砂土液化及其判别的微观机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂土液化是土动力学与岩土地震工程研究的重要课题。传统的基于细观材料尺度的研究通常将砂土等岩土颗粒材料视为连续介质,而忽视了其为离散的本质。事实上,液化过程是颗粒与孔隙水复杂相互作用的结果,将岩土颗粒材料的微观结构纳入液化过程的模拟,从微观颗粒尺度揭示砂土液化本质机理已成为是研究的必然趋势。本文在总结国内外颗粒材料微细观力学研究的基础上,针对颗粒微观参数确定、临界状态表征、剪切波速测试、液化机理、抗液化评价等问题,利用颗粒离散单元法(PFC3D)对饱和砂土液化及其判别问题进行了研究,取得如下研究成果:
     (1)通过对颗粒材料微细观参数的量纲分析和大量排水条件三轴压缩试验离散元模拟结果的回归整理,分别基于线性接触模型和Hertz模型建立了的颗粒材料微细观参数相关关系。研究表明,Hertz模型能很好地克服了线性接触模型所不能描述颗粒材料应力相关特性的缺点,其初始杨氏模量约与有效围压的1/3方成正比;
     (2)开展排水与不排水条件下三轴试验的离散元模拟,通过对颗粒材料在剪切过程中各微观结构量及强弱力对应力比贡献等演化过程的分析,从微观颗粒尺度揭示了临界状态的微观机理。针对不同应力路径、初始组构的分析验证了临界状态的唯一性,给出了基于配位数、接触力等的临界状态微观表征,并建立了基于力学配位数表征的临界状态线。
     (3)以颗粒试样内部的颗粒群为激发源和接收源,提出了颗粒离散元模拟中剪切波速的剪切振动和扭转振动测试方法,确定了合理的参数取值范围,并得到了规则排列、随机排列颗粒试样的解析解与均质化理论结果的验证。以剪切振动方法为例,激发频率的选取应保证传播距离与波长之比大于等于2,激发幅值则应以避免摩擦功的产生为宜。
     (4)利用剪切振动的剪切波速测试方法,开展不排水条件下等应变幅循环动三轴试验过程中剪切波速的数值测试,通过对比相同有效平均正应力下循环振动前、后的剪切波速,发现了循环应力历史引起小应变剪切模量的衰减和各向异性现象,并从力学配位数、接触刚度等微观颗粒尺度揭示了循环应力历史对小应变剪切模量衰减和各向异性影响的微观机理。
     (5)通过开展松散颗粒试样不排水条件下三轴压缩试验的颗粒离散元模拟,分析了剪切过程中颗粒材料的微观结构演化过程,揭示了静态液化时平均法向接触力为零、力学配位数为4的微观机理。针对循环动力液化发生时,其力学配位数下降至4.2,平均法向接触力趋于零点,接触法向、法向接触力、切向接触力和接触滑移都出现显著增长。
     (6)通过开展不同初始组构颗粒试样的不排水条件下三轴压缩试验的颗粒离散元模拟,指出初始组构对颗粒材料的力学与变形特性、静态液化等的影响显著。相同初始孔隙比、不同初始组构的颗粒试样沿着不同的应力路径发展,其微观结构可能在相变状态处产生急剧变化。
     (7)基于对大量等应力幅循环动三轴试样的模拟和剪切波速测试,分析了颗粒微观参数对颗粒材料抗液化强度、剪切波速、状态参量等的影响,建立了基于微观颗粒尺度的颗粒材料抗液化强度与剪切波速相关关系,并得到了离心机试验结果的验证。对于常见的砂土,其CRR-Vsl经验关系的指数约为5。在此基础上,进一步提出了抗液化强度与状态参量间的相关关系。
Granular materials, which are composed of grains and quite common in nature, are generally treated as continuum in classical framework of geomechanics. However, the static and dynamic behaviors are very complicated due to the complex interactions between particle and particle, particle and its surrounding liquid and/or gas. So even the fundamental mechanisms of some basic and important phenomenon, such as sand liquefaction induced by earchquake, has not been well established. With the recognition that granular material is discrete in nature, rather than continuous, the basic understanding can only be obtained from the particle scale. The complexity in granular materials behavior lies in the fact that the meso-scopic behavior of granular material is determined by not only the interactions operating at contacts, but also how the particles become arranged in space to form an internal structure. This research is aimed to microscopically investigate the mechanism of sand liquefaction and its evaluation, as well as the fundamental mechanism about the critical state. Research results obtained are as follows
     (1) For Discrete Element Method (DEM), the key to a successful simulation lies in proper micro-parameters. However, the current way of selecting micro-parameters is often accused of being subjective, unreliable and rendering different simulations incomparable. Controlling criterions on particle number and static loading for both Linear Contact Model and Hertz Model are proposed based on the dimensional analysis. A set of empirical formulas are presented to describe the correlation between macroscopic elastic constants of granular materials and microscopic elastic constants of particles by simulating tri-axial tests with PFC3D and through regression analysis of numerical results. It is found that the Linear Contact Model failed to catch the stress-dependent behavior of granular materials, while Hertz Model can well compensate this defect, e.g. the initial Young's modulus approximately proportional to one third of the confining pressure.
     (2) Conventional triaxial tests under both drained and undrained conditions are implemented in DEM simulation. The evolutions of micro-structure of granular materials, including mechanical coordination, anisotropy of fabric, normal contact force, tangential contact force, as well as the different contributions of strong force and weak force to stress ratio are carefully analyzed. The micromechanism of critical state is deposed based on the previous analysis. The uniqueness of the critical state line is verified by performing triaxial tests under different effective stress paths and initial fabrics. A new critical state line is proposed on the basis of mechanical coordination number.
