重元素体系的电子动量谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过近四十年的发展,电子动量谱学以其同时测量物质中电子的能量分布和动量分布的独特优势,已经成为研究物质的电子结构、电子关联效应和电离机制的强有力工具。其应用价值已经在物理、化学、生物等多个学科的发展和应用中得到了充分体现。目前,随着第三代动量谱仪分辨率和探测效率的不断提高,电子动量谱学可以深入到一些新的研究领域。此外,相对论量子化学计算近年来发展迅速,结合相对论量子化学,我们可以开展重元素体系的电子动量谱学研究。
     论文工作的主要目标是将相对论量子化学计算与电子动量谱学实验结合起来,对重元素体系的外价轨道电子分布的相关问题展开研究。相对论量子化学计算与电子动量谱学的结合是一个全新的课题,没有前人经验可以借鉴,难度较大。论文工作首先熟练掌握了支持相对论量子化学计算的ADF软件的使用方法,在此基础上编写相关程序,成功实现从ADF软件的输出文件中导出理论动量谱。这也为电子动量谱学开辟了研究重元素体系的全新前沿领域,对于实验室的发展有重要的意义。
     论文首先从研究简单的氙和氪两种重元素原子入手,结合最新的电子动量谱实验数据,研究了氙、氪外价p轨道的相对论效应。然后研究深入到含重元素的双原子分子I_2和Au_2,通过比较它们外价轨道非相对论和相对论量子化学计算下动量分布的差异,揭示相对论效应对于其外价轨道电子分布的影响。最终,把我们的研究对象扩展到含重元素多原子分子上。
     我们对六羰基钨和二茂铁两种分子的外价轨道进行了电子动量谱的实验测量,结合非相对论和相对论量子化学计算,对其外价轨道中的相对论效应,扭曲波效应和振动效应进行了系统的分析。此外,我们还对CF_3I分子的5e_(3/2)和5e_(1/2)轨道的相对论效应给出了最新的理论解释,对UF_6分子的外价轨道电子分布中相对论效应的影响作出了理论预测。
Electron momentum spectroscopy (EMS), with a history near 40 years, has been a powerful tool for investigating of electronic structure, electronic correlation effects and ionization mechanism in matters. EMS can directly measure the electron energy and momentum density distributions of matter, and its application has been extend to the fields of physics, chemistry, and biology. With the improvement of energy and momentum resolutions, electron momentum spectrometer can study some new and valuable areas, which were very difficult in past. In addition, the rapidly developed relativistic quantum chemistry theory has made possible the EMS study of heavy elements systems.
     The main goal of this thesis is to combine the relativistic quantum chemistry calculation with EMS experiments to study valence electronic structures of heavy elements system. The combination of relativistic quantum chemistry and EMS is a new research area. There was no experience can be used for reference, therefore this area is full of difficulties and challenges.
     After learning how to use the relativistic quantum chemistry program ADF, an interface program was successfully complied to generate theoretical momentum distributions from the standard ADF output file, which made EMS study extend to the systems containing heavy elements. This program will be very helpful for our laboratory future development.
     The relativistic effects in the outer valence p orbital of Xenon and Krypton were investigated using high resolution EMS experiments incooperating with relativistic chemisty calculations. The comparions of non-relativistic and relativistic theoretical momentum profile revealed that the relativistic effects have remarkable influences on the electron density distributions of diatomic molecules I_2 and Au_2.
     The outer valence orbitals of tungsten hexacarbonyl and ferrocene were measured using our third-generation electron momentum spectrometer. Incooperation with non-relativistic and relativistic calculations, the relativistic, distorted-wave and vibrational effects in the outer valence orbitals of these two polyatomic molecules were investigated systematically. Moreover, the experimental electron momentum spectra of 5e_(1/2) and 5e_(3/2) orbitals of CF_3I were interpreted with relativistic calculations, and relativistic effects in the valence orbital of UF_6 were predicted in theory.
引文
[1] Weigold E, McCarthy I E. Electron Momentum Spectroscopy. New York: Kluwer Academic / Plenum Publishers, 1999.
    [2] Brion C E. Looking at Orbitals in the Laboratory: the Experimental Investigation of Molecular Wave-Functions and Binding-Energies by Electron Momentum Spectroscopy. Int. J. Quantum Chem., 1986, 29(5): 1397-1428.
