水平循环及偏心荷载作用下群桩性状模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近海工程项目通常体型巨大、结构高耸,其下部基础除了要承担上部结构的自重荷载外,还长期受到风、波浪、水流等水平循环荷载的作用。群桩基础在该循环荷载作用下不仅容易产生累积变形,极端条件下甚至可能发生破坏。另一方面,大型结构在承受水平荷载时,由于荷载作用方向的随机性,传递至下部群桩基础的荷载在某些情况下还可能存在一定的偏心距。这意味着基础将同时承受水平和扭转荷载的作用,从而产生复杂的受力和变形响应。目前人们对群桩基础在水平循环及偏心荷载作用下承载性状的认识存在很多的不足,因此有必要结合近海工程的特点对上述问题展开系统深入的研究。
     本文通过1g大比尺模型试验以及离心机模型试验,分别研究了高承台群桩在水平循环及偏心荷载作用下的受荷性状。本文开展的主要工作及相应的研究成果如下:
     (1)采用钢管及混凝土分别设计并制作了大比尺的单桩及群桩模型,利用浙江大学大型土工物理模型试验系统开展了一系列加载试验,对水平循环及偏心等复杂荷载条件下的群桩受力和变形性状进行了系统的研究。全部模型试验包括:1×2钢管群桩水平偏心加载试验、2×2混凝土群桩水平偏心加载破坏试验、3×3钢管群桩水平循环加载试验,以及相关的单桩加载试验。
     (2)基于3×3钢管群桩水平循环加载试验,分析讨论了群桩水平刚度、基桩内力及荷载分配等响应随荷载循环的变化规律,并引入了循环效应系数以评估循环荷载对桩基水平承载性状的影响。研究结果表明,桩基的水平刚度随荷载循环次数的增加而减小,且先期循环加载历史会影响桩基后期的水平加载刚度;各级循环加载中,单桩及群桩的桩头峰值荷载随循环次数增加依次表现出稳定型、发展型和破坏型等三种不同的衰减形态,反映了桩周土体由弹性到塑性再到破坏的发展过程;群桩中各排基桩分担的荷载比例随着循环次数增加不断变化,其中前排桩分担的荷载逐渐增大;由于承台的约束作用,基桩轴向循环拉压受荷,导致群桩伴随水平循环加载过程产生严重沉降;荷载循环效应对群桩水平受荷性状的影响要比单桩大得多。
     (3)基于1×2钢管群桩水平偏心加载试验,分析了群桩的整体变形以及基桩内力等响应,并通过ABAQUS有限元模拟,讨论了不同偏心距大小及基桩布置形式对群桩水平偏心受荷性状的影响。试验结果表明,水平偏心荷载下群桩中各基桩的内力存在较大的区别,离加载点近的基桩承担的荷载更大;受水平与扭转荷载耦合效应影响,群桩中基桩的抗扭承载力较单桩显著提高;基桩桩头扭矩及水平剪力共同抵抗水平荷载偏心引起的附加扭矩,且基桩剪力对抵抗群桩扭转的贡献随荷载的增加不断增大。数值计算结果显示,水平荷载偏心距对群桩整体变形的影响相对较小,但对基桩的内力影响较大;基桩布置形式显著影响群桩的水平和抗倾覆刚度,但对群桩的整体扭转响应影响较小。
     (4)基于2×2混凝土群桩水平偏心加载破坏试验,揭示了群桩的渐进破坏过程,配合数值分析研究了各基桩的内力随加载的变化规律,并对混凝土群桩在水平偏心荷载下的破坏过程及机理进行了总结。研究结果表明,较高的加载高度、上部结构的自重以及桩身混凝土的开裂等因素加剧了群桩在水平偏心荷载下的倾覆破坏;群桩在加载初始阶段基本处于弹性状态,各基桩的水平刚度较大;当荷载超过一定的临界值后混凝土基桩先后出现开裂,群桩刚度随之降低,变形相应增大;上部结构自重荷载引发的P-△效应使前排基桩承受的轴向荷载迅速增加,最终前排角桩出现轴向偏压破坏,群桩及其上部结构随之发生整体倾覆。
     (5)利用浙江大学ZJU-400土工离心机,开展了砂土中群桩承受水平及偏心荷载的系列模型试验,着重对比研究了直桩群桩与斜桩群桩在不同荷载条件下的变形及承载特性。试验结果表明,斜桩群桩的水平及扭转承载力均显著大于直桩群桩;水平偏心荷载下斜桩群桩中各基桩的桩顶位移差异较直桩群桩更大;斜桩群桩通过基桩轴向受荷可以更有效地抵抗水平荷载。数值计算结果表明,基桩斜度对群桩水平承载性状的影响较大,群桩水平刚度随基桩斜度的增加而增大。
     (6)提出了考虑多向荷载共同作用的群桩分析模型;在刚性承台的假设下推导了群桩整体刚度矩阵的表达式;同时考虑不同方向的群桩效应以及基桩各向荷载之间的耦合效应影响,讨论归纳了基桩各向刚度的计算确定方法;总结了多向荷载共同作用下群桩分析的一般流程,并给出了相应的分析实例。
The foundations of large-scale offshore structures are constantly subjected to cyclic lateral loads with considerable magnitude during their service lives, which induced by winds, waves, currents, etc. They are likely to produce accumulated deformation under such load conditions, or even be damaged in extreme cases. On the other hand, owing to the stochastic directions of loads or the asymmetric shape of superstructures, significant eccentric lateral loads would also be transferred to the foundations probably. Both the lateral cyclic and eccentric loads would give rise to the complicated responses of pile group foundations, which have not been understood very well at present. Hence, it is of great theoretical and practical significance to conduct systematic researches on this issue, combined with the specific features of offshore engineering.
     Some different methods, such as1g large-scale model test, centrifuge model test and finite element numerical simulation, are adopt in this thesis to investigate the behavior of pile group with elevated cap subjected to lateral cyclic and eccentric loads, respectively. The main research works and results are as follows:
     (1) A series of large-scale model tests on single piles and pile groups were performed in saturated silts to investigate their behaviors under lateral cyclic and eccentric loads. The designs, as well as the procedures of these tests were detailed, which included the eccentric lateral loading test on1×2steel-pipe pile group, the eccentric lateral loading destructive test on2×2reinforced concrete pile group, the cyclic lateral loading test on3×3steel-pipe pile group and some other relevant single pile tests.
     (2) Based on the3×3steel-pipe pile group test, the lateral stiffness of the pile group, the internal forces and the load distributions of individual piles were discussed. Besides, a new empirical coefficient was introduced to evaluate the cyclic loading effect on the pile responses. The test results reveal that the lateral stiffness of pile reduces with the increasing number of loading cycles, and would be significantly affected by the previous loading history. The peak lateral load at pile head decreases with loading cycles in stable, developing, and failure pattern, respectively, which reflects the developing process of the soil around piles from elastic stage to plastic and failure stages. The lateral loads carried by each pile row constantly vary with cyclic loading and the leading pile row will undertake more and more loads. The pile group settles significantly in the test due to the cyclic lateral loading, as well as the strong constraint between the individual piles and the cap. The cyclic loading effect has a far greater impact on the responses of pile group than single pile.
     (3) Based on the1×2steel-pipe pile group test, the overall deformation of the pile group under eccentric lateral loads and the internal forces of individual piles were discussed. ABAQUS finite element simulations were also conducted to investigate the influences of the load eccentricity, as well as the layout of individual piles on the behavior of pile group. It is found that the internal forces of individual piles are quite different with each other within the group, and the pile closer to the loading point generally undertakes more shear force and torque. The ultimate torsional resistances of individual piles are apparently larger than the torsionally loaded single pile due to the deflection-torsion coupling effect. The torque applied on the pile group is shared by the torsional resistances and the shear forces of individual piles. With the increase of applied load, the contribution provided by shear forces gradually increases. The results of the numerical calculation show that, the load eccentricity would affect the internal forces of individual piles, rather than the overall deformation of pile group. However, the layout of individual piles would significantly influence the lateral stiffness of pile group.