     (3) Numerical simulation of shear wave propagation using DEM is implemented by applying a velocity pulse to the transmitter in a certain direction and monitoring the corresponding average velocity of the receiver. The cross-correlation analysis is adopted due to its superiority of both determining the travel time and indentifying similarities between two signals. The shear wave velocity is calculated using the wave travel time and the distance of the travel path, in exactly the same way as in laboratory tests. The influencing factors including excitation frequency, excitation amplitude, size of transmitter and receiver as well as damp are carefully analyzed and reasonable values of the parameters for shear wave modeling are proposed. It is found that the appropriate excitation amplitude should be chosen on the basis of avoiding the generation of frictional work. It is also indicated that fruitful results would be obtained if both the radius of transmitter and receiver are chosen as one half of that of DEM specimen's. The research results are verified through outcomes of even-particle assemblies.
     (4) A micromechanical study on the influence of cyclic loading history is attempted by conducting a series of undrained cyclic triaxial tests using Discrete Element Method (DEM). With the implementation of shear wave modeling, the value of small strain shear modulus Gmax of granular soils under the influences of cyclic loading history was investigated by measuring the shear wave velocity at a number of certain effective stresses, and that of Gmax without such effects was examined for comparison. Variations of coordination number, fabric, contact forces as well as contact stiffness are carefully examined to interpret the microscopic mechanism of both reduction and anisotropy of small-strain shear-modulus induced by the effects of cyclic loading.
     (5) Static liquefaction on very loose granular materials under undrained condition is simulated in DEM. The micromechanism of this special phenomenon is proclaimed by analyzing the evolution of micro-structures, including mean normal contact force, mechanical coordination number, percentage of rattlers, sliding fraction, anisotropy of contact normal, normal contact force as well as tangential contact force. It shows that the mechanical coordination number will reduce to4or even lower when static liquefaction happens. It seems that the mechanical coordination number will gain very similar situation for cyclic-induced liquefaction.
     (6) The influence of initial fabric on the behavior of granular material is revealed by conducting numbers of triaxial tests under undrained condition. In order to create different initial soil fabrics, specimens are subjected to undrained preshearing after isotropically consolidating, and then isotropically reconsolidating back to the initial confining pressure. It is indicated that, specimens with the same initial void ratio but different initial fabrics may follow quite different effective stress paths, and may even induce sharp changes of fabric during phase transformation.
     (7) The influences of micro-parameters on Cyclic Resistance Ratio (CRR), shear wave velocity, state parameter are detailedly discussed based on a number of dynamic triaxial tests under undrained condition during constant stress amplitude, as well as the measurement of shear wave velocity. Correlation between cyclic resistance ratio and shear wave velocity of granular materials are estabilished based on paticle-scale analysis, are verified by liquefaction and non-liquefaction data from centrifuge tests. It is indicated that the index number in CRR-Vsl correlation is about5for normal sand. The correlation between cyclic resistance ratio and state parameter is further raised.
引文
Agnolin I, Roux J N. Internal states of model isotropic granular packings (Ⅰ):Assembling process, geometry, and contact networks [J]. Physical Review E,2007,76(6):1-27.
    Agnolin I, Roux J N. On the elastic moduli of three-dimensional assemblies of spheres:Characterization and modeling of fluctuations in the particle displacement and rotation [J]. International Journal of Solids and Structures,2008,45(3-4):1101-1123.
    Alarcon-Guzman A, Leonards G, Chameau, J L. Undrained monotonic and cyclic strength of sands [J]. ASCE Journal of Geotechnical Engineering,1988,114(10):1089-1109.
    Alvarado G, Coop M R. On the performance of bender elements in triaxial tests [J]. Geotechnique,2012, 62(1):1-17.
    Andrus R D, Stokoe Ⅱ K H. Liquefaction resistance of soil from shear-wave velocity [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(11):1015-1025.
    Andrus R D, Stokoe Ⅱ K H, Juang C H. Guide for shear wave-based liquefaction potential evaluation [J]. Earthquake Spectra, EERI,2004,20(2):285-308.
    Arroyo M, Wood D M, Greening P, et al.. Effects of sample size on bender-based axial Go measurements [J]. Geotechnique,2006,56(1):39-52.
    Arthur J R F, Menzies B K. Inherent anisotropy in a sand [J]. Geotechnique,1972,22(1):115-128.
    Arthur J R F, Dunstan T, Chua K S. Induced anisotropy in a sand [J]. Geotechnique,1977,27(1):13-30.
    Asaf Z, Rubinstein D, Shmulevich I. Evaluation of link-track performances using DEM [J]. Journal of Terramechanics,2006,43(2):141-161.
    Bagi K. Stress and strain in granular assemblies [J]. Mechanics of Materials,1996,22(3):165-177.
    Bagi K. Analysis of microstructural strain tensors for granular assemblies [J]. International Journal of Solids and Structures,2006,43(10):3166-3184.
    Bardet J. Observations on the effects of particle rotations on the failure of idealized granular materials [J]. Mechanics of Materials,1994,18:159-182.
    Bardet J. The asymmetry of stress in granular media [J]. International Journal of Solids and Structures,2001, 38(2):353-367.
    Bardet J. Reply to Dr. Kuhn's discussion [J]. International Journal of Solids and Structures,2003,40(7): 1809.
    Barton R R. A study of the angle of interparticle friction of sands with respect to its influence on the mass strength [D]. The Victoria University of Manchester,1972.
    Bathurst R J, Rothenburg L. Investigation of micromechanical features of idealized granular assemblies using DEM [J]. Engineering Computations,1992,9:199-210.
    Batiste S N, Alshibli K, Sture S, et al.. Shear band characterization of triaxial sand specimens using computed tomography [J]. Geotechnical Testing Journal,2004,27(6):568-579.
    Been K, Jefferies M G. A state parameter for sands [J]. Geotechnique,1985,35(2):99-112.
    Been K, Jefferies M G, Hachey J. The critical state of sands [J]. Geotechnique,1991,41(3):365-381.
    Been K, Jefferies M G, Hachey J. Discussion, the critical state of sands [J]. Geotechnique,1992,42(4): 655-663.
    Bolton M. The Role of Micro-Mechanics in Soil Mechanics [C]. In International Workshop on Soil Crushability, Yamaguchi University, Japan,1999.
    Boulanger R W. High overburden stress effects in liquefaction analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(12):1071-1082.
    Burland J. Ninth Laurits Bjerrum memorial lecture:"small is beautiful"-the stiffness of soils at small strains [J]. Canadian Geotechnical Journal,1989,26(4):499-516.