    [3] McCarthy I E, Weigold E. Electron momentum spectroscopy of atoms and molecules. Rep. Prog. Phys., 1991, 54: 789-879.
    [4] Coplan M A, Moore J H, Doering J P. (e,2e) spectroscopy. Rev. Mod. Phys., 1994, 66(3): 985-1014.
    [5]陈学俊,郑延友.电子动量谱学的原理和应用.北京:清华大学出版社, 2000.
    [6]郁伟忠.正电子物理及其应用.北京:科学出版社, 2003:124-134.
    [7] Fukui K. Orbital Pattern Rationale in Chemical Empiricism. International J. Quantum Chem., 1977, 12: 277-288.
    [8] Szabo A, Ostlund S. Modern quantum Chemistry. New York: McGraw-Hill, 1989.
    [9] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford, 1989.
    [10] Amaldi U, Egidi A, Marconero R, et al. Use of a two channeltron coincidence in a new line of research in atomic physics. Rev. Sci. Instrum., 1969, 40: 1001-1004.
    [11] Erhart H, Schulz M, Tekaat T, et al. Inoization of Helium: Angular Correlation of the Scattered and Ejected Electrons. Phys. Rev. Lett., 1969, 22: 89-92.
    [12] Camilloni R, Guidoni A G, Tiribelli R. Coincidence Measurements of Qusifree Scattering of 9-keV Electron on K and L Shells of Carbon. Phys. Rev. Lett., 1972, 29: 618-621.
    [13] Weigold E, Hood S T, Teubner P J O. Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon. Phys. Rev. Lett., 1973, 30: 475-478.
    [14] Hood S T, Hamnett A, Brion C E. An (e,2e) Study of Ammonia: Binding-Energies and Momentum Distributions of Valence Electrons. Chem. Phys. Lett., 1976, 39(2): 252-256.
    [15] Weigold E, Hood S T, Fuss I, et al. Ionization of Atomic Hydrogen: Angular Correlations of Outgoing Electrons. J. Phys. B: At. Mol. Phys., 1977, 10(16): L623-627.
    [16] Weigold E, Mccarthy I E, Dixon A J, et al. Ground State Correlations in H2 Measured by (e, 2e) Technique. Chem. Phys. Lett., 1977, 47(2): 209-212.
    [17] Moore J H, Coplan M A, Skillman T L, et al. Multichannel (e, 2e) Apparatus. Rev. Sci. Instrum., 1978, 49(4): 463-468.
    [18] Goruganthu R R, Coplan M A, Moore J H, et al. (e, 2e) Momentum Spectroscopic Study of the Interaction of -CH3 and -CF3 Groups with the Carbon-Carbon Triple Bond. J. Chem. Phys., 1988, 89(1): 25-33.
    [19] Takahashi M, Nagasaka H, Udagawa Y. Electron momentum spectroscopy study of lone pair orbitals of thiols and dimethyl sulfide. J. Phys. Chem. A, 1997, 101(4): 528-532.
    [20] Todd B R, Lermer N, Brion C E. A High-Sensitivity Momentum Dispersive Multichannel Electron Momentum Spectrometer for Studies in Experimental Quantum-Chemistry. Rev. Sci. Instrum., 1994, 65(2): 349-358.
    [21] Cook J P D, Mccarthy I E, Stelbovics A T, et al. Non-Coplanar Symmetric (e, 2e) Momentum Profile Measurements for Helium: an Accurate Test of Helium Wavefunctions. J. Phys. B: At. Mol. Phys., 1984, 17(11): 2339-2352.
    [22] Zheng Y, Neville J J, Brion C E, et al. An Electronic-Structure Study of Acetone by Electron Momentum Spectroscopy: a Comparison of SCF, MSRD-CI and Density-Functional Theory. Chem. Phys., 1994, 188(2-3): 109-129.
    [23] Deng J K, Li G Q, He Y, et al. Investigation of orbital momentum profiles of methylpropane (isobutane) by binary (e,2e) spectroscopy. J. Chem. Phys., 2001, 114(2): 882-888.
    [24]杨炳忻,陈向军,庞文宁, et al. (e,2e)电子动量谱仪研制和若干原子分子的电子动量谱测量.物理学报, 1997, 46: 862-869.