     (4) Based on the2×2reinforced concrete pile group test, the progressive failure process of the pile group was described. The failure mechanism of overturning was also summarized by conducting numerical simulation. It could be concluded that the high altitude of loading point, the remarkable self-weight of superstructure and the cracking of pile shaft concrete together aggravate the overturning failure of pile group. The concrete pile group basically remains elastic during the initial loading stage, when the stiffnesses of individual piles are relatively large. Once the applied load exceeds a certain threshold, the pile shaft concrete begins to crack successively, which simultaneously reduces the stiffnesses of piles and increases the lateral deformation. The P-△effect induced by the self-weight of superstructure then gives rise to the rapid increasement of axial forces within the individual piles in the leading row, and finally leads to its eccentric compression failure, as well as the overturning of the structure.
     (5) A series of centrifuge model tests were conducted in sand to investigate the behavior of pile group subjected to lateral and eccentric lateral loads. The different responses of plumb and battered pile group were compared in detail. The results reveal that the lateral and torsional bearing capacities of battered pile group are much higher than those of plumb pile group. Under the eccentric lateral load, the differences between the displacements of individual piles within battered pile group are larger than those in plumb pile group. The battered pile group could more effectively resist lateral load than plumb pile group by taking full advantage of the axial capacity of individual battered piles. Numerical analysis shows that the lateral capacity of battered pile group would obviously increase with the increment of pile inclination.
     (6) Under the assumption of rigid cap, an analysis model of elevated-cap pile group subjected to multidirectional loads was proposed. A variety of different pile group effects and load coupling effects were summarized, as well as the corresponding computing methods. These effects should be carefully considered to determine the stiffnesses of individual piles in different directions. The general analysis process of pile group under multidirectional loads was also briefly summarized.
引文
Achmus M, Thieken K. On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading[J]. Acta Geotechnica,2010,5(3):199-210.
    AI-Douri R H, Poulos H G Predicted and observed cyclic performance of piles in calcareous sand[J]. Journal of Geotechnical Engineering,1995,121(1):1-16.
    American Petroleum Institute (API). Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design (RP 2A-WSD)[S]. American Petroleum Institute, Washington, D.C.,2000.
    American Society for Testing and Materials (ASTM). Standard practice for classification of soils for engineering purposes (unified soil classification system) (D2487-10)[S]. ASTM International,2010.
    American Society for Testing and Materials (ASTM). Standard test methods for deep foundations under static axial compressive load (D1143/D1143M-07)[S]. ASTM International,2007.
    Awoshika K. Analysis of foundation with widely spaced piles[D]. Ph.D. thesis, University of Texas, Austin, Tex,1971.
    Basack S, Purkayastha R D. Behaviour of single pile under lateral cyclic load in marine clay[J]. Asian Journal of Civil Engineering (Building and Housing),2007,8(4):443-458
    Bizaliele M M. Torsional cyclic loading response of a single pile in sand[D]. Dissertation, Schriftenreihe des Instituts fur Grundbau, Ruhr University, Bohum, Germany,1992.
    Broms B. Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division,1964,90(3):123-156.
    Broms B. Lateral resistance of piles in cohesive soils [J]. Journal of the Soil Mechanics and Foundations Division,1964,90(2):27-64.
    Brown D A, Morrison C, Reese L C. Lateral load behavior of pile group in sand[J]. Journal of Geotechnical Engineering,1988,114(11):1261-1277.
    Chan S F, Hanna T H. Repeated loading on single piles in sand[J]. Journal of Geotechnical Engineering Division,1980,106(2):171-188.
    Chen J Y, Gilbert R B, Puskar F J, Verret S. Case study of offshore pile system failure in hurricane Ike[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013, 139(10):1699-1708.
