中低纬电离层模型及其异常现象相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离层模型研究对短波通讯电路设计及探究电离层物理过程有着重要意义。论文建立了中低纬电离层经验模型和中纬电离层物理模型,并利用电离层物理模型进行电离层暴时变化数值模拟及地震电离层异常扰动分析。论文在分析电离层主要控制因素及电离层结构变化的基础上,获得的主要成果如下:
     第一、太阳和地磁指数周期特征EMD分析及长期预测研究。利用经验模态分解方法(EMD)对太阳黑子数R和地磁活动指数(Ap、aa和Dst)进行周期性分解,分析了不同时间尺度分量的物理形成机理及太阳黑子数与地磁指数11年周期分量之间的关系。在此基础上,利用自回归方法(AR)进行太阳黑子数R和地磁指数Ap长期预测研究,获得提前一个太阳周11年的R和Ap的预测值。
     第二、电离层foF2月中值太阳循环变化及单站模型。利用遍及我国中低纬地区的9个电离层观测站1977-1997年约20年的foF2月中值数据,考虑太阳活动和地磁活动对电离层foF2月中值的非线性影响,建立了单站foF2月中值经验模型,对模型误差进行了详细分析,并将其与国际参考电离层IRI2001进行了比较,精度有显著提高。
     第三、强地磁扰动条件下foF2与月中值偏差模型及暴时短期预报。利用时间累积地磁指数ap(τ),建立了强地磁扰动条件下电离层foF2与月中值偏差经验模型。由于地磁指数与电离层暴时变化相关性不高,使得该经验模型精度较低。作者借鉴气象预报中常用的Kalman滤波方法对模型的系数进行实时修正,提高预报精度,并对长春站1986-1995年近一个太阳周foF2数据进行提前一小时预报试验。该预报方法与包含暴时修正模型STORM的国际参考电离层IRI2001进行了比较,展示了Kalman滤波方法实时修正模型系数的能力和良好的应用前景。
     第四、建立了中纬电离层物理模型并进行暴时电离层数值模拟。模型比较周密地考虑了中纬度地区电离层的主要动力学过程和光化学过程,通过求解离子的连续性方程和动量方程,给出了O+、O2+、NO+、N2+、N+、He+六种离子和电子密度剖面。对宁静背景电离层条件下北京站进行了数值模拟。利用该模型模拟了磁暴期间热层大气温度、成分和中性风扰动对电离层电子密度剖面结构,特别是对峰值密度和高度变化的影响。
     第五、地震电离层异常扰动研究。简要地介绍了地震电离层异常扰动时空分布特点,并利用重庆、昆明、兰州和拉萨站foF2数据,对512汶川地震前电离层扰动进行了分析。利用已建立的电离层物理模型,借助电场异常假说对地震前电离层电子密度午后异常变化进行了数值模拟,并进行了详细的讨论。
The investigation on ionospheric model is of great significance for design of communication ciruit and understanding of ionospheric mechanisms. The aim of this dissertation is to establish empirical and physical models to describe the variation of mid-latitude ionosphere, as well as low-latitudes with empirical models. Based on the physical model, the storm-time variation is simulated and pre-earthquake anomalous variation is investigated preliminarily. As basis, a brief review is given on mainly sources affecting on ionosphere and corresponding variation of ionosphere, firstly. The main topics and results are as follows:
     First, extracting of periodic components and long-term prediction of the indices of solar activity and geomagnetic activity are investigated by use of EMD (empirical mode decomposition) and AR (auto-regressive model). With EMD method, sunspot number R and geomagnetic indices, i.e. Ap, aa and Dst, are decomposed and physical mechanisms of their periodic components are discussed. Furthermore, EMD and AR are applied to the long-term prediction of sunspot number and the lead time reaches up to 11 years, which gives a possibility to realize the long-term prediction of ionosphere with ionospheric models.
