内燃机曲轴-轴承系统摩擦学动力学耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机曲轴-轴承系统是内燃机的关键部件,其摩擦学、动力学性能不仅直接影响到内燃机工作的可靠性和耐久性,还限制了内燃机潜力的发挥。因而,摩擦学、动力学性能分析历来是该系统设计理论基础的重要组成部分。然而,长期以来,由于曲轴-轴承系统特殊的结构形式和复杂的受力状况,理论研究难度较大,其摩擦学和动力学行为的分析是在两个独立的领域里分别进行的。因此,进行曲轴-轴承系统摩擦学和动力学的耦合研究、提高曲轴-轴承系统理论分析的准确性,具有重要的理论意义和现实的应用价值。
     首先,本文在分析现有内燃机轴承润滑分析、曲轴动力学分析和转子动力学相关领域研究现状的基础上,探讨了轴-轴承系统摩擦学、动力学耦合的必要性。认为轴-轴承系统所承受的最普遍、最常见的载荷形式是变载荷,即使是工作在恒定载荷工况下轴-轴承系统,其在加载与卸载过程中也是承受变载荷作用;对变载荷轴承的分析必须同时考虑轴的动力学效应和轴承的摩擦学效应。据此提出将轴和轴承视为一个整体系统,根据轴的动力学方程和滑动轴承的油膜力方程,采用数值积分方法直接耦合求解轴-轴承系统的摩擦学、动力学行为。
     其次,本文采用控制理论的基本观点,详细分析了轴-轴承系统中轴承的摩擦学行为与轴动力学行为间的相互联系,提出了轴-轴承系统摩擦学、动力学耦合研究的分析模型,把轴、轴承分别看作是受控对象和控制器,该模型全面客观地反映了轴、轴承之间的内在联系,物理意义清晰,可以涵盖所有类型的轴-轴承系统,为轴-轴承系统的摩擦学、动力学耦合分析提供了新的研究思路。
     第三,本文根据轴-轴承系统摩擦学、动力学耦合研究的分析模型,提出了轴-轴承系统摩擦学、动力学耦合研究分析方法:首先建立轴-轴承系统的仿真模型,采用ADAMS和MATLAB联合仿真,实现轴-轴承系统摩擦学、动力学的耦合分析。该方法建模快捷迅速、仿真过程直观、数据处理方便,为研究复杂轴-轴承系统摩擦学、动力学效应的耦合作用建立了有效的方法和手段。
     第四,采用本文提出的轴-轴承系统的摩擦学、动力学耦合分析方法,研究了刚性轴-轴承系统在冲击载荷、径向变载荷和旋转载荷作用下的摩擦学、动力学行为,采用扫频法研究了刚性轴-轴承系统的共振频率,详细分析了转速、轴承间隙、轴承宽度、润滑油粘度等因素对刚性轴轴承系统摩擦学、动力学行为的影响。
     第五,以弹性轴的柔体动力学分析为基础,建立了弹性轴-轴承系统的仿真模型,通过ADAMS与MATLAB联合仿真,研究了弹性轴-轴承系统在径向正弦载荷作用下的摩擦学、动力学行为,比较了弹性轴-轴承系统和刚性轴-轴承系统的摩擦学、动力学特性。
Crankshaft bearing system is one of the most important components in Internal Combustion Engines (ICE). The performances of the crankshaft bearing system not only have direct effect on the reliability and durability of the engine, but also restrict the development of the engine potentiality. As a result of the complicated structure and loading conditions, it is hard to understand or analyze the coupling tribological and dynamical behaviors of the crankshaft bearing system. The tribological and dynamical behaviors have to been studied independently on the domain of tribology or dynamic over a long period of time. Therefore, to study the behaviors of the crankshaft bearing system coupling bearing tribology with crankshaft dynamics is very important both in theoretical and practical sense.At the beginning of this dissertation, the present status of the tribological analysis of ICE journal bearings, dynamical calculation of crankshaft and correlative researches of rotor dynamics are reviewed. To reveal the relationships between tribological and dynamical behaviors of shaft bearing system, an analytical model of the shaft bearing system is brought forward. According to the model, the shaft bearing system is taken as an auto-control system, and the bearings and shaft are taken as controllers and controlled object. The analytical model has a clear physic sense and can be applied to nearly all the types of shaft bearing system.According to the analytical model, a new coupling analyzing method for shaft bearing system is put forward. With this method, a simulating model of the shaft bearing system is set up at first. Then the simulation model is analyzed by the joint simulation of ADAMS and MATLAB. This method provides an effective tool to analyze the coupling tribological and dynamical behaviors of complicated shaft bearing systems.By using the new coupling analyzing method, the tribological and dynamical behaviors of rigid shaft bearing system exciting with impact, sine and rotating loads are studied. The frequency response of shaft bearing system is evaluated with frequency-sweeping method. It is shown that the resonance frequency of the shaft bearing system has relation with the shaft rotating speed, bearing clearance, lubricant viscosity. The influences of rotating speed of shaft, width and clearance of bearing, lubricant viscosity