土压平衡盾构机关键参数与力学行为的计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市地铁建设的发展,国内已开始着手设计和研发国产盾构机。然而我国盾构设计理论尚不成熟,诸如盾构与地层之间的相互作用关系以及盾构上的荷载对盾构行为的影响等研究相对滞后。其次是国产盾构机的关键参数-推进力与刀盘扭矩的确定还没有形成一整套系统全面的计算理论模型。当地质条件和隧道直径变化时,这些参数很难确定,缺少必要的理论依据。因此,开展盾构机关键力学参数和力学行为的计算模型研究,其目的就是为盾构机的开发和国产化打下理论基础,为盾构的设计、选型和性能参数的确定提供必要的理论依据。
     本文的研究成果和主要内容如下:
     (1)通过对刀盘扭矩构成要素的系统分析,建立了新的刀盘扭矩计算的理论模型。提出了应考虑在模型中增加一些对刀盘的实际扭矩构成影响的新的要素,即,刀盘背面渣土的摩擦阻力扭矩、刀盘旋转时刀盘开口内土柱的剪切摩擦阻力矩以及刀盘构造柱的搅拌力矩,并对各扭矩分量进行了数学公式推导,通过与工程实测数据的对照分析对模型进行了验证。该计算模型为盾构机刀盘驱动扭矩参数的选择和正确确定提供了一定的理论依据。
     (2)基于盾构工程实际和现场测量数据,对刀盘扭矩计算的理论模型进行了实例计算。通过对刀盘扭矩的构成、各影响因素扭矩分量的大小和所占比例的计算,分析了影响刀盘扭矩的主要因素,同时分析了模型参数(地质条件、施工参数、刀盘结构以及刀具参数等)对刀盘扭矩的影响,为盾构的设计、选型和工程运用提供了理论指导。
     (3)建立了新的盾构推进力计算理论模型,运用力学原理和数学方法重新对盾构刀盘正面推进阻力和盾壳外围摩擦阻力进行了计算公式推导,以取代惯用的简化计算公式,使推力计算更精确,影响因素考虑的更全面;该模型全面系统地表征了盾构的推进力与盾构机的尺寸、土层的层别、厚度、容重、内聚力及内摩擦角等参数间的定量关系,为盾构机推力参数的选择和正确确定提供了理论依据。
     (4)为了有效地实现对盾构的行为控制,建立了反映盾构行为(位移、偏转角)、地层参数和盾构千斤顶推力三者之间关系的铰接式盾构力学行为的计算理论模型,该模型为盾构机的方向控制提供了新的思路。
     (5)研究了盾构的行为与土的相互作用关系。通过有限元模型,分析了盾构位移与盾壳外围法向土压力的作用关系,并获得了地层变形与土压力之间关系的地层反力曲线,为铰接式盾构力学行为的计算模型研究建立一定的理论基础。
     (6)盾尾是盾壳中最薄弱的结构。基于荷载结构法推导出了盾尾在各荷载单独作用下的弯矩和轴力计算公式。同时,应用盾尾与周围地层相互作用的多弹簧支点的平面应变有限元计算模型对上述公式进行验证。
     (7)分析了盾构掘进过程中刀盘刀具磨损的原因和影响因素,提出了刀具的掘进距离寿命和磨耗系数的概念及计算方法,得出了刀具磨损量T与掘进距离寿命L的预测曲线。
As the rapid development of subway constructions in cities,designing and developing shield machines in China is at starting phase,and so a systematic theory for designing the shields has not been developed.As a result,research levels on many aspects are behind the Western,such as interactions between the shield and ground and between loads and mechanical behaviors of the shield.In addition,few existing models can systematically predict the key parameters of the shield-machine-jack thrust and cutter torque.As the change of the geological conditions and diameter of a tunnel in excavating,it's difficult to determine the key parameters.The reason for this is that there are few theoretical models to describe the key parameters.In the present study,we study interaction between shield and ground.The purpose for the study is to found a theoretical basis for developing and manufacturing shield machines in China and for designing and selecting types of shields,associated with correctly choosing the parameters of the machine.
     Some achievements were made in the present study as follows:
     1.The influence factors of cutter torque were studied systematically, and a new prediction model for the cutter torque had been developed. The model shows that those new factors influencing on the cutter torque should be taken into account,i.e.,the frictional resistance torque on the back of cutterhead and the shear resistance torque of the muck in hatch of cutterhead and mixing round torque of the cutter head's beam and The calculating formulae of those torque components in the model were deduced.Comparisons between predicted and observed data verify the validation of the model.This prediction model found a fast theoretical basis in determining the cutter torque of the shield.