     Second, hourly values of the critical frequency of the ionospheric F region, foF2, observed at the nine ionosonde stations in China about two solar cycles have been used to investigate the dependence of the monthly median foF2 on solar activity and geomagnetic activity, and to construct single-station model (SSM) using Fourier expansion. The results of the present analysis show that there is a significant nonlinear relationship between monthly median foF2 and sunspot number R especially at daytime in each month and nighttime in summer and the nonlinear relationship are more evident as the latitude decreases. Furthermore, introducing geomagnetic index Ap further improves the description of variation of monthly median foF2, and the standard deviations decrease also dependently on time and month. Based on the nonlinear relationships, we develop a new SSM for the each station and the SSMs are compared with IRI, which show a much better agreement with observation.
     Third, with the time weighted accumulation index ap(τ), an empirical storm-time model of the relative deviation of foF2 from its monthly median is established. Because of low correlation between variation of foF2 and geomagnetic indices, the model has low accuracy. The method used widely in weather, hydrography, et al., Kalman filter, is used to update the coefficients of the empirical model and expected to make better improvement. The proposed method is tested by the data of hourly values from 1986 to 1995 over Changchun station. Simultaneously the method is compared with IRI2001 including the STORM model for several disturbed events, which shows this method has a powerful ability of updating the model coefficients and prospect of application.
     Fourth, one-dimensional time-dependent theoretical ionospheric model for mid-latitude is established with which variation of storm-time ionosphere are discussed. Thoroughly taking the mainly kinetic and photochemical process into account, the model can give six ionic species, O+, O2+, NO+, N2+, N+, He+ and electron through solution of continuity and momentum equations. The foF2 over Beijing station is simulated in undisturbed condition. Moreover, the variation of ionospheric density profile during geomagnetic storms, considering the disturbances of the thermospheric temperature, composition and neutral wind are discussed in detail.
     Fifth, ionospheric anomalous disturbances of earthquakes are investigated. The characteristics of ionospheric perturbations on temporal and spatial distribution are represented briefly. Then the hourly ionospheric data foF2 are analyzed before Wenchuan great earthquake over four ionospheric observatories Kunming, Chongqing, Lhasa and Lanzhou. The possible mechanisms that could be responsible for the observed pre-earthquake ionospheric anomalies are discussed with the physical model of mid-latitude ionosphere and the hypothesis of abnormal vertical atmospheric electric fields.
引文
[1]王椿年,尹元昭译,《电离层波理论》,科学出版社, 1983.
    [2]吴健,索玉成,权坤海,地磁活动对电离层foF2月中值的影响与国际参考电离层误差,空间科学学报, 1998, 18(1): 32-38.
    [3] Pulinets S. A., Legen’ka A. D., Gaivoronskaya, T. V. et al., Main phenomen- ological features of ionospheric precursors of strong earthquakes, J. Atmos. Solar-Terr. Phys., 2003, 65(16-18): 1337-1347.
    [4] Velinov P. I., Tonev P. T., Electric currents from thunderstorms to the ionosphere during a solar cycle: quasi-static modeling of the coupling mechanism, Adv. Space Res., 2008, 42(9): 1569-1575.
    [5]肖赛冠,郝永强,张东和等,电离层对台风响应的全过程的特例研究,地球物理学报, 2006, 49(3): 623-628.
    [6] Prabhakaran Nayar S. R., Radhika V. N., Rwvathy K., et al., Wavelet analysis of solar, solar wind and geomagnetic parameters, Solar Phys., 2002, 208(2): 359-373.
    [7] Fraser-Smith A. C., Spectrum of the geomagnetic activity index Ap, J. Geophys. Res., 1972, 77: 4209-4220.
    [8] Currie R.G., Geomagnetic line spectra-2 to 70 years, Astrophys. Space Sci., 1973, 21(2): 245-238.
    [9] Delouis H. and Mayaud P. N., Spectral analysis of the geomagnetic activity index aa over a 103-year interval, J. Geophys. Res., 1975, 80(34): 4681-4688.
    [10] Courtillot V., Le Mouel J. L. and Mayaud P. N., Maximum entropy spectral analysis of the geomagnetic activity index aa over a 107-year interval, J. Geophys. Res., 1977, 82(19): 2641-2649.
    [11] Fairbridge R W. and Hallaire-Marcel C., An 8000-yr paleo-climatic record of the Double-Hale 45-yr solar cycle, Nature, 1977, 268: 413-416.