on the behaviors of shaft bearing system are discussed.Based on the theory of flexible multi-body dynamics, a simulating model of flexible shaft bearing is set up. By the joint simulation of ADAMS and MATLAB, the flexible shaft-bearing system is analyzed. The coupling tribological and dynamical behaviors are compared between flexible and rigid shaft bearing systems.Experiments of flexible shaft-bearing system are done on the test set designed by the author. A non-contact electromagnetic actuator is used in the experiments. The results of the experiments are introduced and discussed. The influences of rotational speeds of the shaft, length and clearance of the bearing on the vibration amplitude of the journal center are analyzed. It is shown that the experimental results are coincident with the theoretical analysis.The crankshaft bearing system of N485 diesel engine is analyzed with the method presented above.
    The coupling simulation model of crankshaft bearing system is built with the finite element model of crankshaft. The tribological behaviors of main bearings and the three dimension vibrations of the crankshaft are discussed in detail. It is shown that the coupling method is efficient to analyze the tribological and dynamical behaviors of crankshaft bearing system.
引文
[1] 王晓力.计入表面形貌效应的内燃机主轴承热流体动力润滑分析.清华大学博士论文,1999
    [2] Tower B. Proc. Instn. Mech. Engrs., 1885, 36-58
    [3] Reynolds O. On the Theory of Lubrication and Its Application to Mr. Beanchamp Tower's Experments, Including an Experimental Determination of The Viscosity of Olive Oil. Phil. Trans. 1886,177(1): 157-234
    [4] Hahn H W. Dynamically loaded journal bearing of finite length. Presented at conference on lubrication and wear cluth, Mech. Eng., 1957
    [5] Holland J. Beitrag zur Erfassung der Schmierverhaltniss Verdrennungskraft Maschinen. VDI-Forsch-Heft 475, 1959
    [6] Booker J F. Dynamically loaded journal bearing - Mobility method of solution. J. Basic Eng., Trans. ASME Series D, 1965
    [7] Maass H. Calculation of crankshaft plain bearing. CIMAC, 1971, Paper A22
    [8] 李柱国,易智强.曲轴弹性主轴承负荷连续梁计算法研究及其对轴心轨迹的影响(一).汽车技术,1983,91(4):2-11
    [9] 李柱国,易智强.曲轴弹性主轴承负荷连续梁计算法研究及其对轴心轨迹的影响(二).汽车技术,1983,91(4):8-14
    [10] Elrod H G. A cavitation algorithm. ASME Journal of lubrication technology, 1981, 103:350-354
    [11] Jones G J. Crankshaft bearing: oil flow history. In: Proc. 9th Leeds-Lyon symposium on tribology, tribology of reciprocating engines, 1982,83-87
    [12] Goenka P K. Dynamically loaded journal bearing : finite element method analysis. ASME journal of tribology, 1984,106:429-439
    [13] Oh K P, Goenka P K. The elasohydro-dynamic solution of a journal bearing under dynamic loading. ASME journal of tribology, 1985,107:389-395
    [14] Paranjpe R S. Analysis of non-Newtonian effects in dynamically loaded finite bearings including mass conserving cavitation. ASME Journal of tribology, 1992,114:736-746
    [15] 裘祖干,张青松.动载径向粗糙轴承分析.内燃机学报.1993,11(2):159-164
    [16] Christensen H. Stochastic models for hydrodynamic lubrication od rough surface. Proc. Inst. Mech. Eng, 1969
    [17] Rohit S, Paranjpe R S. A transient thermohyodrdynamic analysis including mass conserving cavitation for dynamically loaded bearings. ASME Journal of tribology, 1995,117:369-378
    [18] 张朝,张直明.计入非牛顿效应的曲轴轴承的润滑分析.内燃机学报,1999,17(3):303-307
    [19] 王晓力,朱克勤.基于应力偶流体模型的动载荷轴承润滑研究.清华大学学报,2001,41(8):60-63
    [20] Stickler A C.Calculation of bering performance in indeterminate systems.Ph.D.Thesis, 1974, Comell University, Ithaca, NY.
