油套管螺纹联接力学行为及粘扣失效过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油套管是石油和天然气生产的重要部件,其用量十分巨大,目前已经占石油工业用钢总量的50%左右。螺纹接头部位是整个油套管联接中最薄弱的环节,超过80%的失效事故发生于此,造成巨大的经济损失。油套管内、外螺纹的联接是空间螺旋曲面在外力作用下的复杂接触和变形过程,对于油套管螺纹联接中力学行为研究的关键就是如何精确计算螺纹联接的受力和变形分布、弄清每圈螺纹牙上的受力和变形。油套管螺纹联接时,每圈螺纹牙上的变形和受力是一个传递、积累的过程,前后螺纹牙之间的变形和受力存在一定的关联。以往的研究在建立螺纹联接的解析模型时,只考虑整体变形而没有考虑每圈螺纹牙的单独变形,使得对油套管联接螺纹牙受力分布的计算精度不高,难以进行有效的理论分析和计算。此外,粘扣现象是螺纹联接中的一种主要失效形式,但目前对粘扣失效过程的研究也不够深入。本文在对国内外相关研究进行分析归纳的基础上,对油套管螺纹拧紧和受拉联接下的力学行为进行研究,并对螺纹粘扣失效的过程进行试验研究,研究的主要内容和成果如下:
     (1)针对圆柱管螺纹拧紧和受拉过程中的力学行为进行研究,推导出管体外螺纹和接箍内螺纹的轴向变形表达式,推导出圆柱管螺纹拧紧时螺纹牙齿面上的受力计算表达式,推导出圆柱管螺纹受拉联接时螺纹牙齿面上受力分布的计算公式。在此基础上结合P-110S油套管螺纹对应的圆柱管螺纹参数,分别计算了圆柱管螺纹在拧紧和受拉联接时螺纹牙接触齿面上的受力分布规律;
     (2)针对圆锥管螺纹上扣过盈和受拉过程的力学行为进行研究,建立了管体外螺纹和接箍内螺纹的径向变形关系,推导出圆锥管螺纹上扣过盈时接触齿面上的接触压力表达式。通过对圆柱管螺纹受拉联接解析模型进行修正,得到圆锥管螺纹受拉联接时螺纹牙齿面上受力分布的计算公式,推导出圆锥管螺纹上扣过盈和承受轴向拉伸载荷时齿面接触压力的计算公式。结合P-110S圆锥管螺纹,分别计算了圆锥管螺纹在上扣过盈、受拉以及上扣拉伸时螺纹牙接触齿面上的受力分布规律,同时还研究了外加厚油套管和不加厚油套管的受力分布区别;
     (3)以P-110S油套管螺纹接头为研究对象,采用非线性有限元软件ABAQUS对油套管螺纹联接进行有限元分析,分别研究了在上扣、内压、轴向载荷以及复杂工况作用下油套管螺纹联接的力学性能,得到了一系列规律性的曲线。有限元的研究结果在一定程度上证明了本文所建立的关于油套管螺纹联接的力学计算模型是合理的;
     (4)结合厚壁圆筒理论,推导出计算油套管螺纹上扣时需要的拧紧力矩的计算模型,并以P-110S油套管螺纹为计算实例,对螺纹拧紧力矩计算模型进行了计算分析,将得到的拧紧力矩与有限元分析的结果以及无锡西姆莱斯公司实际操作的上扣扭矩进行比较,证明了所建立的上扣扭矩计算模型是合理的;
     (5)针对牙形角误差和牙高误差进行研究,推导并建立了能够考虑牙形误差的油套管螺纹联接齿面上受力分布的计算公式,系统研究了牙形角误差和牙高误差对螺纹联接受力的影响规律;
     (6)针对螺纹修齿进行研究,建立了能够考虑修齿影响的油套管联接解析力学计算模型,该模型可以实现对修齿螺纹受拉联接时的轴向载荷和齿面载荷分布进行计算,从而可以有效研究螺纹修齿的影响规律。同时还系统地研究了修齿参数、管体和接箍材料的配对、锥角大小、壁厚大小等一系列因素对螺纹联接力学行为的影响规律,为实际中修齿参数的确定、材料配对以及锥角、壁厚大小的确定提供了理论参考;
     (7)设计了一台能够模拟油套管螺纹联接的试验装置,以P-110S油套管螺纹为试验研究对象,分别以几种不同的齿面接触应力进行试验研究,观察了螺纹在拧紧过程中表面形貌随着不同的加载和摩擦圈数而发生改变的过程,分析了接触应力大小对发生粘扣失效的影响规律。同时还进行了螺纹拆卸次数的试验研究,观察了螺纹齿面逐渐发生粘扣失效过程的表面形貌,得到的螺纹装拆次数与目前工业界中实际最大的装拆次数是吻合的。
     本文的研究内容和成果将为油套管螺纹联接在工业中的实际应用提供有益的帮助,并可以为油套管螺纹联接力学行为的进一步研究和粘扣失效问题的进一步研究和预防提供有益的理论支撑。
In oil and natural gas industry, oil pipe is the important part and the application amount is very large. At present, it has already occupied nearly50%of the total steel in petroleum industry. More than80%of thread failures occur on the joint of threaded connection, which show the joint is the weakest point in oil tubing and casing. The connection of pin and box thread is a complicated contact and deformation process of spatial helical surface under external forces. The key point to investigate the mechanical behavior in oil pipe threaded connection is how to calculate the load and deformation distribution in threaded connection accurately and determine the load and deformation on each thread tooth as well. In oil pipe threaded connection, the load and deformation on each thread tooth is a procedure of transmission and accumulation, and the load and deformation between the former tooth and the latter tooth are closely related. In the previous analytical modeling of threaded connection, researchers usually consider the whole deformation and neglect the single deformation on each thread tooth, which leads to the inaccuracy on load distribution and could not make analysis and calculation in oil pipe threaded connection effectively. In addition, thread gluing is a main failure in threaded connection, but the researches on the failure process of gluing failure at present are still not sufficient. Based on the investigations and summaries in related literatures in the world, the mechanical behavior in oil pipe threaded connection under tightening and tension load is analyzed and the failure process of thread gluing is also observed by the experiment. The main research contents and achievements in this dissertation are described as follows:
     (1) The mechanical behaviors of cylindrical pipe threaded connection in tightened and tensioned conditions are investigated respectively. The equations of axial deformation on pin and box thread are derivated and the calculating equations of load distribution on thread surface in tightened and tensioned conditions are developed. Take some parameters of P-110S oil pipe threaded connction for calculating example, the load distributions on contact surface in tightened and tensioned conditions are calculated respectively.
     (2) The mechanical behavior of conic threaded connection with interference fit and tension load are investigated respectively. The equations of radial deformation on pin and box thread are established and the equation of contact pressure on contact surface with interference fit is obtained. By the modification of established cylindrical pipe threaded connection model, the equation of load distribution on conic threaded connection with tension load is derivated and the equation of contact pressure on conic threaded connection with interference fit and tension load is obtained. Take P-110S conic threaded connction for calculating example, the load distributions on contact surface in different conditions, such as intereference fit, tension load and combined loads, are calculated respectively. The difference between thicken and non-thicken threaded connection is also investigated.
     (3) Take the joint of P-110S oil pipe threaded connection for research object and using the non-linear finite element software ABAQUS, the mechanical property of oil pipe threaded connection under make up, inner pressure, axial load and combined loads is analyzed and several regular curves are obtained. The results of finite element analysis to some extent verified the proposed analytical models in this dissertation.
     (4) Based on the thick wall theory, the calculation model of required tightening torque is established. Take P-110S oil pipe threaded connection for calculating example, the tightening torque of oil pipe threaded connection under make up procedure is calculated. Compared the obtained tightening torques from analytical method, finite element analysis and the practical used tightening torque on Wuxi Seamless Oil Pipe Co., Ltd, the results indicate that the proposed calculation model on tightening torque in this dissertation is reasonable.
     (5) Considering the existence of tooth shape error and tooth height error, the equation of load distribution includes these errors in oil pipe threaded connection is established and the influences of tooth shape error and tooth height error on load distribution are analyzed respectively.
     (6) The analytical model in oil pipe threaded connection that includes the effect of tooth modification cut is established. This model can calculate the axial load and load distributions with tooth modification cut respectively. It can also be used to investigate the influence of tooth modification cut on load distribution effectively. Applying this proposed model, the influences of several factors, such as different tooth modification cut, materials of pin and box thread, taper angle and wall thickness, are also investigated, which provides the guidance for choosing parameters of tooth modification cut, material, taper angle and wall thickness.