    [12] Donnelly R. F., Heath D. F., Lean J., et al., Differences in the temporal variations of solar UV flux, 10.7-cm solar radio flux, sunspot number, and Ca-K plage data caused by solar rotation and active region evolution, J. Geophys. Res., 1983, 88(A12): 9883-9888.
    [13] Rieger E., Share G. H., Forrest D. J., et al., A 154-day periodicity in the occurrence of hard solar flares, Nature, 1984, 312(5995): 623-625.
    [14] Lean, J. L. and Brueckner G. E., Intermediate-term solar periodicities: 100-500days, Astrophys. J., 1989, 337: 568-578.
    [15] Apostolove E. M., Quasi-biannual oscillation in sunspot activity, Bulletin Astronomique Institut Czechoslovakia, 1985, 36: 97-102.
    [16] Hudson H. S., Solar variability and oscillations, Rev. Geophys., 1987, 25(3): 651-662.
    [17] Ochadlick A. R. and Kritikos H., Variation in the period of the sunspot cycle, Geophys. Res. Lett., 1993, 20(14): 1471-1474.
    [18] Fligge M., Solanki S. K. and Beer J., Determination of solar cycle length variations using the continuous wavelet transform, Astron. Astrophys., 1999, 346(1): 313- 321.
    [19] Le G. M. and Wang J. L., Wave analysis of several important periodic properties in the relative sunspot numbers, Chin. J. Astron. Astrophys. 2003, 3(5): 391-394.
    [20] Yin Z. Q., Han Y. B., Ma L. H., et al., Short-term period variation of relative sunspot numbers, Chin. J. Astron. Astrophys., 2007, 7(6): 823-830.
    [21]孙燕,姜占才,太阳黑子活动周期特征的小波自相关分析,计算机应用与软件, 2008, 25(6): 245-247.
    [22] Cohen L., Time-frequency analysis, Englewood Cliffs, NJ: Prentice Hall, 1995.
    [23] Huang N. E., The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis, Prog. Roy. Soc. Lond., 1998, 454(2): 903-995.
    [24] Chen C. H. and Li C. P., Surface wave dispersion measurements using Hilbert-Huang transform, Terr. Atmo. Oce. Sci., 2002, 13(2):171-184.
    [25] Coughlin K. T., and Tung K. K., 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method, Adv. Space. Res., 2003, 34(2): 323-329.
    [26] Yule G. U., On a method of investigating periodicities in disturbed series, Phil. Trans. Roy. Soc. Ser. 1927, 226: 267-298.
    [27] Macpherson K., Neural network computation techniques applied to solar activity prediction, Adv. Space Res., 1993, 13(9): 341-349.
    [28] Conway A. J., Macpherson K. P., Blackaw G., et al., A neural network prediction of solar cycle 23, J. Geophys. Res., 1998, 103(A12): 29733-29742.
    [29]丁刚,钟诗胜,基于时变阈值过程神经网络的太阳黑子数预测,物理学报, 2007, 59(2): 1224-1230.
    [30] Han Y B. and Wang J. L., Predicting monthly sunspot numbers of solar cycle 23 by the method of‘similar cycles’, Chin. Astron. Astrophys., 1999, 23(2):139-142.
    [31] Du Z. L., Wang H. N. and Zhang L. Y., A running average method for predicting the size and length of a solar cycle, Chin. J. Astron. Astrophys., 2008, 8 (4): 477-488.
    [32] Echer E., Rigozo N. R., Nordemann D. R., et al., Prediction of solar activity on the basis of spectral characteristics of sunspot number, Ann. Geophys., 2004, 22(6): 2239-2243.
    [33] Tsirulnik L. B., Kuznetsova T. V. and Oraevsky V. N., Forecasting the 23th and 24th solar cycles on the basis of MGM spectrum, Adv. Space Res., 1997, 20(12): 2369-2372.
    [34] Ali Gholipour, Caro Lucas, Babak N. Arrabi, et al., Solar activity forecast: spectral analysis and neurofuzzy prediction, J. Atmos. Solar-Terr. Phys., 2005, 67(2): 595-603.
    [35] Masoud Mirmomenia, Masoud Shafieec, Caro Lucasa, et al., Introducing a new learning method for fuzzy descriptor systems with the aid of spectral analysis to forecast solar activity, J. Atmos. Solar-Terr. Phys., 2006, 68(18): 2061-2074.