    Cambou B, Jean M, Radjai F. Micromechanics of Granular Materials [M]. John Wiley & Sons Inc, London, 2009.
    Casagrande A. Characteristics of cohesionless soils affecting the stability of slopes and earth fills [J]. Journal of the Boston Society of Civil Engineers,1936,23:257-276.
    Castro G. Liquefaction and cyclic mobility of saturated sands [J]. Journal of Geotechnical Engineering,1975, 101(6):551-569.
    Castro G, Seed R B, Keller T Q, et al.. Steady state strength analysis of lower snn fernando dam slide [J]. Journal of Geotechnical Engineering, ASCE,1992,118(GT3):406-427.
    Cavarretta Ⅰ. The influence of particle characteristics on the engineering behaviour of granular materials [D]. Imperial College London,2009.
    Cavarretta Ⅰ. Coop M, O'Sullivan C. The influence of particle characteristics on the behaviour of coarse grained soils [J]. Geotechnique,2010,60(6):413-423.
    Chang C S, Gao J. Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation [J]. Acta Mechanica,1996,115(1-4):213-229.
    Chang C S, Liao C. Estimates of Elastic Modulus for Media of Randomly Packed Granules [J]. Applied Mechanics Reviews,1994,47(1S):S197.
    Chang C S, Misra A. Packing Structure and Mechanical Properties of Granulates. [J] Journal of Engineering Mechanics,1990,116(5):1077-1093.
    Chang C S, Misra A, Sundaram S S. Properties of granular packings under low amplitude cyclic loading [J]. Soil Dynamics and Earthquake Engineering,1991,10(4):201-211.
    Chang C S, Sundaram S S, Misra A. Initial moduli of particulated mass with frictional contacts [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1989,13(6):629-644.
    Chang C S, Yin Z Y. Micromechanical Modeling for Inherent Anisotropy in Granular Materials [J]. Journal of Engineering Mechanics,2010,136(7):830-839.
    Chang C S, Yin Z Y, Hicher P Y. Micromechanical analysis for interparticle and assembly instability of sand [J]. Journal of Engineering Mechanics,2011,137(3):155-168.
    Chantawarangul K. Numerical simulations of three-dimensional granular assemblies [D]. University of Waterloo, Canada,1993.
    Chen Y M, Ke H, Chen R P. Correlation of shear wave velocity with liquefaction resistance based on laboratory tests [J]. Soil Dynamics and Earthquake Engineering,2005,25(6):461:469.
    Cheng Y M, Liu Z N, Song W D, et al.. Laboratory Test and Particle Flow Simulation of Silos Problem with Nonhomogeneous Materials [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009, 135(11):1754-1761.
    Chinn J J. Dimensional analysis and the Buckingham-π theorem applied to the inviscid swirl atomizer governing equations [C]. In Proceedings of the 21 st ILASS-Europe meeting,2007.
    Christoffersen J, Mehrabadi M, Nemat-Nasser S. A micromechanical description of granular material behavior [J]. Journal of Applied Mechanics ASME,1981,48(2):239-244.
    Chu J. An experimental examination of the critical state and other similar concepts for granular soils [J]. Canadian Geotechnical Journal,1995,32:1065-1075.
    Clayton C R I. Stiffness at small strain:research and practice [J]. Geotechnique,2011,61(1):5-37.
    Cui L, O'Sullivan C. Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus [J]. Geotechnique,2006,56(7):455-468.
    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979, 29(1):47-65.
    Cundall P A, Jenkins J T, Ishibashi I. Evolution of elastic moduli in a deforming granular assembly [C]. In J. Biarez & R. Gourves, eds. Powders and Grains, Rotterdam,1989,319-322.
    Delenne J Y, Youssoufi M S E, Cherblanc F, et al.. Mechanical behaviour and failure of cohesive granular materials [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004, 28(15):1577-1594.
    Deresiewicz H. Stress-strain relations for a simple model of a granular medium [J]. Journal of Applied Mechanics, ASME,1958,25:402-406.
    Dobry R, Ladd R S, Yokel F Y, et al.. Prediction of pore water pressure buildup and liquefaction of sands during earthquake by the cyclic strain method [M]. In:NBS Building Science Series, National Bureau of Standards, Washington D C,1982,138:1-150.
    Dobry R, Petrakis E. Micromechanical model to predict sand liquefaction by cyclic straining [J]. Journal of Engineering Mechanics, ASCE,1990,116(2):256-264.
    Drescher A, de Josselin de Jong G. Photo elastic verification of a mechanical model for the flow of a granular material [J]. Journal of the Mechanics and Physics of Solids,1972,20(5):337-351.
    Dmevich V, Richart J F. Dynamic prestraining of dry sand [J]. Journal of Soil Mechanics and Foundations Division, ASCE,1970,96(2):453-469.
    Duffy J, Mindlin R. Stress-strain relation and vibrations of a granular medium [J]. Journal of Applied Mechanics, ASME,1957,24(4):585-593.
    Duran J. Sands, Powers, and Grains:An introduction to the physics of granular materials [M]. Springer Verlag, New York,2000.
    Edwards S. The equations of stress in a granular material [J]. Physica A:Statistical Mechanics and its Applications,1998,249(1-4):226-231.
    Fenistein D, Hecke M V. Wide shear zones in granular bulk flow [J]. Nature,2003,425(18):256-256.
    Fioravante V, Capoferri R. On the use of multi-directional piezoelectric transducers in triaxial testing [J]. Geotechnical Testing Journal,2001,24(3):243-255.
    Fortin J. Construction of an averaged stress tensor for a granular medium [J]. European Journal of Mechanics-A/Solids,2003,22(4):567-582.
    Fu P C, Dafalias Y F. Study of anisotropic shear strength of granular materials using DEM simulation [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35:1098-1126.
    Ghedia R, O'Sullivan C. Quantifying void fabric using a scan-line approach [J]. Computers and Geotechnics, 2012,41:1-12.