     2.Bsed on shield engineering practice and measuring field data,a example has done to calculating cutter torque by the model.Main factors influencing on cutter torque have been studied by analyzing composition of cutter torque,magnitude of torque components and it's proportion in total torque.It also been studied for parameters in model to influence on cutter torque,which have provide theoretical guide for the type selection,design of shield and it's application.
     3.A prediction model on the jack thrust of the shield has been developed. The new calculating formulae were deduced by using mechanics theory and math method to the thrust resistance on the face of cutter head and on the shell of shield in the model.They replace simplified calculating formulae before.So the accuracy for predicting the jack thrust in the new model is higher than the existing models,more influence factors in assessing the jack thrust is accounted for.The relationships between the jack thrust of the shield and some parameters were expressed systematically in the model,i.e.,the size of the shield,layers and thickness for each layer,density and friction angle of the soils,etc.This prediction model found a fast theoretical basis in determining the Jack thrust of the shield.
     4.In order to control the behavior of shield availably,a model of mechanical behaviors of the articulated shield has been developed.The model expresses three relationships of behavior of the articulated shield,ground properties and shield mechanisms(jack thrust),which have provide a new way to control shield direction.
     5.The interaction between the behaviors of the shield and ground deformation has been studied.Additionally,the interaction between the ground displacement and earth pressures acting on the shield periphery has been studied.The ground reaction curve is achieved by using 2D FEM analysis for the shield tunneling.It also founds a theoretical basis for developing a mechanical behavior model of the articulated shield
     6.Shield tail is most weak structure of shield skin.Based on loads-structure method,the calculating formulae of moment and axes force has been deduced for every single load acting on the shield tail. These calculating formulae have been verified by 2D plane strain FEM model with more spring fulcrums showing the interaction between shield and ground.
     7.The influence factors of cutter wear were studied in shield tunneling. The definition and calculation method for tunneling distance life of cutter and wear-tear coefficient were proposed.The prediction curve between the wearing value of cutter and excavation distance life were obtained.
引文
[1]张凤祥,朱合华,傅德明编著.盾构隧道[M].人民交通出版社,2004:92-119.
    [2]陈馈,李建斌.盾构国产化及其市场前景分析[J].建筑机械化,2006,(5):59-64.
    [3]陈馈.国产盾构开发与产业化前景浅析[J].建筑机械化.2005,(10):43-47.
    [4]杜海若,黄松和,管会生,黄长礼.工程机械概论[M].西南交通大学出版社.2004:204-232.
    [5]崔国华,王国强,何恩光,张英爽.盾构机的研究现状及发展前景.矿山机械.2006(6):24-27.
    [6]宋克志,王梦恕.盾构的选型及国产化问题初论[J].西部探矿工程.2004(5):99-101.
    [7]Szechy,K.(1966),The Art of Tunnelling,Akademiai Kiado,Budapest,pp.891.
    [8]张凤祥等.对我国发展盾构技术的一点看法[J].岩石力学与工程学报.1999.18(5):497-502
    [9]MHI(1988),Manufacturing Record on shield Machine,Mitsubishi Heavy Industry Ltd.
    [10]朱伟译.盾构标准规范(盾构篇)及解说[M].中国建筑工业出版社.2001:38-115
    [11]吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报.2006,25(Z1):3137-3143.
    [12]宋克志.无水砂卵石地层盾构推力及刀盘扭矩计算[J].市政技术.2004,(06)增刊.163-165.
    [13]尹旅超,朱振宏等.日本隧道盾构新技术[M].华中理工大学出版社.1999:46-76
    [14]Sugimoto,M.et al.(1991),Examination of In-situ data,Research Report on Face Stability of Inclined Shield Driven Method,Deep Subway Research committee,pp.94-101.
    [15]Sugimoto,M.and Tamamura,K.(1992),Study of acting load on shield machine based on In-situ measurements,Proceedings of 2nd Symposium on Tunnel Engineering, JSCE, pp. 83-88.
    [16] Shimizu, Y. and Suzuki, M. (1992), Study of the moving characteristics of a shield tunnelling machines, Journal of Japan Society of Mechanical Engineers, JSME, Vol. 58, No. 550, pp. 155-161.