    [36] Ohl A. I., Forecast of sunspot maximum number of cycle 20, Soln. Dunnye, 1966, 12: 84-85.
    [37] Brown G. M., The peak of Solar Cycle 22: predictions in retrospect, Ann. Geophys., 1992, 10(7): 453-461.
    [38] Joselyn J. A., Panel achieves consensus prediction of solar cycle. Eos Transactions American Geophysical Union78, 1997, 211-112.
    [39] Dabas R. S., Sharma K., Das R. M., et al., A prediction of solar cycle 24 using a modified precursor, Solar Phys., 2008, 250(1):171-181.
    [40] Schatten K. H. and Sofia S., Forecast of an exceptionally large even numbered solar cycle, Geophys. Res. Lett., 1987, 14: 623-626.
    [41] Schatten K. H. and Pesnell W. D., An early solar dynamo prediction: cycle 23–cycle 22, Geophys. Res. Lett., 1993, 20: 2257-2278.
    [42] Schatten K. H., Myers D. J. and Sofia S., Solar activity forecast for solar cycle 23, Geophys. Res. Lett., 1996, 23(6): 605-608.
    [43] Dikpati M., Predicting cycle 24 using various dynamo-based tools, Ann. Geophys., 2008, 26(2): 259-267.
    [44] Kitiashvili I., Application of data assimilation method for predicting solar cycles, http://arxiv.org/PS_cache/arxiv/pdf/0807/0807.3284v2.pdf.
    [45] Baranovski A. L., Clette F. and Nollau V., Nonlinear solar cycle forecasting: theory and perspectives, Ann. Geophys., 2008, 26(2): 231-241.
    [46] Javaraiah J., North–south asymmetry in solar activity: predicting the amplitude of the next solar cycle, MNRAS, 2007, 377(1): 34-38.
    [47] Amata E., Pallocchia G., Consolini G., et al., Comparison between three algorithms for Dst predictions over the 2003–2005 period, J. Atmos. Solar-Terr. Phys., 2008, 70(2-4): 496-502.
    [48] Bilitza D., Ionospheric models for radiao propagation studies, in the review of Radio Science 1999-2002 edited by W. R. Stone, IEEE Press, Piscataway N J, 2002, 625-679.
    [49] Moraitis G., Kecic Z. and Cander L., Ionospheric modeling at single stations, Porc. of PRIME Workshop, Rome, 1991, 154-160.
    [50] Pancheva D. V. and Mukhtarov P. Y., A single-station spectral model of the monthly median F-region critical frequency, Ann. Geophysics, 1996, 39(4): 807-818.
    [51] Liu L. B., Wan W. X. and Ning B. Q., Statistical modeling of ionospheric foF2 over Wuhan, Radio Sci., 2004, 39: 2013, doi: 10.1029/2003RS003005.
    [52] Pancheva D. and Mukhtarov P. A., Single-station spectral model of the monthly median foF2 and M(3000) F2, Studia geoph. et geod., 1998, 42: 183-196.
    [53] Bilitza D., International reference ionosphere 2007: improvements and new parameters, Adv. Space Res., 2008, 42(4): 599-609.
    [54] De Franceschi G. and Desantis A., PASHA: regional long term predictions ionospheric parameters by ACHA, Ann. Geophysics, 1994, 37(2): 209-220.
    [55] Murtaza G., Iqbal S. and Ameen M. A., Comparing IRI and a regional model with ionosonde measurements in Pakistan, Adv. Space Res., 2008, 42: 682-690.
    [56] Blanch E., Arrazola D., Altadill D., et al., Improvement of IRI B0, B1 and D1 at mid-latitude using MARP, Adv. Space Res., 2007, 39(5): 701-710.
    [57] Altadill D., Arrazola D., Blanch E., et al., Solar activity variations of ionosonde measurements and modeling results, Adv. Space Res., 2008, 42(4): 610-616.
    [58] Kane R P., Solar cycle variation of foF2, J. Atmos. Terr. Phys., 1992, 54(9): 1201-1205.
    [59] Huang C. M., Some abnormalities in the variations of F2 layer critical frequency during the period of high solar activity of solar 8-19, J. Geophys. Res., 1960, 65: 897-906.