    Hardin B O, Richart J F. Elastic wave velocities in granular soils [J]. Journal of Soil Mechanics and Foundations Division, ASCE,1963,89(1):33-65.
    Hardin B O, Blandford G E. Elasticity of particulate materials [J]. Journal of Geotechnical Engineering,1989, 115(6):788-805.
    Hazzard J F, Young R P. Simulating acoustic emissions in bonded-particle models of rock [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37:867-872.
    Hecke V M. Jamming of soft particles:geometry, mechanics, scaling and isostaticity [J]. Journal of physics. Condensed matter:an Institute of Physics journal,2010,22(3):1-24.
    Hentz S, Daudeville L, Donze F V. Indentification and validation of a discrete element model for concrete [J]. Journal of Engineering Mechanics,2004,130(6):709-719.
    Holt R, Kjolaas, J, Larsen I, et al.. Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock [J]. International Journal of Rock Mechanics and Mining Science,2005,42(7-8):985-995.
    Home M R. The behaviour of an assembly of rotund, rigid, cohesionless particles. Ⅲ[R]. Proc. R. Soc. A310, 21-34.
    Hu M Y, O'Sullivan C, Jardine R R, et al.. Stress-induced anisotropy in sand under cyclic loading [J]. Granular Matter,2010,12(5):469-476.
    Huang W X. Investigation on stability of saturated sand foundation and slope against liquefaction [C]. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France,1961, Vol II:625-630.
    Huang Z Y, Yang Z X, Wang Z Y. Discrete element modeling of sand behavior in a biaxial shear test [J]. Journal of Zhejiang University SCIENCE A,2008,9(9):1176-1183.
    Itasca C G Inc. Manual of particle flow code in 3-dimension [M]. Minneapolis,2008.
    Ishibashi I, Capar O F. Liquefaction resistance and its relation to wave velocities [C]. In Proceedings of the Twelfth International Offshore and Polar Engineering Conference,2002:550-557.
    Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses [J]. Soils and Foundations,1975,15(1):29-44.
    Ishihara K. Liquefaction and flow failure during earthquakes [J]. Geotechnique,1993,43(3):351-451.
    Jang E R, Jung Y H, Chung C K. Stress ratio-fabric relationships of granular soils under axi-symmetric stress and plane-strain loading [J]. Computers and Geotechnics,2010,37(7-8):913-929.
    Jefferies M G, Been K. Soil liquefaction A critical state approach [M]. London and New York:Taylor & Francis Group,2006.
    Jensen R P, Bosscher P J, Plesha M E, et al.. DEM simulation of granular media-structure interface:effects of surface roughness and particle shape [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(6):531-547.
    Jiang M J, Yan H B, Zhu H H, et al.. Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses [J]. Computers and Geotechnics,2011,38(1):14-29.
    Jones R, Pollock H M, Geldart D, et al.. Frictional forces between cohesive powder particles studied by AFM [J]. Ultramicroscopy,2004,100(1-2):59-78.
    Kanatani K. A theory of contact force distribution in granular materials [J]. Powder Technology,1981,28: 167-172.
    Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range [J]. Soils and Foundations, 1980,20(2):45-60.
    Konrad J M. Undrained response of loosy compacted sands during monotonic and cyclic compression tests [J]. Geotechnique,1993,43(1):69-90.
    Kruyt N P, Rothenburg L. Micromechanical Definition of the Strain Tensor for Granular Materials [J]. Journal of Applied Mechanics, ASME,1996,118:706-711.
    Kruyt N P. Statics and kinematics of discrete Cosserat-type granular materials [J]. International Journal of Solids and Structures,2003,40(3):511-534.
    Kruyt N P. Micromechanical study of fabric evolution in quasi-static deformation of granular materials [J]. Mechanics of Materials,2012,44:120-129.
    Kuerbis R, Vaid Y P. Sand sample preparation-the slurry deposition method [J]. Soils and Foundations,1988, 28(4):107-118.
    Kuhn M R. Discussion of "The asymmetry of stress in granular media" [J.P. Bardet and I. Vardoulakis, Int. J. Solids Struct.2001, Vol.38, No.2, pp.353-3671][J]. International Journal of Solids and Structures, 2003,40(7):1805-1807.
    Kuhn M R. Micro-mechanics of fabric and failure in granular materials [J]. Mechanics of Materials,2010, 42(9):827-840.
    Kuhn M R, Bagi K. Specimen Size Effect in Discrete Element Simulations of Granular Assemblies [J]. Journal of Engineering Mechanics,2009,135(6):485-492.
    Landry H, Lague C, Roberge M. Discrete element representation of manure products [J]. Computers and Electronics in Agriculture,2006,51(1-2):17-34.
    Li L, Holt R M. Particle Scale Reservoir Mechanics [J]. Oil & Gas Science And Technology,2002,57(5): 525-538.
    Li X, Yu H S. Numerical investigation of granular material behaviour under rotational shear [J]. Geotechnique, 2010,60(5):381-394.
    Li X, Yu H S. Applicability of stress-force-fabric relationship for non-proportional loading [J]. Computers & Structures,2011,89(11-12):1094-1102.
    Li X K, Chu X H, Feng Y T. A discrete particle model and numerical modeling of the failure modes of granular materials [J]. Engineering Computations,2005,22(8):894-920.
    Li X, Yu H S, Li X S. Macro-micro relations in granular mechanics [J]. International Journal of Solids and Structures,2009,46(25-26):4331-4341.
    Li X S, Wang Y. Linear Representation of Steady-State Line for Sand [J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(12):1215-1217.
    Li X. Micro-scale investigation on the quasi-static behavior of granular material [D]. The Hong Kong University of Science and Technology,2006.
    Li X, Li X S. Micro-Macro Quantification of the Internal Structure of Granular Materials [J]. Journal of Engineering Mechanics,2009,135(7):641-656.
    Liao C L, Chang T P, Young D H. Stress-strain relationship for granular materials based on the hypothesis of best fit [J]. International Journal of Solids and Structures,1997,34(31):4087-4100.
    Liao C L, Chan T C, Suiker A S, et al.. Pressure-dependent elastic moduli of granular assemblies [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2000,24(3):265-279.