    [17] Sugimoto, M. and Luong , N. T. H. (1996). Soil properties based on the in-situ data of the shield driven method, proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair &Taylor (Eds), Balkema, Rotterdam, pp. 607-612.
    [18] Shiwagoti, D. R. (1994), Numerical Analysis to Study the Effective of Copy Cutter in Shield Tunnelling at Sharp Curves, M. Eng. Thesis, AIT.
    [19] Broms B B, Bennermark H. Stability of clay at vertical openings[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93,(1): 71-94.
    [20] Peck, R. B. (1969), Deep excavation and tunnelling in soft ground, Proceedings of 7th International Conference on Soil Mechanic and Foundation Engineering, Mexico, State of the Art Volume, pp. 225-290.
    
    [21] K. 太沙基. 理论土力学. 地质出版社. 1960: 34-96
    [22] Mair, R. J. (1987), Tunnel face pressure in soft clay, Proceedings of 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 290.
    [23] Balthaus, H. (1989), Tunnel face stability in slurry shield tunnelling , Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering , Rio de Janeiro, Vol. 2, pp. 775-778.
    [24] Murayama, S. (1966), Review of excavation performance of mechanized shield from viewpoint of soil Mechanics, Proceedings of 1st Japan National Conference on Soil Mechanics and Foundation Engineering, JSCE, pp. 75-76.
    [25] Anagnostou, G. and Kovari. K. (1996), Face stability in slurry and EPB shield tunnelling,Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,Mair & raylor(Eds),Balkema,Rotterdam,pp.453-458.
    [26]O' Reilly,M.P and New,B.M.(1982),Settlements above tunnels in the United Kingdom their magnitude and prediction,Tunnelling' 82,London,IMM,pp.173-187.
    [27]刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社.1991:150-236.
    [28]Yamada,K;Yoshida,T;Makata,H.and Hashimoto,S(1988),Behavior of ground displacement due to shield thrusting in alluvial subsoils and its prediction analysis,Japan Society of Civil Engineers Collection of Theses,JSCE,No.373,pp.103-111.(in Japanese)
    [29]Sakajo,S.,Toshimaru,W.and kmainmura,M.(1996),Analytical and geotechnical consideration on ground settlement induced by tail void closure of shield tunnel construction,Proceedings of the international Symposium on Geotechnical Aspects of underground Construction in Soft Ground,Mair & Waylor(Eds),balkema,Rotterdam,pp.585-590.
    [30]Lee K M,Rowe R K.Finite element modeling of the three-dimensional ground deformations due to tunneling in soft cohesive soils:Part Ⅰ-method of analysis[J].Computers and Geotechincs,1990,(10):87-109.
    [31]Rowe,R.K.,Lo,K.Y.and Kack,G.J.(1983),A method of estimating surface settlement above shallow tunnels constructed in soft ground,Canadian Geotechnical Journal,Vol.20,pp.11-22.
    [32]Akagi,H.and Komiya,K.(1996),Finite element simulation of shield tunnelling processes in soft ground,proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,Mair & Taylor(Eds),Balkema,Rotterdam,pp.447-452.
    [33]Masahiro Maeda,Kotaro Kushiyama.Use of Compact Shield Tunneling Method in Urban Underground Construction.Tunneling and Underground Space Technology,2005(20)
    [34]Yukinori Koyama.Present Status and Technology of Shield Tunneling Method in Japan.Tunnelling and Underground Space Technology,2003(18)
    [35]K.Mori,Y.Abe.Large Rectangular Cross-Section Tunnelling by the Multi-Micro Shield Tunnelling(MMST)Method.Tunnelling and Underground Space Technology,2005(20)
    [36]LT.A.Working Group No.2.(ITA),2000.Guidelines for the design of shield tunnel lining[J].Tunneling Underground Space Technology.15,(3):303-331.
    [37]Rowe R.J.,Barnes K.K.(1961):Influences of speed on elements of a tillage tool.Transactions of the ASAE;Vol.4.
    [38]Sanio H.P.(1983):Nettovortriebsprognose fur Einsatze von Vollschnittmaschinen in anisotropen Gesteinen;Inst.for Geology part 11;Ruhr-University Bochum.
    [39]Ewendt G.(1989):Erfassung der Gesteinsabrasvitat und Prognose des Werkzeugverschleisses beim maschinellen Tunnelvortrieb mit Diskenmeisseln;Inst.for Geology part 33.Ruhr-University Bochum.
