997) 71
    [70]Sykes A, Team S, Team N B I, et al. The spherical tokamak programme at Culham. Nuclear Fusion,1999,39(9 y):1271-1281
    [71]N. Pomphrey et al., Nucl. Fusion 38,449 (1998)
    [72]K. G. McClements, M. P. Gryanevich, S. E. Sharapov et al. Physics of Energetic Particle-Driven Instabilities in the START Spherical Tokamak, Plasma Phys. Controlled Fusion,41 (1999) 661-678
    [73]J.E. Menardl, M.G. Bell1, R.E. Bell et al. Overview of recent physics results from the National Spherical Torus Experiment (NSTX), Nucl. Fusion 47 (2007)S645-S657
    [74]D.A. Gates 1, J. Ahn2, J. Allain, et al. Overview of results from the National Spherical Torus Experiment (NSTX) Nucl. Fusion 49 (2009) 104016
    [75]B. Lloyd1, R.J. Akers1, F. Alladio, et al. Overview of physics results from MAST, Nucl. Fusion 47 (2007) S658-S667.
    [76]Gryaznevich M.P. and Sharapov S.E. Beta-dependence of energetic Particle-driven instabilities in spherical tokamaks 2004 Plasma Phys.Control. Fusion 46 S15
    [77]S.E. Sharapovl,B.Alperl,F.Andersson, et al.Experimental studies of instabilities and confinement of energetic particles on JET and MAST Nucl. fusion 45(2005)1168-1177
    [78]M.P. Gryaznevich and S.E. Sharapov. Beta-dependence of energetic particle-driven instabilities in spherical tokamaks.2004 Plasma Phys. Control. Fusion 46 S15
    [79]ButteryRJ et al 2001 Proc.28th EPS Conf. on Controlled Fusion and Plasma Physics (Funchal,2001) Europhys. Conf. Abstracts
    [80]Kruger, S.E., Hegna, C.C., Callen, J.D., Phys.Plasmas 5 (1998) 455.
    [81]D.A. Gates, J. Ahn, J. Allain, et al. Overview of results from the National Spherical Torus Experiment (NSTX). Nucl. Fusion 49 (2009) 104016
    [82]Sabbagh S A, Sontag A C, Bialek J M, et al. Resistive wall stabilized operation in rotating high beta NSTX plasmas. Nuclear Fusion,2006, 46(5):635-644.
    [83]S.A. Sabbagh, J.W. Berkery, R.E. Bell, et al. Advances in global MHD mode stabilization research on NSTX. Nucl. Fusion 50 (2010) 025020
    [84]A.C. Sontag, S.A. Sabbagh, W. Zhu, et al. Investigation of resistive wall mode stabilization physics in high-beta plasmas using applied non-axisymmetric fields in NSTX. Nucl. Fusion 47 (2007) 1005-1011
    [85]J. Menard. Recent NSTX Research Highlights. ISTW2009
    [86]Akers R.J. et al 2003 Plasma Phys. Control. Fusion 45 A175
    [87]Sykes, A., et al.1992. First results from the START experiment. Nucl. Fusion,32:694
    [88]Sykes A. Progress on Spherical Tokamaks. Plasma Phys. Control. Fusion 36(1994)B93-B106.
    [89]Ono, M., et al.1997. Investigation of the effect of the effect of resistive MHD modes on spherical torus perfoemance in CDX-U. PPPL-3225.
    [90]Fonck, R., in Proc. Int. Workshop on ST, Culham,1996, Vol.1, UKAEA Fusion, Abingdon (1996) 49.
    [91]Nagata, M., et al., ibid., Vol.2, p.717.
    [92]Sykes,A., et al.2001. First results from MAST. Nucl. Fusion,41:1423.
    [93]Sabbagh, S.A., et al.2001. Equilibrium properties of spherical torus plasmas in NSTX. Nucl. Fusion,41:1601.
    [94]Takase, Y., et al.2001. Initial results from the TST-2 Sphrical tokamak. Nucl. Fusion,41:1543.
    [95]M. Gryaznevich, R. Akers, P. G. Carolan, N. J. Conway, D. Gates, A. R.Field, T. C. Hender, I. Jenkins, R. Martin, M. P. S. Nightingale, C.Ribeiro, D. C. Robinson, A. Sykes, M. Tournianski, M. Valovic, and M. J.Walsh, Phys. Rev. Lett.80,3972 (1998)
    [96]Hayashi, H., et al.2000. Non-linear simulations of internal reconnection events in spherical tokamaks. Nucl. Fusion,40:721.
    [97]Mizuguchi,N., et al.2000. Dynamics of spherical tokamak plasma on the internal reconnection event. Phys. Plasmas,7:940.
    [98]R. J. Buttery, M. K. Bevir, A. Caloutsis, D. Gates, C. G. Gimblett, M.Gryaznevich, T. C. Hender, I. Jenkins, R. Martin, C. Ribeiro, D. C. Robinson,
    [100]A. Sykes, M. Valovic, M. J. Walsh, and H. R. Wilson, in Proceedings of the 23rd EPS Conference, Kiev European Physical Society, Petit-Lancy, (1996), Part I, p.416
    [99]Sykes, A., High β produced by neutral beam injection in the START (Small Tight Aspect Ratio Tokamak) spherical tokamak. Phys. Plasmas 4 (1997) 1665.
    [100]He Y X. A Research Program of Spherical Tokamak in China. Plasma Science and Technology,2002,4(4):1355-1360.
    [101]Dudok de Wit T et al, Phys. Plasmas 1 3288 (1994)
    [102]Kim J S, Edgell D H, Greene J M, et al, MHD Mode Identification of Tokamak Plasmas from Mirnov Signals, Plasma Phys Control Fusion,1999, 41(11):1399-1420.
    [103]Sabbagh S.A. et al., Equilibrium properties of spherical torus plasmas in NSTX Nucl Fusion 41 (2001):1601
    [104]Mizuguchi,N., et al.2000. Dynamics of spherical tokamak plasma on the internal reconnection event. Phys. Plasmas,7:940
    [105]J. Ghosh, R. Pal, P. K. Chattopadhyay.1999. Setup for potential bias experiments on the Saha Institute of Nuclear Physics tokamak. Review of Scientific Instruments,70 (12):4557
    [106]C. Xiao, K. K. Jain, W. Zhang, et al.1994. Measurement of plasma rotation velocities with electrode biasing in the Saskatchewan Torus-Modified (STOR-M) tokamak. Phys. Plasmas,1 (7):2291
    [107]I.C. Nascimento, Y.K. Kuznetsov, J.H.F. Severo, et al.2005. Plasma confinement using biased electrode in the TCABR tokamak. Nucl. Fusion. 45:796

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700