     (7) The experimental equipment that can simulate the contact of threaded connection is developed. Take P-110S oil pipe threaded connection for test example, the variation process on thread surface with different load and friction is observed and the influence of contact stress on gluing failure is investigated. Applying the practical tightening contact stress to the thread surface, the surface topography with gluing failure is observed and the maximum times of make up and disassembly is obtained. This obtained times number is identical to the practical used number in industry.
     The research contents and achievements obtained in this dissertation will be helpful for the application in petroleum industry. This research will contribute to the further researches on the mechanical behavior in oil pipe threaded connection and also offers theoretical supports to the investigation and prevention of thread gluing.
引文
[1]李欣,张毅,张汝忻.我国油井管需求、生产能力及价格综合分析.钢管.2000,29(1):10-14
    [2]殷国茂,张之奇,杨秀芹等.我国油井管生产的回顾与展望.钢管.2002,31(6):1-5
    [3]沙庆云,任毅.石油专用管材生产技术的现状及进展.鞍钢技术.2000,(6):13-17
    [4]黄志潜,李平全,刘天民等.石油工业发展对油套管和管线管的要求与对策.石油专用管.1998,(4):1-10
    [5]张毅,陈建初,陈甦.使用液压钳对油管粘扣的影响分析.石油机械.2002,30(11):4-7
    [6]张毅,李欣,张汝忻.推进油井管国产化需要注意的几个问题.钢管.2000,29(4):34-43
    [7]李鹤林,冯耀荣。石油钻柱失效分析及预防措施.石油机械.1990,18(8):38-44
    [8]袁光杰,姚振强.油套管螺纹连接抗粘扣技术的研究现状及展望.钢铁.2003,38(11):66-69
    [9]Bahai H. A parametric model for axial and bending stress concentration factors in API drillstring threaded connectors. Int J Pressure Vessels Piping.2001,78(7):495-505
    [10]Brutti C, Salvini P. Dynamic behaviour of tubular threaded joints. Second Int Offshore Polar Engng Conf, San Francisco,1992:306-311
    [12]Tsang S K. Evaluation of Kowalski's method of calculating stresses at internal thread reliefs. AIAAJ.1993,31(12):2358-2360
    [13]Bouzid A, Chaaban A. An accurate method of evaluating relaxation in bolted flanged connections. J Pressure Vessels Technol, ASME.1997,119(1):10-17
    [14]雷齐松,李玉宁,韩晓文等.套管和油管螺纹密封性在油田使用中的重要性.科技成果管理与研究。2009,(6):46-48
    [15]费洪海,常忠伟,郭雷等.液压油管钳的上扣扭矩状态及控制.采油工程.2006,(3):21-26
    [16]高连新,史交齐,金烨.上扣扭矩对圆螺纹套管连接强度的影响.天然气工业.2005,25(2):87-89
    [17]郑林庆.摩擦学原理.北京:高等教育出版社.1994
    [18]Gurumoorthy K, Kamaraj K, Parasad R K et al. Development and use of combined wear testing equipment for evaluating galling and high stress sliding wear behaviour. Material & Design.2007, (28):987-922
    [19]Hummel S R. Development of a galling resistance test method with a uniform stress distribution. Tribology International.2008, (41):175-180
    [20]Cuvalci O, Sofuoglu H, Ertas A. Effect of surface coating and tin plating on friction characteristics of P-110 tubing for different thread compounds. Tribology International.2003, (36):757-764
    [21]American Petroleum Institute. API STD5B Specification for threading, casing, and thread inspection of casing, tubing, and line pipe threads. Fourteenth edition. USA:API, 1996
    [22]山本晃著,郭可谦等译.螺纹联接的理论与计算.上海:上海科技文献出版社.1984
    [23]Weiner P D, True M E. Unique device eliminates leaks in API connections. World Oil.1969:69(1):127-132
    [24]Clinedinst W O. Strength of threaded joints for steel pipe. Journal of Engineering for Industry, ASME.1964,64:1-10
    [25]Bulletin on formulas and calculations for casing, tubing, drillpipe, and line pipe properties. API Bulletin 5C3,6th edition,1994