    [40]秦建设.盾构施工开挖面变形与破坏机理研究.博士学位论文.南京:河海大学.2005:22-46
    [41]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报.2005,27(8):897-902.
    [42]叶康慨,王延民.土压平衡盾构施工土压力的确定[J].隧道建设.2003,(5):47-51.
    [43]BernhardMaidl,MartinHerrenknecht,Lothar nheuser.Mechanised Shield Tunnelling.Ernst&Sohn,1996.
    [44]Mair,R.J.and Taylor,R.N.(1997),bored tunnelling in the urban environment,proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering,Vol.4,Rotterdam,Balkema.
    [45]Hansmire,W.H.and Cording,E.J.(1985),soil tunnel test section: Case history summary, Journal of Geotechnical Engineering, ASCE. Vol. 111, No. 11, pp. 1301-1320.
    [46] Hashimoto, T. , Hayakawa, K. , Kurihara, Nomoto, T. , Ohtsuka, M. and Yamazaki, T. (1996), Some aspects of ground movement during shield tunnelling in Japan, Proceedings of the international Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair & Taylor (Eds), Balkema, Rotterdam, pp. 683-688.
    [47] Moroto, N; Ohno, M. and Fujimoto, A. (1995), Observational control of shield tunnelling adjacent to bridge piers, proceedings of the International Symposium on Underground Construction in Soft Ground, Fujita & Kusakabe (Eds), Balkema, Rotterdam, pp. 241-244.
    [48] Kishio, T. , Ohta, H. ,Nakai,N. , Hashimoto, T. and Hayakawa, k. (1995), Reducing ground settlement caused by shield tunnelling in soft clay, proceedings of the International Symposium on Underground Construction in Soft Ground, Fujita & Kusakabe(Eds), Balkema, Rotterdam, pp. 257-260.
    [49] Matsushita, Y. , Iwasaki, Y. , Hashimoto, T. and imanishi, H. (1995), Behavior of subway tunnel driven by large slurry shield, Proceedings of the international Symposium on Underground Construction in Soft Ground, Fujita & Kusahabe(Eds), Balkema, Rotterdam, pp. 253-256.
    [50] Ariizumi , T. , Okadome, K. ,Igarashi, H. and Nagaya,J. (1999), Investigation of the load acting on shield segment during tunnelling, Proceedings of Tunnel Engineering, JSCE, Vol. 9, pp. 271-276.
    [51] Matsumoto, Y. , ARAI, T. and Hatagoshi, A. (1989), An experimental study of multi-circular face shield tunnelling, Proceedings of Japan Society of Civil Engineers, JSCE, No. 406/Ⅲ-11, pp. 291-300. (in Japanese)
    [52] Tomizawa, A. (1988), Shield behavior at the sharp curve alignment, Tunnels and Underground, JTA, 19(1), 31-38.
    [53]JSCE(1986),Standard,Specification for shield Tunnelling Method,JSCE,260 P.(in Japanese).
    [54]吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报.2006,25(增1):3137-3143.
    [55]Bolton,M.D;Lu,Y.C.and Sharma,J.S.(1996),Centrifuge models of tunnel construction and compensation grouting,Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground,Mair & Taylor(Eds),Balkema,Rotterdam,pp.471-477.
    [56]Konda,Z.,Ogasawara,M.,Sasaki,K;msuno,K.and Fujii,Y.(1997),Study on design of a pair of shield tunnels situated very closely by centrifugal model test,Proceedings of International Congress on Tunnel and Underground Works,Tunnels for people,Hinkel and Schubert(Eds),Balkema,Rotterdam,pp.151-156.
    [57]Kuwahara,H.,Yamazaki,T.and Kusakabe,O.(1997),Ground deformation mechanism of shield tunnelling due to tail void formation in soft clay,proceedings of 14th International Conference on Soil Mechanics and Foundation Engineering,Vol.2,Balkema,Rotterdam,pp.1457-1460.
    [58]Nomoto,T.,Imamyra,S.,Hagiwara,W.,Kusakabe,O.,and Fujii,N.(1999),Shield tunnel construction in centrifuge,Journal of Geotechnical and Geoenvironmental Engineering,ASCE,Vol.125,No.4,pp.289-300.
    [59]Sugimoto M.,and Sramoon A.Theoretical model of shield behavior during excavaion.Ⅰ:Theory[J].Geotech.Geoenviron.Eng.,(2002),128(2):138-155.