    Chow Y K. Torsional response of piles in nonhomogeneous soil [J]. Journal of Geotechnical Engineering,1985,111(7):942-947.
    Clancy P, Randolph M F. Simple design tools for piled raft foundations[J]. Geotechnique,1996, 46(2):313-328.
    Das B M, Raghu D, Seeley G R. Uplift Capacity of Model Piles Under Oblique Loads[J]. Journal of the Geotechnical Engineering Division,1976,102(9):1009-1013.
    Davisson M T, Salley J R. Model study of laterally loaded piles[J]. Journal of the Soil Mechanics and Foundations Division,1970,96(5):1605-1627.
    Dutt R N, O'Neill M W. Torsional behavior of model piles in sand[C]. Geotechnical practices in offshore engineering, ASCE, New York,1983,315-334.
    Feagin L B. Lateral pile-loading tests [J].Transactions,1937,102:236-254.
    Gandhi S R, Suresh P K, Raju V S. Lateral load tests on large diameter bored pile and analysis[C]. Proceedings of Indian Geotechnical Conference, Allahabad,1988:373-377'.
    Gavin K G, O'Kelly B C. Effect of friction fatigue on pile capacity in dense sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(1):63-71.
    Georgiads M, Saflekou S. Piles under axial and torsional loads[J]. Computers and Geotechincs, 1990,9(4):291-305.
    Georgiads M. Interaction between torsional and axial pile response[J]. International journal for numerical and analytical methods in Geomechanics,1987,11:646-650.
    Guo W D, Randolph M F. Torsional piles in non-homogeneous media[J]. Computers and geotechnics,1996,19(4):265-287.
    Hibbitt, Karlsson & Sorensen Inc. ABAQUS user's and theory manuals[M], Providence, Rhode Island,2004
    Horikoshi K, Randolph M F. Estimation of overall settlement of piled rafts[J]. Soils and Foundations,1999,32(2):59-68.
    Hu Z H, McVay M, Bloomquist D, Herrera R, Lai P. Influence of torque on lateral capacity of drilled shafts in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,132(1):456-464.
    Huang A, Hsueh C K, O'Neill M W, et al. Effects of construction on laterally loaded pile groups[J]. Journal of Geotechnical Engineering,2001,127(5):385-397.
    Jia G W, Zhan T L T, Chen Y M, Fredlund D G Performance of a large-scale slope model subjected to rising and lowering water levels[J]. Engineering Geology,2009,106(2): 92-103.
    Kong L G, Jiang L H, Zhang L M, Chen Y M. Effect of pile-head rotational restraint on response of torsionally loaded pile groups[C]. Proceedings of the 12th International Offshore and Polar Engineering Conference, Beijing,2010,602-607.
    Kong L G, Zhang L M. Centrifuge modeling of torsionally loaded pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(11):1374-1384.
    Kong L G, Zhang L M. Experimental study of interaction and coupling effects in pile groups subjected to torsion[J]. Canadian Geotechnical Journal,2008,45(7):1006-1017.
    Kong L G, Zhang L M. Nonlinear analysis of torsionally loaded pile groups[J]. Soils and foundations,2009,49(2):275-286.
    Kotthaus M, Grundhoff T, Jessberger H L. Single piles and pile rows subjected to static and dynamic lateral load[C]. Proceedings of Centrifuge'94, A.A. Balkema, Rotterdam, the Netherlands,1994,497-502.
    Kubo K. Experimental study of the behaviour of laterally loaded piles[C]. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada,1965, Vol.2:275-279.
    Laue J, Sonntag T. Pile subjected to torsion[C]. Proceedings of Centrifuge'98, A.A. Balkema, Rotterdam, the Netherlands,1998,187-192.
    Lee C Y, Poulos H G. Tests on model instrumented grouted piles in offshore calcareous soil[J]. Journal of Geotechnical Engineering,1991,117(11):1738-1753.