    [26]郝俊芳,龚伟安.套管强度计算与设计.北京:石油工业出版社.1987
    [27]练章华,韩建增,董范等.基于数值模拟的复杂地层套管破坏机理研究.天然气工业.2002,22(1):48-51
    [28]Blose T L, Weiner P D. Leak resistance anaysis-API 8-round. IEEE Journal of Solid-State Circuits.1979:49-57
    [29]Schneider W P. Casing and tubing connection stresses. Journal of Petroleum Technology.1982,34(8):25-31
    [30]Asbill W T, Pattillo P D, Roger W M. Investigation of API round casing connection performance. American Society of Mechanical Engineering.1984,106(3):130-161
    [31]Alexandre Q N. How to calculate the mechanical characteristics of your casing. SPE 21157.1990
    [32]高学仕,张作龙.变螺距套管螺纹在轴向拉力作用下扣牙力分布及计算.石油钻探技术.1994,22(1):55-56
    [33]孙春一,丁启敏,伟丽娃.油管螺旋副失效分析及预防措施.石油机械.1998,29(1):23-24
    [34]冯礼祥.油管与套管螺纹参数的计算.石油机械.1998,26(9):50-53
    [35]Assanelli A P, Dvorkin E N. Finite element methods of OCTG threaded connections. Computers & Structures.1993,47(4/5):725-734
    [36]Assanelli A P, Dvorkin E N. Selection of an adequate finite element formulation for modeling OCTG connections. Fourth World Cong Comput Mech, Buenos Aires.1998
    [37]Assanelli A P, Q Xu. Numerical-experimental analysis of an API 8 round connection. J Energy Res Technol ASME.1997,119(2):81-88
    [38]Grewal A S, Sabbaghian M. Load distribution between threads in threaded connections. Journal of Pressure Vessel Technology, Transactions of the ASME.1997, 119(1):91-95
    [39]Mitchell R F. Helical buckling of pipe with connectors. SPE/IADC 52847.1999
    [40]张毅,陈建初,赵鹏.油管服役受力分析.石油专用管.2000,(3):8-17
    [41]阎铁,范森,石德勤.钻铤螺纹联接处载荷分布规律研究.石油学报.1996,17(3):116-122
    [42]张焱,施太和.石油钻铤螺纹联接失效的机理分析.探矿工程.2000,(6):47-50
    [43]张作龙,高学仕,赵怀文.轴向拉力作用下管螺纹扣牙力分布及其计算.石油大学学报.1993,17(5):66-70
    [44]高学仕,孙松尧.两级柱螺纹套管接箍扣牙力计算与分析.石油大学学报.1994,18(5):70-73
    [45]龚伟安.略论套管螺纹密封性能与联接应力的关系.石油机械.1995,23(6):27-36
    [46]王琍,张汝忻,邹家祥等.API套管圆螺纹接头应力场分布实验.北京科技大学学报.2000,22(6):555-558
    [47]范志超,杨晓翔,蒋家羚.抽油机井油管接头弹性接触有限元分析.机械强度.2002,24(2):298-301
    [48]朱翠娥,赵争鸣.制造误差、丝扣联接对油井套管强度影响的有限元分析.南昌大学学报.1997,19(2):64-68
    [49]王琍,陈兆能,佟德纯等.套管接头螺纹滑脱失效有限元模拟.北京科技大学学报.2001,23(2):137-139
    [50]Wang L, Zang Y, Chen Z N. Model analysis of thread off failure of oil round thread casing connection. Journal of University of Science and Technology Beijing.2001,8(4): 277-299
    [51]习俊通,聂刚.套管螺纹全参数化几何模型的建立.机械设计.1999,16(1):18-20
    [52]习俊通,聂刚.螺距误差对套管螺纹载荷传递特性的影响.西安交通大学学报.2000,34(1):46-49
    [53]习俊通,聂刚.套管螺纹接头联接性能的接触有限元分析.西安交通大学学报.1999,33(11):63-66
    [54]龚伟安.略论套管螺纹密封性能与螺纹公差带的关系.石油机械.1996,24(4):30-34
    [55]王建军,张绍槐.套管弯曲强度与极限转角研究.西安石油学院学报.1997,12(1):24-26
    [56]杜春常.深井套管抗挤强度分析及计算.西南石油学院学报.1999,21(3):37-40
    [57]崔旭明,何富军,谭云等.油管的疲劳强度分析.应用力学学报.2003,20(1):128-132
    [58]毕风琴,杜秀华,李振钢等.对抽油机井油管的疲劳行为及寿命的分析与认识.油气田地面工程.2001,21(5):66-67
    [59]杜秀华,张德文,李强.抽油机井油管疲劳断裂原因.大庆石油学院学报.2001, 26(2): 58-60
    [60]杜秀华,毕凤琴.腐蚀在抽油机井油管疲劳断裂中的作用.大庆石油学院学报.2001,25(2):57-59
    [61]史交齐,赵克枫.论油套管螺纹泄漏抗力的确定和螺纹形式的选择.石油钻采工艺.1997,19(6):24-31,41
    [62]史交齐,林凯,解学东.提高API螺纹油管和套管密封性的措施.石油机械.2002,30(3):47-49
    [63]李旭春.影响油管螺纹密封性能的各种因素.油气田地面工程.1998,15(5):58-60
    [64]Biegler K K. Conclusions based on laboratory tests of tubing and casing connections. SPE 13067.1984
    [65]Armstrong G M, Wadsworth T M. Failure prevention by selection and analysis of drillstem connections. SPE 16075.1987