    [60]杨洪杰,杨耀,傅德明.土压平衡式盾构周围的土压力分析[J].城市轨道交通研究.2006,(12):51-53
    [61]杨洪杰,傅德明,葛修润.盾构周围土压力的试验研究与数值模拟[J].岩石力学与工程学报.2006,(08):1652-1657
    [62]刘仁鹏,刘万京.土压平衡盾构技术浅谈[J].工程机械.2000,(8):25-29.
    [63]沈熙智.全断面隧道刀具国产化开发前景展望[J].建筑机械化. 2000,(5):28-29
    [64]邹积波.盾构刀具磨损原因探析[J].建筑机械化,2001(11):57-58.
    [65]傅德明.我国隧道盾构掘进机技术的发展历程(上)[J].建设科技.2002,(8):80-81
    [66]周文波编著.盾构法隧道施工技术及应用[M].中国建筑工业出版社.2004:26-50
    [67]钱七虎,傅德明,等.隧道掘进机在中国地下工程的应用现状及前景展望[J].地下空间.2002,22(1):1-11
    [68]钱七虎.迎接我国城市地下空间开发高潮明.岩土工程学报.1998.20(1):112-113
    [69]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第1讲)——盾构隧道基本原理及在我国的使用情况[J].岩土工程界.2001,4(11):1921
    [70]孙钧,侯学渊.地下结构(上、下)[M].北京:科学出版社.1991
    [71]程晓,潘国庆.盾构施工技术[M].上海:上海科学技术文献出版社,1990:42-96
    [72]朱伟,陈仁俊.盾构隧道施工技术现状及展望(第3讲)—盾构隧道应用前景及发展方向[J].岩土工程界.2002,5(1):18-21
    [73]关宝树译,盾构法今昔阴[M].隧道译丛.1994,21(3):42-46
    [74]何其平.盾构选型[J].建筑机械.2003,13(1):43-47
    [75]丁志诚,张志勇,白云.广州地铁隧道施工中的盾构选型及盾构改进应用.岩石力学与工程学报.2002,21(12):1820-1823
    [76]赵运臣.广州地铁三号线过南珠江段盾构选型方案浅析[J].西部探矿工程.2003,8(4):48-49
    [78]唐益群,叶为民,张庆贺.上海地铁盾构施工引起地面沉降的分析研究(一)[J].地下空间.1993,13(2):94-99
    [79]何其平.土压平衡盾构刀盘结构探讨[J].工程机械.2003,(11):11-16
    [80]于宁,朱合华.复杂地层条件下管片设计与计算方法研究[J].工业建筑.2004,(04):57-60
    [81]闵锐.复合型盾构掘进机刀盘的设计分析[J].建筑机械.2004,(08):68-70
    [82]朱伟,胡如军,钟小春几种盾构隧道管片设计方法的比较[J].地下空间.23(4),2003:353-358
    [83]胡如军,朱伟,季亚平.盾构隧道管片设计参数的灵敏度分析[J].地下 空间.2003,23(1):28-32
    [84]钟小春.盾构隧道管片土压力的研究[D].河海大学.博士学位论文.2005:37-55
    [85]丁军霞,冯卫星,杜学玲,盾构隧道管片衬砌内力及变形的影响因素分析[J].石家庄铁道学院学报.2004,17(3):75-79
    [86]庄欠伟,龚国芳,杨华勇,盾构机推进系统分折[J].液压与气动.2004(04):11-13
    [87]邓宏光,游思坤,邓武,张志云,叶才文,基于ANSYS的盾尾有限元分析[J].机械.2005(5):7-9
    [88]朱伟,陈仁俊.盾构隧道基本原理及在我国的使用情况[J],岩土工程界.2001(11):19-21
    [89]乐贵平,江玉生.土压平衡盾构法施工掘进面平衡压力初探[J].现代隧道技术.2004(增刊):30-37
    [90]钱家欢,殷宗泽主编.土工原理与计算[M].中国水利水电出版社.1996
    [91]Sramoon,A.and Sugimoto,M.(1999),Development of a ground reaction curve for shield tunnelling,Geotechnical Aspects of Underground Construction in Soft Ground,ISSMGE,Balkema,Rotterdam,pp.431-436.
    [92]Sugimoto,M.Yoshiho,N.and Sramoon,A.(1999),Study on shield behavior by 3-D shield simulator,Geotechnical Aspects of Underground Construction in Soft Ground,ISSMGE,Balkema,Rotterdam,pp.437-442.