    Lee C Y. Discrete layer analysis of axially loaded piles and pile groups[J]. Computers and Geotechnics,1991,11:295-313.
    Lee C Y. Settlement of pile group-practical approach[J]. Journal of Geotechnical Engineering, 1993,119(9):1449-1461.
    Lin S S, Liao J C. Permanent strains of piles in sand due to cyclic lateral loads[J], Journal of Geotechnical and Geoenvironmental Engineering.1999,125 (9):798-802.
    Little R L, Briaud J-L. Full scale cyclic lateral load tests on six single piles in sand[R]. Miscellaneous Paper GL-88-27, Geoteehnical Division, Texas A&M University, College Station, Tex,1988.
    Long J H, Vanneste G. Effects of cyclic lateral loads on piles in sand[J]. Journal of Geotechnical Engineering,1994,120(1):225-244.
    Matlock H, Foo S H C, Bryant L M. Simulation of lateral pile behavior under earthquake motion[C]. Proceedings of ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, June,1978,600-619.
    Matlock H. Correlations for design of laterally loaded piles in soft clay[J]. Proceedings of the II Annual Offshore Technology Conference, Houston, Texas,1970:577-594.
    Matthew W J. Full-scale lateral load test of a 3x5 pile group in sand[D]. Master Thesis, Brigham Young University,2005.
    McVay M C, Hays C, Hoit M. Development of a coupled bridge superstructure-foundation finite element code[R]. Final report B-8415, Department of Civil Engineering, University of Florida, Gainesville, Fla.,1996.
    McVay M, Bloomquist D, Vanderlinde D, Clause J. Centrifuge modeling of laterally loaded pile groups in sands[J]. Geotechnical Testing Journal, ASTM,1994,17(2):129-137.
    McVay M, Casper R, Shang T I. Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing[J]. Journal of Geotechnical Engineering,1995,121(5):436-441.
    McVay M, Zhang L, Molnit T, Lai P. Centrifuge testing of large laterally loaded pile groups in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(10): 1016-1026.
    Meimon Y, Baguelin F, Jezequel J F. Pile group behaviour under long time lateral monotonic and cyclic loading[C]. Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Inst. Francais du Petrole, Nantes, France,1986,285-302.
    Meyerhof G G, Yalcin A S. Behaviour of flexible batter piles under inclined loads in layered soil[J]. Canadian Geotechnical Journal,1993,30:247-256.
    Meyerhof G G. Behaviour of pile foundations under special loading conditions:1994 R.M. Hardy keynote address[J]. Canadian Geotechnical Journal,1995,32:204-222.
    Meyerhof G G. Compaction of sands and bearing capacity of piles [J]. Journal of the Soil Mechanics and Foundations Division,1960,86(1):189-207.
    Mokwa R L, Duncan J M. Rotational restraint of pile caps during lateral loading[J]. Journal of geotechnical and geoenvironmental engineering,2003,129(9):829-837.
    Moss R E S, Caliendo J A, Anderson L R. Investigation of a cyclic laterally loaded model pile group[J]. Soil Dynamics and Earthquake Engineering,1998,17 (7/8):519-523.
    O'Neill M W, Hawkins R A, Mahar L J. Load transfer mechanisms in piles and pile groups[J]. Journal of Geotechnical Engineering,1982,108(12):1605-1623.
    O'Neill M W, Murchinson J M. An evaluation of p-y relationships in sand[R]. Report prepared for American Petroleum Institute, Washington, D.C.1983.
    O'neill M W. Determination of the pile-head torque-twist relationship for a circular pile emmbedded in clay soil[D]. Master thesis, the University of Texas, Austin, Texas,1964.
    Patra N R, Pise P J. Model pile groups under oblique pullout loads-an investigation[J]. Geotechnical and Geological Engineering,2006,24(2):265-282.
    Poulos H G, Davis E H. Pile foundation analysis and design[M]. New York:John Wiley and Sons,1980.
    Poulos H G Approximate numerical analysis of pile-raft interaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(2):73-92.