    Liou J C, Pan Y W. Fabric evolution of granular assembly under Ko loading/unloading [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(13):1099-1122.
    Masson S, Martinez J. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations [J]. Powder Technology,2000,109:164-178.
    Matsuoka H G.A stress-strain model for granular materials considering mechanism of fabric change [J]. Soils and Foundations,1983,23(2):102-110.
    Maynar M J M, Rodriguez L E M. Discrete Numerical Model for Analysis of Earth Pressure Balance Tunnel Excavation [J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1234-1242.
    Mindlin R. Compliance of elastic bodies in contact [J]. Journal of applied mechanics,1949,71(3):258-269.
    Mishra B K, Murty C V R. On the determination of contact parameters for realistic DEM simulations of ball mills [J]. Powder Technology,2001,115(3):290-297.
    Mouraille O, Luding S. Sound wave propagation in weakly polydisperse granular materials [J]. Ultrasonics, 2008,48(6-7):498-505.
    Ng T T. Discrete Element Method Simulations of the Critical State of a Granular Material [J]. International Journal of Geomechanics,2009,10:209-216.
    Ng T T, Dobry R. Numerical simulations of monotonic and cyclic loading of granular soil [J]. Journal of Geotechnical Engineering,1994,120(2):388-403.
    Ng T T, Petrakis E. Small-strain response of random arrays of spheres using discrete element method [J]. Journal of Engineering Mechanics,1996,122(3):239-244.
    Ng T T, Wang C M. Comparison of a 3-D DEM simulation with MRI data [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25:497-507.
    Nicot F, Darve F. The H-microdirectional model:Accounting for a mesoscopic scale [J]. Mechanics of Materials,2011,43:918-929.
    Negussey D, Islam M S. Uniqueness of steady state and liquefaction potential [J]. Canadian Geotechnical Journal,1994,31(1):132-139.
    Oda M. The mechanism of fabric changes during compressional deformation of sand [J]. Soils and Foundations,1972a,12(2):1-18.
    Oda M. Initial fabrics and their relations to mechanical properties of granular material [J]. Soils and Foundations,1972b,12(1):17-36.
    Oda M. Coordination number and its relation to shear strength of granular material [J]. Soils and Foundations, 1977,17(2):29-42.
    Oda M. Fabric tensor and its geometrical meaning [C]. M Oda & K. Iwashita, eds., Rotterdam:Balkema, 1999.
    Oda M. Study on couple stress and shear band development in granular media based on numerical simulation analyses [J]. International Journal of Engineering Science,2000,38(15):1713-1740.
    Oda M, Kazama H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils [J]. Geotechnique,1998,48(4):465-481.
    Oda M, Nemat-Nasser S, Mehrabadi M M. A statistical study of fabric in a random assembly of spherical granules [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1982,6: 77-94.
    Ouadfel H, Rothenburg L. "Stress-force-fabric" relationship for assemblies of ellipsoids [J]. Mechanics of Materials,2001,33(4):201-221.
    O'Sullivan C, Bray J D, Riemer M F. Influence of Particle Shape and Surface Friction Variability on Response of Rod-Shaped Particulate Media [J]. Journal of Engineering Mechanics,2002,128(11): 1182-1192.
    O'Sullivan C, Bray J D, Riemer M F. Examination of the Response of Regularly Packed Specimens of Spherical Particles Using Physical Tests and Discrete Element Simulations [J]. Journal of Engineering Mechanics,2004,130(10):1140-1150.
    O'Sullivan C, Bray J D, Li S F. A new approach for calculating strain for particulate media [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(10):859-877.
    O'Sullivan C, Cui L, O'Neill S C. Discrete element analysis of the response of granular materials during cyclic loading [J]. Soils and Foundations,2008,48(4):511-530.
    Pennington D S, Nash D F T, Lings M L. Horizontally mounted bender elements for measuring anisotropic shear moduli in triaxial clay specimens [J]. Geotechnical Testing Journal,2001,24(2):133-144.
    Peters J F, Muthuswamy M, Wibowo J, et al.. Characterization of force chains in granular material [J]. Physical Review E,2005,72(4):1-8.
    Petrakis E, Dobry R. A self consistent estimated of the elastic constants of a random array of equal spheres with application to granular soil under isotropic conditions [R]. Rep. No. CE-86-04, Rensselaer Polytechnic Inst., Troy, N Y,1986.
    Poulos S J. The steady state of deformation [J]. Journal of the Geotechnical Engineering Division, ASCE, 1981,107(GT5):553-562.
    Poulos S J, Castro G, France J W. Liquefaction evaluation procedure [J]. Journal of Geotechnical Engineering,1985,111(6):772-792.
    Poulos S J. Liquefaction and related phenomena [C]. In Advanced dam engineering for design construction and rehabilitation (ed. R B Jansen), Van Nostrand Reinhold, N Y,1988,292-320.
    Potyondy D O, Cundall P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329-1364.
    Radjai F, Jean M, Moreau J J, et al.. Force Distributions in Dense Two-Dimensional Granular Systems [J]. Physical review letters,1996,77(2):274-277.
    Radjai F, Dubois F. Discrete-element modeling of granular materials [M]. London, UK:ISTE Ltd and John Wiley & Sons, Inc,2011.
    Raleigh J W S. On the libricating and other properties of thin oily films [J]. Philisophical Magazine,1918, 35(206):157-163.
    Renzo A D, Maio F P D. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes [J]. Chemical Engineering Science,2004,59(3):525-541.
    Richard P, Nicodemi M, Delannay R, et al.. Slow relaxation and compaction of granular systems [J]. Nature materials,2005,4(2):121-128.
    Roscoe K H, Schofield A N, Wroth C P. On The Yielding of Soils [J]. Geotechniqne,1958,8(1):22-53.
    Rothenburg L, Kruyt N P. Critical state and evolution of coordination number in simulated granular materials [J]. International Journal of Solids and Structures,2004,41(21):5763-5774.
    Rothenburg L, Bathurst R J, Dusseault M B. Micromechanical ideas in constitutive modeling of granular materials [C]. In J. Biarez & R. Gourves, eds. Powders and Grains, Rotterdam,1989:355-363.