    [25] Brunger M J, Adcock W. High-resolution electron momentum spectroscopy of molecules. J. Chem. Soc.: Perkin Trans. 2, 2002, (1): 1-22.
    [26] Bawagan A O, Brion C E, Davidson E R, et al. Electron Momentum Spectroscopy of the Valence Orbitals of H2O and D2O: Quantitative Comparisons Using Hartree-Fock Limit and Correlated Wave-Functions. Chem. Phys., 1987, 113(1): 19-42.
    [27] Zheng Y, Mccarthy I E, Weigold E, et al. Direct Observation of the Momentum-Density Profile of Excited and Oriented Sodium Atoms. Phys. Rev. Lett., 1990, 64(12): 1358-1360.
    [28] Zheng Y, Neville J J, Brion C E. Imaging the Electron-Density in the Highest Occupied Molecular-Orbital of Glycine. Science, 1995, 270(5237): 786-788.
    [29] Storer P, Caprari R S, Clark S A C, et al. Condensed Matter Electron Momentum Spectrometer with Parallel Detection in Energy and Momentum. Rev. Sci. Instrum., 1994, 65(7): 2214-2226.
    [30] Vos M, Cornish G P, Weigold E. High-energy (e, 2e) spectrometer for the study of the spectral momentum density of materials. Rev. Sci. Instrum., 2000, 71(10): 3831-3840.
    [31] Zheng Y, Cooper G, Tixier S, et al. 2 pi gas phase multichannel electron momentum spectrometer for rapid orbital imaging and multiple ionization studies. J. Electron. Spectrosc. Relat. Phenom., 2000, 112(1-3): 67-91.
    [32] Takahashi M, Saito T, Matsuo M, et al. A high sensitivity electron momentum spectrometer with simultaneous detection in energy and momentum. Rev. Sci. Instrum., 2002, 73(6): 2242-2248.
    [33] Ren X G, Ning C G, Deng J K, et al. (e, 2e) electron momentum spectrometer with high sensitivity and high resolution. Rev. Sci. Instrum., 2005, 76(6): 063103-1-8.
    [34] Shan X, Chen X J, Zhou L X, et al. High resolution electron momentum spectroscopy of dichlorodifluoromethane: Unambiguous assignments of outer valence molecular orbitals. J. Chem. Phys., 2006, 125(15): 154307-1-4.
    [35] Takahashi M, Watanabe N, Khajuria Y, et al. Observation of a molecular frame (e,2e) cross section: An (e, 2e plus M) triple coincidence study on H2. Phys. Rev. Lett., 2005, 94(21): 213202-1-4.
    [36]任雪光.第三代电子动量谱仪的研制及若干样品的实验研究: [博士学位论文].北京:清华大学物理系, 2005.
    [37]刘文剑.相对论量子化学新进展.化学进展, 2007, 19: 833-851
    [38] Liu W J, Wang F, Li L M. The Beijing Density Functional (BDF) program package: Methodologies and applications. J. Theor. Comput. Chem., 2003, 2(2): 257-272
    [39] Velde G T, Bickelhaupt F M, Baerends E J, et al. Chemistry with ADF. J. Comput. Chem., 2001, 22(9): 931-967
    [40] Cook J P D, Mitroy J, Weigold E. Direct Observations of Relativistic Effects in Single-Electron Momentum Distributions in Xenon Outer Shells. Phys. Rev. Lett., 1984, 52: 1116-1118.
    [41] Cook J P D, McCarthy I E, Mitroy J, et al. Electron momentum spectroscopy of Xenon - A detailed analysis. Phys. Rev. A, 1986, 33(1): 211-221.
    [42] Frost L, Mitroy J, Weigold E. The electron momentum spectroscopy of lead. J. Phys. B: At. Mol. Phys., 1986, 19: 4063-4074.
    [43] Bonfert J, Graf H, Nakel W. Relativistic (e,2e) processes on atomic inner shells. J. Phys. B: At. Mol. Phys., 1991, 24: 1423-1434.
    [44] Ren X G, Ning C G, Deng J K, et al. (e,2e) study on distorted-wave and relativistic effects in the inner-shell ionization processes of xenon 4d5/2 and 4d3/2. Phys. Rev. A, 2006, 73: 042714.
    [45] Li Z, Chen X, Shan X, et al. Experimental observation of relativistic effects on electronic wavefunction for iodine lone-pair orbital of CF3I. Chem. Phys. Lett., 2008, 457: 45-48.