    Poulos H G Settlement prediction for bored pile groups[C]. Proceedings of the 2nd International Geotechnical Seminar on Deep Foundations on Bored and Auger Piles,Ghent,1993, 103-117.
    Poulos H G Torsional response of piles [J]. Journal of Geotechnical and Geoenvironmental Engineering,1975,101(10):1019-1035.
    Prakash S. Behavior of pile groups subjected to lateral loads[D]. Doctoral dissertation, University of Illinois at Urbana-Champaign,1962.
    Rajashree S S, Sitharam T G Nonlinear finite-element modeling of batter piles under lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(7): 604-612.
    Randolph M F. Piles subjected to torsion[J]. Journal of Geotechnical Engineering, ASCE,1981, 107(8):1095-1111.
    Rao S N, Veeresh C. Influence of pile inclination on the lateral capacity of batter piles in clays[C]. Proceedings of the Fourth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Osaka, Japan,1994, 498-503.
    Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand[C]. Proceedings of the 6th Annual Offshore Technology Conference, Houston,1974,473-485.
    Reese L C, Matlock H. Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth[C].8th Texas Conference on Soil Mechanics and Foundation Engineering, Sep.14,1956.
    Reese L C, Wang S T, Vasquez L. GROUP 7.0 for Windows technical manual (Analysis of a group piles subjected to axial and lateral loading)[M]. Ensoft. Inc, Austin, Texas,2006.
    Rollins K M, Gerber T M, Lane J D, Ashford S A. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005a, 131(1):115-125.
    Rollins K M, Johnson S R, Petersen K T, Weaver T J. Static and dynamic lateral load behavior of pile groups based on full-scale testing[C].13th International Conference on Offshore and Polar Drilling, International Society for Offshore and Polar Engineering, Honolulu, Hawaii, USA,2003,506-513.
    Rollins K M, Lane J D, Gerber T M. Measured and computed lateral response of a pile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005b,131(1): 103-114.
    Rollins K M, Olsen K G, Jensen D H, Garrett B H, Olsen R J, Egbert J J. Pile spacing effects on lateral pile group behavior:analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006a,132(10):1272-1283.
    Rollins K M, Olsen R J, Egbert J J, Jensen D H, Olsen K G, Garrett B H. Pile spacing effects on lateral pile group behavior:load tests[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006b,132(10):1262-1271.
    Rollins K M, Peterson K T, Weaver T J. Lateral load behavior of fullscale pile group in clay[J]. Journal of Geotechnical Engineering,1998,124(6):468-478.
    Rosquoet F, Thorel L, Gamier J, et al. Lateral cyclic loading of sand-installed piles[J]. Soil and foundation,2007,47(5):821-832.
    Sastry V, Meyerhof G G. Behaviour of flexible piles in layered clays under eccentric and inclined loads[J]. Canadian Geotechnical Journal,1995,32(3):387-396.
    Shahrour I, Meimon Y. Analysis of behaviour of offshore piles under inclined loads[C]. Proceedings of the International Conference on Deep Foundations, Paris,1991:277-284.
    Shen W Y, Chow Y K, Yong K Y. A variational approach for the analysis of pile group-pile cap interaction[J]. Geotechnique,2000; 50(4):349-357.
    Shen W Y, Chow Y K, Yong K Y. A variational solution for vertically loaded pile groups in an elastic half-space[J]. Geotechnique,1999,49(2):99-213.
    Singh A, Prakash S. Model pile group subjected to cyclic lateral load[J]. Soil and foundation, 1971,11(2):51-60.
    Stoll U W. Torque shear test of cylindrical friction piles[J]. Civil Engineering,1972,42(4): 63-64.
    Swane I C, Poulos H G. A theoretical study of the cyclic shakedown of laterally loaded piles[R]. Research Report No. R415, University of Sydney,1982.
    Taylor R N. Geotechnical centrifuge technology[M]. Blackie Academic & Professional,1995.