    [21] Welsh WA, Booker J E Dynamic analysis of engine bearing systems. 1983, SAE 830065
    [22]李震,桂长林,孙军.内燃机曲轴轴系振动分析研究的现状、讨论与展望.内燃机学报,2002,20(9):469-474
    [23] Holzer W. Die Berechnung der Drehschwingungen. Springe-Verlag, Berlin, 1921
    [24] Spaetgens T W, Vancouver B C. Holzer method for forced-damped torsional vibrations. Journal of applied mechanics. 1950, March:59-63
    [25] Nestorides E J. A handbook on torsional vibration. London: Cambridge. university press, 1958
    [26] Wilson W K. Practical solution of torsional vibration problem. Vol 2. London: Campman and Hall, 1963
    [27] 李渤仲等.内燃机轴系扭转振动.北京:国防工业出版社,1984
    [28] Bargis E, Garro A, Vullo V. Crankshaft design and evaluation of current methods - Part 2: A modem design method: modal analysis. Conference on reliability, stress analysis and failure prevention in mechanical design. ASME international. 1980,203-211
    [29] 李惠珍,张德平等.用有限元进行曲轴扭振计算.内燃机学报.1991,9(2):157-162
    [30] Okamura H, Shinno A, et al. Simple modeling and analysis for crankshaft three-dimensional vibrations, Part 1: background and application to free vibrations. ASME journal of vibration and acoustics. 1995,117(1):70-79
    [31] Nadolski W, Szolc T, Pielorz A. Dynamic investigation of the crankshaft of three cylinder single bank engines using torsional elastic waves. Proceedings of the 15th international conference on dynamic of machines. Editions of the academy of science of the GDR. Karl-Marx-stadt. 1986, (8): 181-190
    [32] 郝志勇,舒歌群等.内燃机轴系扭振响应的扭转波计算方法研究.内燃机学报. 2000,18(1):29-32
    [33] Sarsten A. A computer program for damped torsional vibration using a complex Holzer tabulation. European shipbuilding. 1962, 6:138-157
    [34] Daughty S, Vafaee G. Transfer matrix eigensolutions for damped torsional system. ASME Journal of vibration, acoustics, stress and reliability in design. 1985,107(1):128-132
    [35] Daughty S. A Rayleigh-type inclusion of shaft inertia in torsional vibration analysis. ASME Journal of engineering for gas turbines and power. 1994,116(10):831-837
    [36] Huang Yuan Mao, Homg C D. Analysis of torsional vibration system by the extended transfer matrix method. ASME Journal of vibration as acoustics. 1999,121 (4):250-255
    [37] Bagci C. A computer method for computing torsional nature frequencies of nonuniform shafts, geared system, and curved assemblies. Proceedings of the 3rd OSU mechanical conference. Oklahoma. 1973, 40:1-15
    [38] Carrato P J, Fu C C. Modal analysis techniques for torsiaonal vibration of diesel crankshaft. SAE 861225
    [39] Knoll G, Schoenen R, Wilhelm K. Full dynamic analysis of crankshaft and engine block with special respect to elastohydrodynamic bearing coupling. ASME Internal combustion engine, 1997, 28(3): 1-8
    [40] Mourelatos Z P. An efficient crankshaft dynamic analysis using substructuring with Ritz vectors. J. of Sound and vibration, 2000, 238(3): 495-527
    [41] Mourelatos Z P. A crankshaft-block interation modal for structural dynamic analysis of internal combustion engines. Comput. Struct., 2001, 79(20-21): 2009-2027
    [42] 王国治.柴油机轴系扭振研究中的模态分析方法.内燃机学报.1986,4(3):249.259
    [43] 申屠淼等.TC387型柴油机曲轴飞轮系统扭转应力动态试验与计算.内燃机学报.1993,11(3):243-248
    [44] Stodola A. Kritische Wellenstorung infolge der Nachgiebigkit des Olpolsters im Lager. Schweiz, Bauztg, 1925,85:265-266
    [45] 雷宣扬,宋希庚,徐继承.内燃机曲轴的三维振动模拟.振动、测试与诊断,2003,23(2):125-127
    [46] Morita T. Okamura H. Simple modeling and analysis for crankshaft three-dimensional vibrations, Part 2: Application to an operating engine crankshaft. ASME journal of vibration and acoustics. 1995,117(1 ):80-86
    [47] Priede T. Characteristic of exciting forces and structure responses of turbocharged engines. SAE 850892
    [48] Kimura J, Shiono K, Okamura H, et al. Experiments and analysis of crankshaft three-dimensional vibrations and bending stress in a V-type ten-cylinder engine: influence of crankshaft gyroscopic motions. SAE 971995
    [49] Okamura H, Morita T. Efficient modeling and analysis for crankshaft three-dimensional vibrations under firing conditions. Proc. Instn. Mech. Engrs., Part K, 1999, 213:33-44
    [50] Mourelatos Z P. An efficient journal beating lubrication analysis for engine crankshafts. ASLE Tribology transactions, 2001, 44(3): 351-358
    [51] Newkirk B L, Lewis J F. Shaft Whipping due to Oil Action in Journal Bearings. General Electric Review, 1925, 28(8): 559-568.