    [60] Kouris S. S. and Nissopoulos J. K., Variation of foF2 with solar activity, Adv. Space Res., 1994, 14(12): 163-166.
    [61] Xenos T. D., Kouris S. S. and Zolesi B., Assessment of the solar-cycle dependenceof foF2, Annali Geophys., 1996, 41(6):1157-1166.
    [62] Sethi N. K., Goel M. K. and Mahajan K. K., Solar cycle variations of foF2 from IGY to 1990, Ann. Geophys., 2002, 20: 1677-1685.
    [63] Sarma A., Madhu T., Paramita K., et al., Modeling of Indian foF2 data using analysis of variance, 34th COSPAR Scientific Assembly, 10-19 October, 2002 in Houton, USA, meeting abstract.
    [64] Afraimovich E. L., Perevalova N. P., Zhivetiev I. V., Relative amplitude of the total electron content variations depending on geomagnetic activity, Adv. Space Res., 2008, 42(7): 1231-1237.
    [65] Pancheva D. V., Mukhtarov P. J., Mitchell N. J., et al., Planetary wave coupling (5–6-day waves) in the low-latitude atmosphere–ionosphere system, J. Atoms. Solar-Terr. Phys., 2008, 70(1): 101-122.
    [66] Rao M. S. and Rao R. S., The hysteresis variation in F2 layer parameters, J. Atmos. Terr. Phys., 1969, 31: 1119-1125.
    [67]刘瑞源,刘顺林,徐中华等,自相关分析法在中国电离层短期预报中的应用,科学通报, 2005, 50: 2781-2785.
    [68] Fuller-Rowell T. J., Codrescu M. V. and Wilkinson P., Quantitative modeling of the ionospheric response to geomagnetic activity, Ann. Geophys., 2000, 18(7): 766 -781.
    [69] Romanova E. B., Tashchilin A V., Zherebtsov G. A., et al., Modeling of the seasonal effects of geomagnetic storms in the Eastern Asian ionosphere, Int. J. Geomagn. Aeron., 2006, 6, doi:10.29/2005GI000119.
    [70] Romanova E. B., Pirog O. M., Polekh N. M., et al., Modeling of ionospheric parameter variations in East Asia during the moderate geomagnetic disturbances, Adv. Space Res., 2008, 14(4): 569-578.
    [71] Lekshmi D. V., Balan N., Vaidyan V. K., et al., Response of the ionosphere to super geomagnetic storms: Observations and modeling, Adv. Space Res., 2008, 41(4): 548-555.
    [72] Kutiev I. and Muhtarov P., Empirical modeling of global ionospheric foF2 response to geomagnetic activity, J. Geophys. Res., 2003, 108(A1), 1021, doi: 10.1029 /2001JA009134.
    [73] Mikhailov A. V., Depuev V. H. and Depueva A. H., Short-term foF2 forecast: present day state of art, Space Weather, 2007, 169-184.
    [74] Kohnlein W. and Raitt W. J., Position of the midlatitude trough in the topside ionosphere as deduced from ESRO 4 observations, Planet. Space Sci., 1977, 25(5/6): 600-602.
    [75] Wrenn G. L., Time-weighted accumulation ap(τ) and Kp(τ), J. Geophys. Res., 1987, 92: 10125-10129.
    [76] Wrenn G. L. and Rodger A. S., Geomagnetic modification of the mid-latitude ionosphere: Toward a strategy for the improved forecasting of foF2, Radio Sci., 1989, 24: 99-111.
    [77] Perrone L., Franceschi G. D. and Gulyaeva, The time-weighted magnetic indices ap(τ), PC(τ), AE(τ) and their correlation to the southern high latitude ionosphere, Phys. Chem. Earth, 2001, 26(5): 331-334.
    [78] Perrone L., Pietrella M. and Zolesi B., A prediction model of foF2 over periods of severe geomagnetic activity, Adv. Space Res., 2007, 39(5): 674-680.
    [79] Pietrella M. and Perrone L., A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys., 2008, 26(2): 323-324.
    [80] Muhtarov P., Kutiev I., Cander L. R., et al., European ionospheric forecast and mapping, Phy. Chem. Earth, 2001, 26(5): 347-351.