    [66]Brain E S. Equations for leak resistance of API 8-round connectors in tension. SPE Drilling Engineering.1990
    [67]Bollfrass C A. Sealing tubular connections. SPE 14040.1985
    [68]Schwind B E, Wolley G R. New findings on leak resistance of API round connectors. SPE 15515.1986
    [69]Kwon, Young W. Efficient and accurate model for the structural analysis of threaded tubular connections. SPE Production Engineering.1990
    [70]Cam M. Assessing tubular connection leakage integrity. World Oil.2002,223(2):82-84
    [71]Brune T V. How to prevent transit fatigue to tubular goods. Pipe Line Industry.1988, 69(1):31-34
    [72]Payne M L, Leturno R E, Harder C A. Fatigue failure of API 8-round casings in drilling service. SPE 26231.1993
    [73]Payne M L, Leturno R E, Harder C A. Improving operational procedures can reduce fatigue failure in 8-rd casing. Oil and Gas Journal.1994,92(48):68-75
    [74]Eiji T, Hiroshi T, Yasushi T et al. Application of dope-free tubular connection to SAGD and its works. SPE/IADC 52845.1999
    [75]Schneider B E. Casing and tubing connection stresses. SPE 10861.1982
    [76]Hainey M F. Makeup torques for API-type round thread casing connections with non-API weights, grades, and coupling diameters. SPE/IADC 15517.1986
    [77]Yoshihiro N, Minoru F, Norihiko N et al. Designing and proof testing of special joints for high pressure oil-well casing. Sumitomo Search.1974,12:85-91
    [78]Yoshihiro N, Seiichi N, Tetsuro K et al. Leak-proof tests of special joints for oil country tubular goods. Sumitomo Metals.1974,26(1):97-105
    [79]Tsuru E, Ueno M, Ogasawara M. Performance of tubular connections under the loading conditions of horizontal wells. SPE Drilling & Completion.1996:242-248
    [80]API. API RP37, Recommended practice for evaluation procedures for casing and tubing connection,1st edition, USA.1980
    [81]API. API RP5C5, Recommended practice for evaluation procedures for casing and tubing connection,1st edition, USA.1990
    [82]Payne M L, Asbill W T, Davis H L et al. Joint industry qualification test program for high-clearance casing connections. SPE/IADC 21908.1991
    [83]Klementich E F, Morey S C, Payne M L et al. Development and acceptance testing of flush joint casing connection with improved performance properties. SPE 26320.1996
    [84]Payne M L, Schwind B E. New international standard for casing/tubing connection testing. Proceedings of the IADC/SPE Asia Pacific Drilling Technology Conference, USA, Houston.1999
    [85]史交齐,韩新利.深井用偏梯形螺纹套管适用性研究.石油机械.1998,26(11):24-28
    [86]韩勇,赵克枫,吕栓录等.套管和油管的全尺寸评价实验.石油工程学会深探井技术研讨会论文集.西安.1997
    [87]杨勇,付继成.国产高抗挤套管残余应力初探.钢管.1998,27(6):1-5
    [88]张汝忻,邹家祥.API套管圆螺纹接头粘扣失效分析.钢铁.2000,35(5):44-47
    [89]张毅,王治国.缩小接箍外径对油管抗滑脱强度影响的试验分析.钢管.2000,29(6):19-22
    [90]魏学志,唐昭平.套管残余应力研究.天津冶金.2001:16-18
    [91]卢小庆,方华.高强度热采井专用套管TP100H的开发.钢铁.2001,36(10):30-32
    [92]Reynolds G F, Summerfield P D. A new approach to the design of threaded connections. SPE 21739.1991
    [93]Klementich E F et al. Development and acceptance testing of a flush joint casing connection with improved performance properties. SPE 26320.1993
    [94]Maruyama K et al. Development of OCTG connection for automated drilling rigs. SPE/IADC 59147.2000
    [95]Francios K, Jack S. Double-shouldered tool joints increase ttorsional strength. JPT.1996:514-517