    Sadd M H, Gao J, Shukla A. Numerical Analysis of Wave Propagation Through Assemblies of Elliptical Particles [J]. Computers and Geotechnics,1997,20(3/4):323-343.
    Sadd M H, Tai Q M, Shukla A. Contact law effects on wave propagation in particulate materials using distinct element modeling [J]. International Journal of Non-linear Mechanics,1993,28(2):251-265.
    Sadd M H, Adhikari G, Cardoso F. DEM simulation of wave propagation in granular materials [J]. Powder Technology,2000,109:222-233.
    Santamarina J C, Fratta D. Introduction to discrete signals and inverse problems in civil engineering [M]. Virginia:ASCE Press,1998.
    Santamarina J Carlos, Klein K A, Fam M A. Soils and waves [M]. New York:John Wiley & Sons,Inc,2001.
    Santamarina J C, Cascante G. Stress anisotropy and wave propagation:a micromechanical view [J]. Canadian Geotechnical Journal,1996,33(5):770-782.
    Satake M. Fabric tensor in granular materials [C], In IUTAM Conference on Deformation and Failure of Granular Materials. Delft:Balkema,1982:63-68.
    Satake M. Tensorial form definitions of discrete-mechanical quantities for granular assemblies [J]. International Journal of Solids and Structures,2004,41(21):5775-5791.
    Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1966,92(SM6):105-134.
    Seed H B, Idriss I M, Arango I. Evaluation of liquefaction potential using field performance data [J]. Journal of the Geotechnical Engineering Division, ASCE,1983,109(3):458-482.
    Shafipour R, Soroush A. Fliud coupled-DEM modelling of undrained behavior of granular media [J]. Computers and Geotechnics,2008,35:673-685.
    Shamy U E, Zeghal M. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils [J]. Soil Dynamics and Earthquake Engineering,2007,27:712-729.
    Shamy U E, Denissen, C. Microscale characterization of energy dissipation mechanisms in liquefiable granular soils [J]. Computers and Geotechnics,2010,37:846-857.
    Shen Z J. A granular medium model for liquefaction analysis of sands[J]. Chinese Journal of Geotechnical Engineering,1999,21(6):742-748.
    Shimizu Y. Microscopic numerical model of fluid flow in granular material [J]. Geotechnique,2011,61(10): 887-896.
    Shukla A, Sadd M H, Mei H. Experimental and Computational Modeling of Wave Propagation in Granular Materials [J]. Experimental Mechanics,1990,377-381.
    Sitharam T G, Vinod J S, Ravishankar B V. Post-liquefaction undrained monotonic behaviour of sands: experiments and DEM simulations [J]. Geotechnique,2009,59(9):739-749.
    Sitharam T G, Vinod J S. Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations [J]. Granular Matter,2009,11(1):33-42.
    Sitharam T G. Discrete element modelling of cyclic behaviour of granular materials [J]. Geotechnical and Geological Engineering,2003,21(4):297-329.
    Sitharam T G, Dinesh S V, Shimizu N. Micromechanical modelling of monotonic drained and undrained shear behaviour of granular media using three-dimensional DEM [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(12):1167-1189.
    Skinner A E. A note on the influence of interparticle friction on the shearing strehgth of a random assembly of spherical particles [J]. Geotechnique,1969,19:150-157.
    Skinner A E. The effect of high pore water pressures on the mechanical behaviour of sediments [D]. University of London,1975.
    Stokoe K H II, Roesset J M, Bierschwale J G, et al.. Liquefaction potential of sands from shear wave velocity [C], Proc.9th World Conf. on Earthquake Engig.,1988, III:213-218.
    Tatsuoka F. Small strain behavior of granular materials [C]. In M Oda & K. Iwashita, eds. Mechanics of granular materials. Rotterdam:Balkema,1999,299-308.
    Terzaghi K. Old earth pressure theories and new test results [J]. Engineering News-Record,1920,85(14): 632-637.
    Terzaghi K. Erdbaumechanick [M]. Deuticke,1925.
    Thomas C N, Papargyri-Beskou S, Mylonakis G. Wave dispersion in dry granular materials by the distinct element method [J]. Soil Dynamics and Earthquake Engineering,2009,29(5):888-897.
    Thomas P A. Discontinuous deformation analysis of particulate media [D]. University of California at Berkeley,1997.
    Thornton C. Quasi-static shear deformation of a soft particle system [J]. Powder Technology,2000,109(1-3): 179-191.
    Thornton C, Zhang L. A DEM comparison of different shear testing devices [C]. In Y. Kishino, ed. Powders and Grains. Balkema,2001,183-190.
    Thornton C. Numerical simulations of deviatoric shear deformation of granular media [J]. Geoteclmique,2000, 50(1):43-53.
    Thornton C, Antony S J. Quasi-static deformation of paniculate media [C]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,1998,356:2763-2782.
    Thornton C, Sun G. Axisymmetric compression of 3D polydisperse systems of spheres [C]. In C Thornton, ed. Powders and Grains,1993,129-134.
    Thornton C, Zhang L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media [J]. Geotechnique,2010,60(5):333-341.
    Thornton C. Quasi-static simulations of compact polydisperse particle systems [J]. Particuology,2010,8(2): 119-126.
    Toomey A, Bean C J. Numerical simulation of seismic waves using a discrete particle scheme [J]. Geophysical Journal International,2000,141:595-604.
    Tordesillas A, Shi J, Tshaikiwsky T. Stress-dilatancy and force chain evolution [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35:264-292.
    Trent B C, Margolin L G. A numerical laboratory fro granular solids [J]. Engineering Computations,1992,9: 191-197.
    Tu X, Andrade J E. Criteria for static equilibrium in particulate mechanics computations [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,75:1581-1606.
    Vaid Y P, Chung E K F, Kuerbis R H. Stress path and steady state [J]. Canadian Geotechnical Journal,1990, 27(1):1-7.
    Vaid Y P, Thomas J. Liquefaction and post liquefaction behavior of sand [J]. Journal of Geotechnical and Geoenironmental Engineering,1995,121(2):163-173.