    Vesic A S. Experiments with instrumented pile groups in sand[C]. Proceedings of the International Conference on Performance of deep foundations, American,1969,177-222.
    Vesic A. Design of pile foundations [R]. National cooperative highway research program synthesis of highway practice, Report No.42, Transportation Research Board, Washington, D.C.,1977.
    Vickery B J. Wind effects on building and structures-critical unsolved problems[C]. Proceeding of IAHR/IUTAM practical experiences with flow-induced vibrations symposium, Karlsruhe, Germany,1979,823-828.
    Walsh J M. Full-scale lateral load test of a 3x5 pile group in sand[D]. Master thesis, Brigham Young University,2005.
    White D J, Lehane B M. Friction fatigue on displacement piles in sand[J]. Geotechnique,2004, 54(10):645-658.
    Zhang L M, Kong L G. Centrifuge modeling of torsional response of piles in sand[J]. Canadian Geotechnical Journal,2006,43(5):500-515.
    Zhang L M, McVay M C, Han S J, Lai P W, Gardner R. Effects of dead loads on the lateral response of battered pile groups[J]. Canadian Geotechnical Journal,2002,39:561-575.
    Zhang L M, McVay M C, Lai P W. Centrifuge modeling of laterally loaded single battered piles in sands[J]. Canadian Geotechnical Journal,1999,36:1074-1084.
    包承纲.我国离心模拟试验技术的现状与展望[J].岩土工程学报,1991,13(6):92-97.
    陈仁朋,王书行,孔令刚,等.不同水平偏心距下群桩内力变化规律试验研究[J].岩石力学与工程学报,2011,30(3):603-609.
    陈云敏,陈仁朋,詹良通,等.岩土工程的多尺度试验[C].第25届全国土工测试学术研讨会论文集,杭州:浙江大学出版社,2008:43-56.
    陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价[J].岩土工程学报.2011(12):1887-1894.
    费康,张建伟ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2009.
    韩超.强震作用下圆形隧道响应及设计方法研究[D].浙江大学博士学位论文,2011.
    贺炜,陈仁朋,孔令刚,等.群桩受扭工作性状及非线性计算理论研究[J].岩土工程学报,2010,32(5):751-756.
    姜丽红.不同桩头约束及水平偏心荷载下桩基础响应分析[D],浙江大学硕士学位论文,2012.
    孔令刚,张革强,陈仁朋,等.土体含水量对扩底桩上拔承载力影响研究[J].岩石力学与工程学报,2011,30(s2):3755-3762.
    孔令刚,张利民,吕微露.扭转群桩中的阴影效应[J].岩土工程学报,2009,31(11):1697-1702.
    王书行.水平偏心荷载下群桩受荷性状模型试验及设计方法研究[D],浙江大学硕士学位论文,2011.
    云天铨,云飞,张桂标.刚性斜桩顶部受任意力的位移的线载荷积分方程法的分析[J].应用力学学报,1992,9(4):114-123.
    张革强.非饱和土中输电铁塔扩底桩上拔特性模型试验及理论研究[D],浙江大学硕士学位论文,2010.
    郑中.多向荷载下高承台群桩基础分析方法及应用研究[D].浙江大学硕士学位论文,2013.
    中华人民共和国国家标准.GB/T50123-1999土工试验方法标准[S].北京:中国计划出版社,1999.
    中华人民共和国行业标准编写组.JGJ 106-2003建筑基桩检测技术规范[S].北京:中国建筑工业出版社,2003.
    中华人民共和国行业标准编写组.JGJ 94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008.
    中华人民共和国行业标准编写组.JTG D63-2007公路桥涵地基与基础设计规范[S].北京:人民交通出版社,2007.
    中华人民共和国行业标准编写组.JTJ 248-2001港口工程灌注桩设计与施工规程[S].北京:人民交通出版社,2001.
    中华人民共和国行业标准编写组.JTS 167-4-2012港口工程桩基规范[S].北京:人民交通出版社,2012.
    庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700