    [96]Hassel, Mark. Laser based feature detection system including internal thread detection. IEEE.1995:567-568
    [97]Chen W H, Lee Y J. Effects of temperature on the contact stresses and residual bearing strength of pin-loaded composite laminates. J Therm Stress.1992,15(3):419-437
    [98]Dano M L et al. Stress and failure analysis of mechanically fastened joints in composite laminates. Compos Struct.2000,50(3):287-296
    [99]Eiji T, Kazushi M, Masaharu O et al. Innovative technology for tubular connection to eliminate thread compound grease. SPE/IADC 37649.1997
    [100]Ogasawara M, Khoyama F, Tsukano Y. Optimum use of environmentally safe compound grease for application of casing and tubing connection makeup. SPE 22555.1991
    [101]Turner M J, Clough R W, Martin H C et al. Stiffness and deflection analysis of complex structures. J Aeronaut Sci.1956,23(9):12-21
    [102]Clough R W. The finite element method in plane stress analysis. Proceedings of 2th ASCE conference on electronic computation, USA. 1960:574-585
    [103]Mackerle J. Finite element analysis and simulation of welding:a bibliography (1976-1996). Modell Simul Mater Sci Engng.1976,4(5):501-533
    [104]Parson B, Wilson E A. A method for determining the surface contact stresses resulting form interference fits. ASME J Engineering for industry.1970:208-218
    [105]Chan S K, Tuba I S. A finite element method for contact problems of solid bodies-Part I. Theory and Validation. Int J Meth Sci.1971,13:615-625
    [106]Ohte S. Finite element analysis of elastic contact problem. Bull JSME.1973,16: 797-804
    [107]Tsuta T, Yamaji S. Finite element analysis of contact problem:Theory and practice in finite element structure analysis. Japan:University of Tokyo Press.1973
    [108]Frediksson B. Finite element solution of surface nonlinearities in structural mechanics with special emphasis to contact and fracture mechanics problems. Computers & Structure.1976,6:281-290
    [109]Okamoto N, Nakazawa M. Finite element incremental contact analysis with various frictional conditions. Int J Num Met Engng.1979,14:337-357
    [110]Schwind B E. Equations for leak resistance of API 8-round connectors in tension. SPE 16618.1990
    [111]Johnson F W. Microcomputer finite element analysis of tubular connections. SPE 13070 present at 59th annual technical conference and exhibition, Houston, Texas.1984
    [112]Asbill W T, Pattillo P D, Rogers W M. Investigation of API 8 round casing connection performance-Part Ⅰ:Introduction and method of analysis, Part Ⅱ:Stresses and criteria, Part Ⅲ:Seal ability and torque. ASME.1984,106(3):130-161
    [113]Weiner P D, Sewell F P. New technology of improved tubular connection performance. SPE Paper.1996
    [114]Baragetti S. Effect of taper variation on conical threaded connections load distribution. Mech Des ASME.2002,124(2):320-329
    [115]Barake N, Chaaban A. Effect of cracks on load distribution in threaded end closures and fracture detection. Pressure Vessels Piping Conference, ASME.1994:27-33
    [116]Carper H J. Effect of contact geometry and other tribological variables on the friction coefficient in threaded connections. ASME.1994,61:117-122
    [117]Mitchell R F, Allen M B, John G C. Investigation of leak resistance of API casing connections. API Practice Project.1989.