    [81] Kutiev I. and Muhtarov P., Modeling of midlatitude of F region response to geomagnetic activity, J. Geophys. Res., 2001, 106(A8): 15501-15509.
    [82] Kutiev I. and Muhtarov P., Modeling the storm-time deviations of foF2 on a global scale, Adv. Space Res., 2004, 33(6): 910-916.
    [83] Araujo-Pradere E. A. and Fuller-Rowell T. J., Storm: an empirical storm-time ionospheric correction model, 2, Validation, Radio Sci., 2002, 37(5), 1071, doi: 10.1029/ 2002RS00262.
    [84] Araujo-Pradere E. A., Fuller-Rowell T. J. and Bilitza D., Validation of the STORM response in IRI2000, J. Geophys. Res., 2003, 1120, doi:1029/2002RS 002620.
    [85] Bilitza D., International reference ionosphere 2000, Radio Sci., 2001, 36(2): 261-275.
    [86] Amarante G. M., Santamaria M. C., Alazo K., et al., Validation of the STORM model used in IRI with ionosonde data, Adv. Space Res., 2007, 39(5): 681-686.
    [87] Sojka J. J. and Schunk R.W., A theoretical study of the global F region for June solstice, solar maximum and low magnetic activity, J. Geophys. Res., 1985, 90: 5285-5298.
    [88] Sterling D. L., Hanson W. B., Moffett R. J., et al., Influence of electromagnetic drifts and neutral air winds on some features of the F2 region, Radio Sci., 1969, 4: 1005-1023.
    [89] Schunk R. W. and Walker J. C. G., Theoretical ion densities in the lower ionosphere, Planet. Space Sci., 1973, 21: 1875-1896.
    [90] Schunk R W, Raitt W. J. and Banks P. M., Effect of electric fields on the daytime high-latitude E and F regions, J. Geophys. Res., 1975, 80: 3121-3130.
    [91] Sojka J. J., Raitt W. J. and Schunk R. W., A theoretical study of the high latitude winter F region at solar minimum for low magnetic activity, J. Geophys. Res, 1981, 86: 609-621.
    [92] Schunk R.W. and Sojka J. J., Ion temperature variations in the daytime high-latitude F region, J. Geophys., Res., 1982, 87: 5169-5183.
    [93] Schunk R. W., Sojka J. J. and Bowline M. D., Theoretical study of the electron temperature in the high latitude ionosphere for solar maximum and winter conditions, J. Geophys., Res., 1986, 91: 12041-12054.
    [94] Schunk R. W. and Sojka J. J., Global ionosphere-polar wind system during changing magnetic activity, J. Geophys. Res., 1997, 102(A6): 11625-11651.
    [95] Schunk R. W., Scherliess L., Sojka J. J, et al., Global assimilation of ionospheric measurements (GAIM), Radio Sci., 2004, 39, RSIS02, doi:10.1029/ 2002RS002 794.
    [96] Sojka J. J., Thompson D. C. and Schunk R. W., Assimilation ionosphere model: Development and testing with combined ionospheric Campian Caribben measurements, Radio Sci., 2001, 36(2): 247-259.
    [97] Schunk R. W., Scherliess L. and Sojka J. J., Recent approaches to modeling ionopsheric weather, Adv. Space Res., 2003, 31(4): 819-828.
    [98] Thompson D. C., Scherliess L., Sojka J. J., et al., The Utah State University Gauss–Markov Kalman filter of the ionosphere: The effect of slant TEC and electron density profile data on model fidelity, J. Atoms. Solar-Terr. Phys., 2006, 68(9): 957-959.
    [99] Roble R. G., Ridley E. C., Richmond A. D., et al., A coupled thermosphere /ionosphere general circulation model, Geophys. Res. Lett., 1988,15: 1325-1328.
    [100] Dickinson R. E., Ridley E. C. and Roble R. G., Thermospheric general circulation with coupled dynamics and composition, J. Atmos. Sci., 1984, 41: 205-219.
    [101] Richmond A. D., Ridley E. C. and Roble R. G., A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 1992, 19(6): 601- 604.