    [46]唐敖庆.量子化学.北京:科学出版社, 1982.
    [47] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B, 1964, 136: B864-B871.
    [48] Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965, 140: A1133-A1138.
    [49] Duffy P, Chong D P, Casida M E, et al. Assessment of Kohn-Sham density-functional orbitals as approximate Dyson orbitals for the calculation of electron-momentum-spectroscopy scattering cross sections. Phys. Rev. A, 1994, 50: 4707.
    [50] Pople J A, Headgordon M, Raghavachari K. Quadratic Configuration-Interaction - a General Technique for Determining Electron Correlation Energies. J. Chem. Phys., 1987, 87(10): 5968-5975.
    [51] Schirmer J, Cederbaum L S, Walter O. New Approach to the One-Particle Greens-Function for Finite Fermi Systems. Phys. Rev. A, 1983, 28(3): 1237-1259.
    [52] Deleuze M, Pickup B T, Delhalle J. Plane-Wave and Orthogonalized Plane-Wave Many-Body Greens-Function Calculations of Photoionization Intensities. Molecular Physics, 1994, 83(4): 655-686.
    [53]黄艳茹.单粒子格林函数在电子动量谱学中的应用: [博士学位论].北京:清华大学物理系, 2008.
    [54]宁传刚.第三代电子动量谱仪的改进及其应用: [博士学位论文].北京:清华大学物理系, 2007.
    [55] Ning C G, Hajgato B, Huang Y R, et al. High resolution electron momentum spectroscopy of the valence orbitals of water. Chem. Phys., 2008, 343: 19-30.
    [56] Pyykko P. Relativistic quantum chemistry. In: Lowdin P, (eds.) advances in quantum chemistry. New York: Academic press, 1978: 353-409.
    [57] Visscher L. On the construction of double group molecular symmetry functions. Chem. Phys. Lett., 1996, 253: 20-26.
    [58]张书锋.第三代电子动量谱仪的改进及若干样品的实验研究: [博士学位论文].北京:清华大学物理系, 2007.
    [59] Cornford A B, Frost D C, Mcdowell C A, et al. Photoelectron Spectra of Halogens. J. Chem. Phys., 1971, 54(6): 2651-2657.
    [60] Potts A W, Price W C. Photoelectron Spectra of Halogens and Mixed Halides Ic1 and Ibr. Trans. Faraday. Soc., 1971, 67(581): 1242.
    [61] Higginson B R, Lloyd D R, Roberts P J. Variable Temperature Photoelectron Spectroscopy: Adiabatic Ionization Potential of Iodine Molecule. Chem. Phys. Lett., 1973, 19(4): 480-482.
    [62] Reiher M, Hess B. Relativistic electronic-structure calculations for molecules. In:Grotendorst J, (eds.) Modern methods and algorithms of quantum chemistry. Jülich: Jülich Research Center, 2000: 451-477.
    [63] Rolke J, Zheng Y, Brion C E, et al. Imaging of the HOMO electron density in Cr(CO)6, Mo(CO)6 and W(CO)6 by electron momentum spectroscopy: A comparison with Hartree-Fock and DFT calculations. Chem. Phys., 1997, 215(2): 191-205.
    [64] Ehlers A W, Frenking G. Theoretical-studies of the M-CO bond lengths and 1st dissocaiation-energies of the transition-metal hexacarbonyls Cr(CO)6, Mo(CO)6 and W(CO)6. J. Chem. Soc., Chem. Commun., 1993, (22): 1709-1711.
    [65] Higginson B R, Lloyd D R, Burroughs P, et al. Photoelectron Studies of Metal-Carbonyls .2. Valence Region Photoelectron-Spectra of Group Via Hexacarbonyls. J. Chem. Soc., Faraday Trans. II, 1973, 69(11): 1659-1668.
    [66] Brion C E, Zheng Y, Rolke J, et al. Distorted-wave effects at low momentum in binary (e, 2e) cross sections for d-orbital ionization. J. Phys. B: At. Mol. Phys., 1998, 31(5): L223-230.
    [67] Ren X G, Ning C G, Deng J K, et al. Direct observation of distorted wave effects in ethylene using the (e,2e) reaction. Phys. Rev. Lett., 2005, 94(16): 163201.