    Verdugo R, Ishihara K. The steady state of sandy soils [J]. Soils and Foundations,1996,36(2):81-91.
    Walton K. The effective elastic moduli of a random packing of spheres[J]. Journal of the Mechanics and Physics of Solids,1987,35(2):213-226.
    Wan R, Guo P J, Al-Mamun M. Behaviour of granular materials in relation to their fabric dependencies [J]. Soils and Foundations,2005,45(2):77-86.
    Wang Y H, Mok C M B. Mechanisms of small-strain shear-modulus anisotropy in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(10):1516-1530.
    Weber M W. Simulation of cohesive particle flow in granular and gas-solid system [D]. University of Colorado at Boulder,2004.
    Wood D M. Soil behaviour and critical state soil mechanics [M]. Cambridge University Press,1990.
    Wood D M. The magic of sands-The 20th Bjerrum Lecture presented in Oslo,25 November 2005 [J]. Canadian Geotechnical Journal,44(11),2007,1329-1350.
    Wood D M, Lesniewska D. Stresses in granular materials [J]. Granular Matter,2010,13(4):395-415.
    Yamashita S, Hori T, Suzuki T. Effects of initial and induced anisotropy on initial stiffness of sand by triaxial and bender elements tests [C]. Geomechanics:Testing, Modeling, and Simulation (GSP 143), ASCE, 2003,350-369.
    Yan W M. Fabric evolution in a numerical direct shear test [J]. Computers and Geotechnics,2009,36(4): 597-603.
    Yang Z X, Li X S, Yang J. Quantifying and modelling fabric anisotropy of granular soils [J]. Geotechnique, 2008,58(4):237-248.
    Yimsiri S, Soga K. Micromechanics-based stress-strain behaviour of soils at small strains [J]. Geotechnique, 2000,50(5):559-571.
    Yimsiri S, Soga K. Application of micromechanics model to study anisotropy of soils at small strains [J]. Soils and Foundations,2002,42(5):15-26.
    Yimsiri S, Soga K. DEM analysis of soil fabric effects on behaviour of sand [J]. Geotechnique,2010,60(6): 483-495.
    Yin Z Y, Chang C S. Non-uniqueness of critical state line in compression and extension conditions [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33:1315-1338.
    Yin Z Y, Chang C S, Hicher P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand [J]. International Journal of Solids and Structures,2010,47(14-15):1933-1951.
    Yokel F Y, Dobry R, Powell D J, et al.. Liquefaction of sands during earthquake-the cyclic strain approach [C]. International Symposium on Soils under Cyclic and Transient Loading, Swansea,1980,571-580.
    Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand [J]. Soils And Foundations,1998,38(3):179-188.
    Youd T L, et al.. Liquefaction resistance of soils:summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,124(10):817-833.
    Zeghal M, Shamy U E. Liquefaction of saturated loose and cemented granular soils [J]. Powder Technology, 2008,184(2):254-265.
    Zhou Y G, Chen Y M. Influence of seismic cyclic loading history on small strain shear modulus of saturated sands [J]. Soil Dynamics and Earthquake Engineering,2005a,25(5):341-353.
    Zhou Y G, Chen Y M. Laboratory Investigation on Assessing Liquefaction Resistance of Sandy Soils by Shear Wave Velocity [J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(8): 959-972.
    Zhou Y G, Chen Y M, Shamoto Y. Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1):165-177.
    Zhu H, Zhou Z Y, Yang R Y, et al.. Discrete particle simulation of particulate systems:A review of major applications and findings [J]. Chemical Engineering Science,2008,63(23):5728-5770.
    Zlatovic S, Ishihara K. Normalized behaviour of very loose non-plastic soils:effects of fabric [J]. Soils And Foundations,1997,37(4):47-56.
    毕忠伟,孙其诚,刘建国等.双轴压缩下颗粒物质剪切带的形成与发展[J].物理学报,2011,60(3):1—10.
    陈育民,刘汉龙,邵国建等.砂土液化及液化后流动特性试验研究[J].岩土工程学报,2009,31(9):1408-1413.
    程国勇,张立,王建华.用扭转波测试土样剪切波速的新技术[J].岩土工程学报,2005,27(3):358-359.
    池永.土的工程力学性质的细观研究-应力应变关系剪切带的颗粒流模拟[D].同济大学博士学位论文,2002.
    楚锡华.颗粒材料的离散颗粒模型与离散-连续耦合模型及数值方法[D].大连理工大学博士学位论文,2006.
    郭易圆,李世海.有限长岩柱中纵波传播规律的离散元数值分析[J].岩石力学工程学报,2002,21(8):1124-1129.
    黄博,施明雄,陈云敏等.循环振动对饱和粉土初始动剪模量的影响[J].岩土工程学报,2009,31(5):764-771.
    姜景山,程展林,刘汉龙等.粗粒土二维模型试验的组构分析[J].岩土工程学报,2009,31(5):811—816.
    蒋明镜,李秀梅.双轴压缩试验中砂土剪切带形成的离散元模拟分析[J].山东大学学报(工学版),2010,40(2):52-58.
    蒋明镜,孙渝刚.人工胶结砂土力学特性的离散元模拟[J].岩土力学,2011,32(6):1849-1856.
    蒋明镜,孙渝刚,李立青.复杂应力下两种胶结颗粒微观力学模型的试验研究[J].岩土工程学报,2011a,33(3):354-360.
    蒋明镜,孙渝刚,李立青.胶结颗粒接触力学特性测试装置研制[J].岩土力学,2011b,32(1):309-315.
    柯翰,陈云敏.改进的判别砂土液化势的剪切波速法[J].地毡学报,2001,22(6):637-644.
    李晓军,张肖宁.CT技术在沥青胶结颗粒材料内部结构分析中的应用[J].公路交通科技,2005,22(2):14-17.
    刘连峰.弹塑性颗粒物质准静态变形的细观力学行为[J].若土工程学报,2007,29(4):524-530.
    刘斯宏,徐永福.粒状体直剪试验的数值模拟与微观考察[J].岩土力学与工程学报,2001,20(3):288-292.