    [102] Roble R. G.. and Ridley E. C., Thermosphere-ionosphere-mesophere -electrodynamics general circulation model: equinox solar min simulations(30-50km), Geophys. Res. Lett., 1994, 21(6): 417-420.
    [103] Peymirat C. and Richmond A. D., Emery B. A., et al., A magnetosphere- thermosphere - ionosphere electrodynamics general circulation model, J. Geophys. Res., 1998, 103, 17(A8): 17467-17477.
    [104] Young E. R., Torr D. G., Richards P. G., et al., A computer simulation of the midlatitude plasmaphere and ionosphere, Planet. Space Sci., 1980, 28: 811-893.
    [105] Richards P. G. and Torr D. G., Seasonal, diurnal, and solar cyclical variations of the limiting H+ flux in the earth’s topside ionosphere, J. Geophys. Res., 1985, 90(A6): 5261-5268.
    [106] Torr M. R., Torr D. G. and Richards P. G., Mid and low latitude model of thermospheric emissions: 1. O+(2P) 7320? and N2(2P) 3371?, J. Geophys. Res., 1990, 95(A12): 21147-21168.
    [107] Richards P. G., On the increases in nitric oxide density at midlatitudes during ionospheric storms, J. Geophys. Res., 2004, 109, A066304, doi:10.1029/2003JA01 0110.
    [108] Anderson D. N., A theoretical study of the ionospheric F region equatorial anomaly, I. Theory, Planet. Space Sci., 1973, 21: 409-419.
    [109] Decker D. T., Valladares C. E., Sheehan R., et al. Modeling daytime F layer patches over Sondrestrom, Radio Sci., 1994, 29(11): 249-268.
    [110] Fuller-Rowell T. J. and Rees D., A three-dimensional time-dependent global model of the thermosphere, J. Atmos. Sci., 1980, 37: 2545-2567.
    [111] Quegan S., Balley G. S., Moffett R. J., et al., A theoretical study of distribution of ionization in the high-latitude ionosphere and the plasmasphere: first results on the mid-latitude trough and the light-ion trough, J. Atmos. Terr. Phys., 1982, 44(7): 619-640.
    [112] Millwar G. H., A global model of the earth’s thermosphere, ionosphere and plasmasphere: theoretical studies of the response to enhanced high-latitude convection, PHD Thesis, University of Sheffield, 1993.
    [113] Millward G. H., Moffett R. J., Quegan W., et al., A coupled thermospheric- ionospheric- plasmasphere model (CTIP), in STEP: handbook of ionospheric models, edited by R. W. Schunk, p.173, Utath State Univ., Logan, Utath, 1996.
    [114] Fuller-Rowell T. J., Millward G. H., Richmond A. D., et al. Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Solar-Terr. Phys., 2002, 64(12-14): 1383-1391.
    [115] Pr?lss G.. W., Ionospheric F-region storms, handbook of atmosphericelectrodynamics, Vol. 2, edited by H. Volland, 195-247, CRC Press, 1995.
    [116]涂剑南,刘立波,保宗梯,一个低纬电离层理论模型,空间科学学报, 1997, 17(3): 212-219.
    [117]朱明华, Taieb C.,曹冲等,中纬电离层理论模型研究,空间科学学报, 1998, 18(1): 23-30.
    [118]王劲松,肖佐,子午面内时变电离层模型及其边界条件,地球物理学报, 1999, 42(1): 18-29.
    [119]张北辰,刘瑞源,刘顺林,极区电子沉降对电离层影响的模拟研究,地球物理学报, 2001, 44(3): 311-319.
    [120]张满莲,史建魁,尚社平,激发态氮分子N2*在电离层中的作用的模拟研究,地球物理学报, 2004, 47(4): 571-577.
    [121]谭辉,万卫星,雷久侯等,一个中纬电离层E层理论模型,地球物理学报, 2005, 48(2): 243-251.
    [122]张顺荣,中纬电离层结构的时变理论模型及其在电离层形态与机理研究上的应用,博士学位论文,中科院武汉物理与数学研究所, 1995.
    [123]雷久侯,中纬电离层的统计分析与模型化研究,博士学位论文,中科院武汉物理与数学研究所, 2005.