    [68] Ning C G, Ren X G, Deng J K, et al. Turn-up effects at low momentum for the highest occupied molecular orbital of oxygen at various impact energies by electron momentum spectroscopy. Phys. Rev. A, 2006, 73(2): 022704.
    [69] Hollebone B P, Neville J J, Zheng Y, et al. Valence Electron Momentum Distributions of Ethylene - Comparison of Ems Measurements with near Hartree-Fock Limit, Configuration-Interaction and Density-Functional Theory Calculations. Chem. Phys., 1995, 196: 13-35.
    [70] Ning C G, Ren X G, Deng J K, et al. Investigation of valence orbitals of propene by electron momentum spectroscopy. J. Chem. Phys., 2005, 122(22): 224302.
    [71] Haaland A, Nilsson J E. Determination of Barriers to Internal Rotation by Means of Electron Diffraction. Ferrocene and Ruthenocene. Acta Chem. Scand., 1968, 22(8): 2653.
    [72] Cauletti C, Green J C, Kelly M R, et al. Photoelectron-Spectra of Metallocenes. J. Electron. Spectrosc. Relat. Phenom., 1980, 19(4): 327-353.
    [73] Brunger M J, Braidwood S W, Mccarthy I E, et al. An Electron Momentum Spectroscopy Investigation of the 4d Core States of Xenon. J. Phys. B: At. Mol. Phys., 1994, 27(17): L597-601.
    [74] Hargreaves L R, Colyer C, Stevenson M A, et al. (e, 2e) study of two-center interference effects in the ionization of N2. Phys. Rev. A, 2009, 80(6): 062704.
    [75] Colyer C J, Stevenson M A, Al-Hagan O, et al. Dynamical (e, 2e) studies of formic acid. J. Phys. B: At. Mol. Phys., 2009, 42(23): 235207.
    [76] Cho T K, Takahashi M, Udagawa Y. Electron momentum spectroscopy of the HOMO of acetone. J. Photochem. Photobiol. A, 2006, 178(2-3): 281-285.
    [77] Zhang S F, Ning C G, Deng J K, et al. Highest occupied molecular orbital of cyclopentanone by binary (e, 2e) spectroscopy. Chin. Phys. Lett., 2006, 23(3): 583-586.
    [78] Yates B W, Tan K H, Bancroft G M, et al. A Variable Energy Photoelectron Study of the Valence Levels and I 4d Core Levels of CF3I. J. Chem. Phys., 1986, 85(7): 3840-2850.
    [79] Karlsson L, Mattsson L, Jadrny R, et al. Valence Electron-Spectra of Benzene and Hexafluorides of Sulfur, Molybdenum, Tungsten and Uranium. Phys. Scr., 1976, 14(5): 230-241.
    [80] Srivastava S K, Cartwright D C, Trajmar S, et al. Photoabsorption Spectrum of Uf6 by Electron-Impact. J. Chem. Phys., 1976, 65(1): 208-211.
    [81] Martensson N, Malmquist P A, Svensson S, et al. The Electron Spectrum of UF6 Recorded in the Gas-Phase. J. Chem. Phys., 1984, 80(11): 5458-5464.
    [82] Beach D B, Bomben K D, Edelstein N M, et al. An X-Ray Photoelectron Spectroscopic Study of Uranium-Compounds. Inorg. Chem., 1986, 25(11): 1735-1737.
    [83] DeJong W A, Nieuwpoort W C. Relativity and the chemistry of UF6: A molecular Dirac-Hartree-Fock-CI study. Int. J. Quantum Chem., 1996, 58(2): 203-216.
    [84] Gagliardi L, Willetts A, Skylaris C K, et al. A relativistic density functional study on the uranium hexafluoride and plutonium hexafluoride monomer and dimer species. J. Am. Chem. Soc., 1998, 120(45): 11727-11731.
    [85] Xiao H, Li J. Benchmark calculations on the atomization enthalpy, geometry and vibrational frequencies of UF6 with relativistic DFT methods. Chin. J. Struct. Chem., 2008, 27(8): 967-974.
    [86] Kimura M, Schomake.V, Smith D W. Electron-Diffraction Investigation of Hexafluorides of Tungsten Osmium Iridium Uranium Neptunium and Plutonium. J. Chem. Phys., 1968, 48(9): 4001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700