    刘斯宏,姚仰平,孙其诚等.基于细观结构的颗粒介质应力应变关系研究[J].科学通报,2009,54(11):1496—1503.
    刘洋.砂土液化破坏的细观力学机制与数值模拟[D].同济大学博士学位论文,2006.
    刘洋,吴顺川,周健.循环荷载下砂土变形的细观数值模拟(Ⅱ):密砂试验结果[J].岩土工程学报,2007,29(11):1676—1682.
    刘洋,周健,吴顺川.循环荷载下砂土变形的细观数值模拟(Ⅰ):松砂试验结果[J].岩土工程学报,2007,29(7):1035-1041.
    刘洋,吴顺川,周健.单调荷载下砂土变形过程数值模拟及细观机制研究[J].若土力学,2008,29(12):3199-3205.
    刘洋,周健,付建新.饱和砂土流固耦合细观数值模型及其在液化分析中的应用[J].水利学报,2009,40(2):250-256.
    鲁晓兵,谈庆明,王淑云等.饱和砂土液化研究新进展[J].力学进展,2004,34(1):87—96.
    钱建固,黄茂松.土体塑性各向异性的微宏观机理分析[J].岩土力学,2011,32(增2):88-93.
    秦建敏,张洪武.颗粒材料的微观临界状态理论模型[J].岩土力学,2010,31(12):3697—3703.
    任红梅,吕西林,李培振.饱和砂土液化研究进展[J].地震工程与工程振动,2007,27(6):166-175.
    沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    沈珠江.现代土力学的基本问题[J].力学与实践,1998,20:1-6.
    史旦达.单调与循环加荷条件下砂土力学性质细观模拟[D].同济大学博士学位论文,2007.
    史旦达,周健,刘文白等.砂土单调剪切特性的非圆颗粒模拟[J].岩土工程学报,2008,30(9):1361-1366.
    史旦达,周健,刘文白等.初始组构影响砂土液化势的细观数值模拟[J].水利学报,2011,42(7):766—774.
    石兆春,王承春.预测轻亚粘土液化势的剪切波速法[C].全国地震工程会议论文集,上海,1984.
    孙德安,姜朴,卢盛松.固有各向异性对动剪切模量的影响[J].岩土工程学报,1989,11(2):75-81.
    孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87—100.
    孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    孙其诚,王光谦,胡凯衡.汶川地震堰塞体及相关力学问题[J].物理2009,38(4):248-253.
    孙其诚,王光谦,胡凯衡.颗粒物质力学几个关键问题的思考[J].自然科学进展,2008,18(10):1104-1110.
    孙其诚,程晓辉,季顺迎等.岩土类颗粒物质宏-细观力学研究进展[J].力学进展,2011,41(3):351-371.
    孙其诚,金峰,王光谦等.二维颗粒体系单轴压缩行成的力链结构[J].物理学报,2010,59(1):30-37.
    孙珊珊,苏勇,季顺迎.颗粒滚动-滑动转换机制及摩擦系数的试验研究[J].岩土力学,2009,30(增):110-115.
    王刚,张建民.地震液化问题研究进展[J].力学进展,2007,37(4):575—589.
    王光谦,孙其诚.颗粒物质及其多尺度结构统计规律[J].工程力学,2009,26(增Ⅱ):1-7.
    王建华,程国勇,张立.一种在三轴压力室内测试土样剪切波速的新装置[J].天津大学学报,2004,37(2):152-156.
    汪闻韶.土的液化机理[J].水利学报,1981,5:22—34.
    汪闻韶.土工地震减灾工程中的一个重要参量——剪切波速[J].水利学报,1994,3:80-84.
    汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报,2005,27(1):1—10.
    王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳,东北工学院出版社,1991.
    谢定义.21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114.
    邢纪波,俞良群,张瑞丰等.离散单元法的计算参数和求解方法选择[J].计算力学学报,1999,16(1):47—51.
    徐日庆,龚晓南.土的应力路径非线性行为[J].岩土工程学报,1995,17(4):56-60.
    杨荣伟,程晓辉.光弹颗粒材料的直剪实验研究[J].岩土力学,2009,30(增):103-109.
    于艺林.考虑盈利主轴旋转的各向异性砂土本构规律与数学模型[D].清华大学博士学位论文,2010.
    袁晓铭,曹振中.汶川大地震液化的特点及带来的新问题[J].世界地震工程,2011,27(1):1-8.
    曾远.土体破坏细观机理及颗粒流数值模拟[D].同济大学博士学位论文,2006.
    张洪武,秦建敏.基于接触价键的颗粒材料微观临界状态[J].岩土力学,2008,29(4):865—870.
    张建民,王刚.砂土液化大变形的机理[J].岩土工程学报,2006,28(7):835-840.
    张建民.砂土动力学若干基本理论探究[J].岩土工程学报,2012,34(1):1-50.
    张连卫,张建民,张嘎.基于数字图像的粒状材料细观组构特征分析技术[J].岩土工程学报,2008,30(10):1555—1559.
    张坤勇,殷宗泽,梅国雄.土体各向异性研究进展[J].岩土力学,2004,25(9):1503—1509.
    张振南,葛修润,李永和.基于虚内键理论的材料多尺度力学模型[J].固体力学学报,2006,27(4):325—329.
    赵成刚,尤昌龙.饱和砂土液化与稳定强度[J].土术工程笋报,2001,34(3):90-96.
    周健,贾敏才.土工细观模型试验与数值模拟[M].北京:科学出版社,2008.
    周健,史旦达,贾敏才等.循环加荷条件下饱和砂土液化细观数值模拟[J].水利学报,2007,38(6):697—703.
    周健,余荣传,贾敏才.基于数字图像技术的砂土模型试验细观结构参数测量[J].岩土工程学报,2006,28(12):2047-2052.
    周燕国,陈云敏,柯翰.砂土液化势剪切波速简化判别法的改进[J].岩石力学与工程学报,2005,24(3):2369-2375.
    周燕国.土结构性的剪切波速表征及对动力特性的影响[D].浙江大学博士学位论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700