    [52] Hagg, A. C. The Influence of Oil-Film Journal On the Stability of Rotating Machines. Journal of Applied Mechanics, 1946, 68, Sept. A212-220
    [53] Porisky H. Contribution to the theory of oil whip. Transaction of the ASME, Journal of Applied mechanics, 1956, 75(8): 1153-1161
    [54] Hagg, A. C. and Warner, P. C. "Oil-Whip of Flexible Rotors," Trans. ASME, Vol. 75, No. 7, (1953): 1339-1344.
    [55] Hagg A C, Sankey G C. Some dynamic properties of oil-film journal bearings with reference to the unbalance vibration of rotors. Journal of applied mechanics, 1956, 78(6): 302-306
    [56] Hori Y. A theory ofoil whip. Journal of applied mechanics. 1959, 26:189-198
    [57] Holmes, R.,"The Vibration of a Rigid Shaft on Short Sleeve Bearings." Journal of Mechanical Engineering Science (1960): 337-341.
    [58] Lund J W. The stability of an elastic rotor in journal bearings with flexible, damped supports. Trans. ASME, Series E, 1965, 32(4): 911-920
    [59] Tondl A. Some problems of rotor dynamics. Lodon: Chapman & Hall, 1965
    [60] Lund W J, Saibel E. Oil whip whirl orbits of a rotor in sleeve bearing. Journal of engineering for industry, 1967,89:813-823
    [61] Adams M L. Nonlinear dynamics of flexible multi-beating. Journal of sound and vibration. 1980, 71 : 129-144
    [62] Akkok M, Mc Cettles C M. Journal bearing response to excitation and behavior in the unstable region. ASLE Transactions, 1983, 27(4):341-351
    [63] Muszynska A. Whirl and whip - rotor/bearing stability problems. Journal of sound and vibration, 1986, 110(3): 443-462
    [64] Hori Y, Kato T. Earthquake induced instability of a rotor support by oil film bearing. Transactions of ASME, 1990, 112(4): 160-165
    [65] Cooijmans M T, Bouwers H J, et al. Limit cycle predictions of a nonlinear journal bearing system. Transactions of ASME, Journal of engineering for industry, 1990, 112(5):168-171
    [66] Choy F K, Braun M J. Nonlinear effects in a plain journal bearing - Part 1: Analysis study. Journal of tribology, 1991, 113(7):555-562
    [67] Braun M J, Choy F K. Nonlinear effects in a plain journal bearing - Part 2: Results. Journal of tribology, 1991, 113(7):563-570
    [68] 顾家柳.转子动力学.北京:国防工业出版社,1985
    [69] 闻邦椿.高等转子动力学.北京:机械工业出版社,2000
    [70] 虞烈,刘恒主编.轴承.转子动力学系统.西安:西安交通大学出版社,2001
    [71] Gasch R著,周仁睦译.转子动力学导论.北京:机械工业出版社,1986
    [72] 陈予恕,孟泉.非线性转子.轴承系统的分叉.振动工程学报,1996,9(3):266-275