    [93]程晓,潘国庆.盾构施工技术[M].上海科学技术文献出版社.1990
    [94]关宝树译.盾构法今昔阴.隧道译丛.1994,21(3):42-46
    [95]丁志诚,张志勇,白云.广州地铁隧道施工中的盾构选型及盾构改进应用[J].岩石力学与工程学报.2002,21(12):1820-1823
    [96]赵运臣.广州地铁三号线过南珠江段盾构选型方案浅析[J].西部探矿工程.2003,(4):48-49
    [97]管会生,徐济平.复杂地质条件对盾构施工的影响与相应技术措施[J].施工技术.2004,(10):23-24.
    [98]管会生,黄松和,徐济平.盾构管片拼装机设计研究[J].矿山机械.2005,(3):15-16.
    [99]管会生.泡沫盾构施工技术与工法特点[J].建筑机械化.2005, (2):55-56.
    [100]徐济平,管会生.盾构通过不良地质的施工技术对策[J].建筑机械化.2004,(10):37-38.
    [101]管会生,高波.盾构切削刀具寿命的计算[J].工程机械.2006,(1):25-28.
    [102]管会生,高波,陆建新.软土隧道中大漂石的处理与行为预测[A].大直径隧道与城市轨道交通工程技术——2005上海国际隧道工程研讨会文集[C].2005:204-232
    [103]管会生,王伯铭.加拿大LOVAT盾构掘进机的技术特点[J].工程机械.2003,(2):16-18.
    [104]Sramoon,A.and Sugimoto,M.(1999),A study on earth pressure acting on EPB shield,Proceedings of International Conference on Civil and Environmental Engineering Conference,AIT,Vol.2,pp.93-98.
    [105]Sramoon,A.and Sugimoto,M.(1999),Development on model of earth pressure acting on shield machine,Proceedings of 5th National Convention on Civil Engineering,EIT,Vol.2,pp.GTE 74-79.
    [106]李权.ANSYS在土木工程中的应用[M].北京:人民邮电出版社.2005:39-186
    [107]王辉,张青山.公路工程地质勘探实用技术[M].北京:人民交通出版社.2004:14-50
    [108]姜勇,张波.ANSYS7.0实例精解[M].清华大学出版社.2004:65-125
    [109]刘坤,吴磊.ANSYS有限元方法精解[M].国防工业出版社.2005:33-187
    [110]石博强,藤贵法,李海鹏,郭立芳.MATLAB数学计算范例教程[M].北京:中国铁道出版社.2004:29-55
    [111]陈怀琛.MATLAB及其在理工课程中的应用指南[M].西安:西安电子科技大学出版社.2004:149-165
    [112]曾艳华,王明年.计算机在地下工程中的应用[M].西南交大.2004:8-60
    [113]项兆池,楼如岳,傅德明.最新泥水盾构技术[M].上海隧道工程股份有限公司情报室.2001:12-32
    [114]梁钟琪.土力学及路基[M].中国铁道出版社.1995:192-223
    [115]孙钧,侯学渊.地下结构(上、下)[M].北京:科学出版社.1991:55-115
    [116]苏金明,王永利.MATLAB7.0实用指南(上册)[M].北京:电子工业出版社.2004:10-68
    [117]郝文化.ANSYS土木工程应用实例[M].中国水利水电出版社.2005:258-271
    [118]张国京.北京地区土压式盾构刀具的适应性分析[J].市政技术.2005,(1):9-13
    [119]刘仁鹏.土压平衡盾构技术综述[J].世界隧道,2000,(1):1-7
    [120]管会生.架桥机箱形机臂的约束扭转分析[J].工程机械.1987.(10):9-15.
    [121]Sramoon,A.,Sugimoto,M.,and Kayukawa,K.(2002).Theoretical model of shield behavior during excavation.Ⅱ:Application[J].Geotech.Geoenviron.Eng.,128(2),156-165.
    [122]夏永旭,王永东.隧道结构力学计算[M].人民交通出版社.2004.
    [123]Sugimotol.M,Sramoon,A.,Simulation of Shield Tunneling Behavior along a Curved Alignment in a Multilayered Ground[J].Geotechnical and Geoenvironmental Engineering,2007(6):684-694.
    [124]佐佐木道雄.土压系列盾构施工法[M].上海交通大学出版社.1991:15-35
    [125]周宁.ANSYS机械工程应用实例[M].中国水利水电出版社。2006:72-138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700