CHA结合bFGF修复兔骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 探讨珊瑚羟基磷灰石(CHA)结合碱性成纤维细胞生长因子(bFGF)修复骨缺损的效果,为其临床、科研应用提供实验依据。方法 以CHA作为bFGF的可吸附性载体,制备成复合人工骨,将其植入兔尺骨中段10mm骨缺损处,以单纯CHA组,自体骨移植组和空白组作为对照,在术后2、4、8、12周,进行大体解剖、X线摄片、病理组织切片、生物力学测试等方法观察,研究各组骨愈合,血管化情况及力学强度。结果 在2、4、8周CHA/bFGF组血管化程度优于自体骨移植、单纯CHA及空白对照组。病理组织切片及X线摄片显示骨缺损修复程度CHA/bFGF组明显优于自体移植骨组优于单纯CHA组,而空白组骨缺损处被纤维组织及肌组织等填充。生物力学测试显示术后12周CHA/bFGF组抗扭转强度明显优
    
    山祖『压料大学
    祠厦士学位论文
    于自体骨移植组。结论CHA与bFGF结合有明显促进骨缺
    损修复的作用,强于自体骨移植及单纯CHA移植。成骨方式
    包括骨传导、骨诱导,二者协同,可用于骨缺损修复。
OBJECTIVE To investigate the efficacy of combined use of basic fibroblast growth factor(bFGF)--coralline hydroxyapatite(CHA) in repairing segmental bony defects. METHODS CHA/bFGF composite was prepared and had been implanted in the comm continuous defects in ulna of adult rabbits , while CHA, autograft implantation or no graft were used as the controls . The animals were sacrificed 2,4,8and 12 weeks after operation , the bone repair process was investigated using physically , roentgenogram, histological observation and biology mechanics detection. RESULTS The vascularization in CHA/bFGF transplanted applied areas was better than that in CHA, autograft implantation or the control group 2,4 and 8 weeks after operation . Histological and roentgenogram examination showed that CHA/bFGF composite was implanted were repaired more rapidly than those with CHA or autograft implantation and in the
    
    
    control group was filled with fibrous and muscular tissues. Biologic mechanics showed that on the CHA/bFGF side the callus was growing more quickly and vigorously , the bone density was higher and the antibending force was stronger than autograft implantation after 12 weeks. CONCLUSION CHA/bFGF can efficiently repair bony defect, and the capability of CHA/bFGF is the best of all by the way of satisfactory osteoconduction , osteoinduction . CHA/bFGF composite may be feasible for diaphyseal defect restoration , and the combination of CHA and bFGF is synergic in inducing bone formation .
引文
1. Puelacher WC, Kim SW. Vacanti JP et al Tissueengineered growth of cartilage: the effect of varying the concertration of chondrocytes seeded onto synthetic polymer matrices. Int J Oral Maxillofac Surg, 1994, 23: 49.
    2. Monroe EA. New calcium phosphate ceramic material for bone and tooth implants. J Dent Res, 1971, 50: 860.
    3. Homes RE. Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg, 1979,63:626.
    4. Holmes RE. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study. Plast Reconstr Surg, 1988, 81: 662.
    5. Schliephake H, Neukam FW. Bone replacement with porous hydroxypapatite blocks and titanium secrew inplants: an experiment study. J and Maxillofac Snrg, 1996,49:151.
    6. Rosen HM, Mcfarland, MM. The biologic behavior of hydroxapatite implante into the maxillofacial skeleton. Plast Reconstr Surg, 1990,85:718.
    7. Glass DA, Mellonig JT. Towle HJ. Histolog evaluation of
    
    bone induction proteins complexed with coralline hydroxyapatite in an extraskeletal site of the rat. J Periodontol, 1989,60:121.
    8. Rosen HM. Porous, block hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery. Plast Reconstr Surg,1989, 83: 985.
    9.尹庆水,钟世镇.珊瑚羟基磷灰石人工骨的研究进展.中华骨科杂志,1997,17:396.
    10. Holmes R, Mooney V, Bucholz, R.A coralline hydroxyapatite bone graft subsitute preliminary report. Clin Orthop, 1994, 188: 252.
    11. Flatley TJ, Lynh KL, Beusou M. Tissue response to replants of calcium phosphate ceramic in the rabbit spine. Clin Orthop and Research, 1983, 179: 246.
    12. Aspenberg P. Lohmander L. Fibroblast growth factor stimulates bone formation. Acta Orthop Scand, 1989, 60: 473.
    13. Frost HM. The biology of fracture healing. Clin Orthop, 1989, 248: 283.
    14. Aspenberg P, Lohmander S, Thorngren KG. Failure of bone induction by bone matrix in adult monkeys. J Bone Joint Surg (Br), 1988,70:625.
    
    
    15. Guacci D. Ultrastructural aspect of human nonunion. Histo Histopathol, 1991, 6: 87.
    16. Gospodarowicz D. Fibroblast growth factor. Clin Orthop, 1990, 257: 231.
    17. Niswander L, Martin GR. FGF-4 and BMP-2 have opposite effects on limp growth. Nature, 1993,361:68.
    18. Bolander ME. Regulation of fracture repaire by grouth factors Proe Soc Exo Bio Med, 1992,200:165.
    19.沈红雷,碱性成纤维细胞生长因子对骨组织的生物学效应[J.、]中华矫形外科杂志,2000;7(2):181-182.
    20. Gospodarowicz D. Fibroblast growth factor. Clin Orthop, 1990, 257: 231.
    21. Niswander L. Martin GR. FGF-4 and BMP-2 have opposite effects on limb growth. Nature, 1993,361:68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700