    [118]Bahai H, Esat Ⅱ. A hybrid model for analysis of complex stress distribution in threaded connectors. Computer & Structure.1994,52(1):79-93
    [119]Bahai H et al. Numerical and experimental evaluation of SIF for threaded connectors. Engng Fract Mech.1996,54(6):835-845
    [120]Chaaban A, Chaarani A. A proposed K1 solution for long surface cracks in complex geometries. Pressure Vessels Technol, ASME.1991,113(1):28-33
    [121]Chaaban A, Jutras M. Static analysis of buttress threads using the finite element method. Pressure Vessels Technol, ASME.1992,114(2):209-212
    [122]Chaaban A, Muzzo U. Finite element analysis of residual stresses in threaded end closures. Pressure Vessels Technol, ASME.1991,113(3):398-401
    [123]Chaaban A, Muzzo U. On the design of threaded-end closures for high pressure vessels. Pressure Vessels Piping, ASME.1990:59-65
    [124]Beghini M et al. Shrink stress density functions in conical threaded connections as a function of dimensional tolerances.11th International Conference on Offshore Mechanical Arctic Engineering, New York. ASME.1992:383-390
    [125]Macdonald K A, Deans W F. Stress analysis of drillstring threaded connections using the finite element method. Engineering Failure Analysis.1996,2(1):1-30
    [126]Tafreshi A, Dover W D. Stress analysis of drillstring threaded connections using the finite element method. International Journal of Fatigue.1993,15(5):429-438
    [127]Chen J J, Shih Y S. A study of helical effect on the threaded connection by three dimensional finite element analysis. Nuclear Engineering and Design.1999,191(2): 109-116
    [128]Zadoks R I, Kokatam D P R. Three dimensional finite element model of a threaded connection. Computer Model Simulation Engineering.1999,4(4):274-281
    [129]Wang W, Marshek K M. Determination of the load distribution in a threaded connector having dissimilar materials and varying thread stiffness. Journal of Engineering and Industry.1995,117(1):1-8
    [130]Tengyun Cao, Sutherland John W. Investigation of thread tapping load characteristics through mechanistic modeling and experimentation. International Journal of Machine Tools & Manufacture.2002,42(14):1527-1538
    [131]Macdonald K A. The effectiveness of stress relief features in austenitic drillcollar connections. Engineering Failure Analysis.1996,3(4):267-279
    [132]Ding J F, Kang Y H, Wu X J. Tubing thread inspection by magnetic flux leakage. NDT and E International,2006,39(1):53-56
    [133]Ekwaro O S, Darpat F. Experimental studies on galling onset in OCTG connections. Journal of Energy Resources Technology.2008,130:1-4
    [134]Ertas A, Culvalci O, Carper H. Determination of friction characteristics of J-55 OCTG lubricated with environmentally safe thread compound. Tribology.1999,42(4):881-887
    [135]Muster A, Presz W. Influence of initial surface roughness on galling behavior of a steel-steel couple. Scand J Metall.1999,28:5-8
    [136]Shahani A R, Sharifi S M H. Contact stress analysis and calculation of stress concentration factors at the tool joint of a drill pipe. Material and Design.2009,30: 3615-3621
    [137]杜传军.接箍镀铜对油管抗粘扣性能的影响.宝钢技术.2001,(3):28-30
    [138]高连新,张毅,史交齐.油管抗粘扣性能的影响因素研究.石油专用管.1998,(2):39-42
    [139]Tony C, Francesco V. Analysis of the fatigue resistance of rotary shouldered connections. SPE/IADC 74564.2002
    [140]Broadbent T P, Fessler H. Stress distributions in screwed tubular joints for the petroleum industry. Proceedings of the first international offshore and polar engineering conference.1991
    [141]Baryshnikov A et al. Optimization of rotary-shouldered connection reliability and failure analysis. SPE/IADC 27535.1994
    [142]Baryshnikov A et al. Make-up torque and rotary shouldered connection reliability. SPE 29352.1995
    [143]Winship T E, Vinson B. An investigation of pressure capacity of rotary shouldered connections. SPE/IADC 39324.1998
    [144]Baragetti S, Baryshnikov A. Rotary shouldered thread connections, Working limits under combined static loading. Journal of Mechanical Design.2001,123(3):456-463
    [145]邱宣怀,郭可谦,吴宗泽等.机械设计(第四版).北京:高等教育出版社.1997
    [146]Sopwith D G. The distribution of load in screw threads. Inst, Mechanical Eng. Appl. Mechanics Proc.1998,159:373-383
    [147]刘鸿文.材料力学(第四版).北京:高等教育出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700