    [73] 褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性.清华大学学报(自然科学版).1996,36(7):52~57
    [74] 褚福磊,方泽南,张正松.带有支座松动故障的转子—轴承系统的混沌特性.清华大学学报(自然科学版).1998,38(4):60~63
    [75] 袁小阳,朱均.滑动轴承转子系统Hopf分岔分析计算方法.航空动力学报,1999,14(2):166-170
    [76] 刘桓,虞烈,谢友柏等.非线性周期非自治系统的Poincare型胞映射方法及其应用.西安交大学学报,1998,32(4):97-101
    [77] 焦映厚,陈照波,夏松波等.转子轴承系统非线性动力学行为的研究.中国机械工程,2000,11(6):697-699
    [78] 徐小峰,张文.一种非稳态油膜力模型下刚性转子的分叉和混沌特性.振动工程学报,2000,13(2):247-253
    [79] 戴旭东,赵三星,袁小阳,谢友柏.内燃机系统动力学与油膜动力润滑的耦合分析.西安交通大学学报,2003,37(1):56-59
    [80] 戴旭东,马雪芬,赵三星,谢友柏.内燃机主轴承油膜动力润滑与系统动力学的耦合研究.内燃机学报,2003,21(1):86-90
    [81] 陈凌珊,赵吉华,唐国兰等.轴颈质量对动载荷滑动轴承润滑状况影响的研究.润滑与密封,2003(3):45-47
    [82] 沈心敏,闻英梅编著.摩擦学基础.北京:北京航空航天大学出版社.1991
    [83] 沐定夷,胡鸿钊.数值分析.上海:上海交通大学出版社,1994
    [84] 李震,桂长林,童宝宏等.轴.轴承系统仿真方法研究.中国机械工程,2004,15(15):1365-1368
    [85] 钱学森,宋健.工程控制论.北京:科学出版社,1983
    [86] 王国强,张进平编.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社.2002
    [87] 郑建荣编.ADAMS——虚拟样机技术入门与提高.北京:机械工业出版社,2002
    [88] 王沐然.SIMULINK4建模与动态仿真.北京:电子工业出版社,2002
    [89] 李震,桂长林,李志远等.变载荷作用下轴-轴承系统动力学行为研究.机械设计与研究,2005,12(2):23-28
    [90] 蔡英,黄国庆,刘建清.机床高速主轴系统的动力学特性.江南大学学报,2003,2(3): 286-289
    [91] Pinkus o,Sterlicht B著.西安交通大学轴承研究小组译.流体动力润滑理论.北京:机械工业出版社,1980
    [92] 李震,桂长林等.弹性轴.轴承系统动力学行为研究.农业机械学报,2005,已录用
    [93] 陆佑方著.柔性多体系统动力学.北京:高等教育出版社,1996
    [94] 张策.弹性连杆机构的分析与设计.北京:机械工业出版社,1989
    [95] 谭正.多体系统动力学压缩建模.北京:科学出版社,2000
    [96] 郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析.铁道机车车辆,2003,23(s1):86-89
    [97] Morton P G Measurement of the dynamic characteristics of a large sleeve bearing. Journal of lubrication technology,1971,93(1):143-150
    [98] Parkins D W.Theoretical and experimental determination of the dynamic characteristics of hydrodynamic journal bearing.Journal of lubrication technology,1979,101(4): 129-139
    [99] 方跃法.滑动轴承动力学系数的实验测试.润滑与密封,1996,(4):56-59
    [100] 宋强,孙逢春,马金奎.滑动轴承油膜参数识别及稳定性研究综述.润滑与密封,2002,(4):40-43
    [101] 杨连生.内燃机设计.北京:高等教育出版社,1981
    [102] 郑启福.内燃机动力学.北京:国防工业出版社,1991
    [103]v渤仲,陈之炎,应启光.内燃机轴系扭转振动.北京:国防工业出版社,1984
    [104] 陈之言,骆振黄,熊四昌.船舶推进轴系回旋振动计算方法研究.中国造船,1988(3):33-43
    [105] 戴莉娅,张志华,孙大庆.船舶推进轴系纵\横\扭耦合振动传递矩阵法的研究.中国造船,1989(4):98-106
    [106] 付鲁华,吕兴才,张寅豹.内燃机曲轴振动研究的内容和方法.拖拉机与农用运输车.2004,(4):5-8
    [107] 吕兴才,舒歌群,沈鸿斌.汽车发动机曲轴纵向振动的研究.汽车工程,2001,23(5):332-336
    [108] 雷宣扬,宋希庚,薛冬新.内燃机曲轴的三维振动模拟——基于Timoshenko梁单元.内燃机工程,2002,23(6):41-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700