    [124] Lei J. H, Liu L. B., Wan W. X., et al., Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill, Radio Sci., 2005, 40, doi:10.1029/2004RS003106.
    [125] Lei J. H, Liu L. B., Wan W. X., et al., Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001, Adv. Space Sci., 2006, 37(5): 1102-1107.
    [126]雷久侯,刘立波,万卫星等,中纬电离层暴的数值模拟与数据同化研究,第十届全国日地空间学术年会, 2003.
    [127] Barnes R. A. and Leonard R. S., Observations of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res., 1965, 70(9): 1250-1253.
    [128] Hsia C. C., Liu J. Y., Oyama K. I., et al., ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC, Phys. Chem. Earth, 2008, doi:/10.1016/j.pce.2008. 06058.
    [129] Liu, J. Y., Tsai Y. B., Chen S. W., et al., Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004, Geophys. Res. Let., 2006, 33, L02103, doi:10.1029/ 2005GL023963.
    [130] Liu, J. Y., Chen Y. I. and Chuo Y. J., A statistical investigation of pre-earthquakeionospheric anomaly, J. Geophys. Res., 2006, 111, A05304, 10.1029/2005JA 011 333.
    [131] Kim V. P., Khegai V. V. and Illich-Svitych P. V., On one possible ionospheric precursor of earthquakes, Phys. Solid Earth, 1994, 30(3): 223-226.
    [132] Pulinets S. A. and Boyarchuk K. A., Ionospheric precursors of earthquakes. Springer Verlag Pub., 2004.
    [133] Hegai V. V., Kim V. P and Liu J. Y., The ionospheric effect of atmospheric gravity waves excited prior to strong earthquakes, Adv. Space Res., 2006, 37(4): 653-659.
    [134] Liperovsky V. A., Pokhotelov O. A. and Shalimov S. L., Ionospheric precursor of earthquakes. Moscow: Nauka, 1992, 304.
    [135] Shalimov S. L. and Gokhberg M. B., Lithosphere-ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990: A review of ionosphere measurements and basic assumptions. Phys. Earth Planet. Inter., 1998, 105: 211-218.
    [136] Shalimov S. L., Gokhberg M. B. Lithosphere-ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990: Interpretation of its ionosphere effects. J. Earthquake Pred. Res., 1998, 7: 98-111.
    [137] Hegai V. V., Kim V. P. and Nikiforova L. I., A possible generation mechanism of acoustic-gravity waves in the ionosphere before strong earthquakes, J. Earthquake Pred. Res., 1997, 6: 584-589.
    [138] Pulinets S A, Boyarchuk K A, Hegai V V, et al., Quasielectroscatic model of atmosphere- thermosphere-ionosphere coupling, Adv. Space Res., 2000, 26(8): 1209-1218.
    [139] Garavaglia M., Dal Moro G. and Zadro M., Radon and tilt measurements in a seismic area: temperature effects, Phys. Chem. Earth, 2000, 25(3): 233-237.
    [140] Mikhailov Y. M., Mikhailova G. A., Kapustina O. V., et al., Variations of power spectra of electric field of the near-ground atmosphere on Kamchatka, Geomagn. Aeron., 2003, 4(3): 422-428.
    [141] Rulenko O. P., Operative precursors of earthquakes in the electricity of near-Earth atmosphere, Vokanol. Seismol., 2000, 4: 57-68.
    [142] Chmyre V. M., Isaev N. V., Bilichenko S. V., et al., Observation by space-born detectors of electric field and hydro magnetic waves in the ionosphere over an earthquake center, Phys. Earth Planet. In. 1989, 57: 110-114.
    [143] Zhao B. Q., Wang M., Yu T., et al., Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J.Geopohys. Res., 2008, 113(A11304), doi:10.1029/2008JA013613.
    [144] Pulinets S. A. and Liu J. Y., Ionospheric variability unrelated to solar and geomagnetic activity, Adv. Space Res., 2004, 34: 1926-1933.
    [145] http://www.spaceweather.com/java/archive.html.
    [146] http://solar.njit.edu/~haimin/ph777/lec07.pdf.
    [147] Chaman-Lal, Sun-Earth geometry, geomagnetic activity and planetary F2 layer ion density, Part I: Signatures of magnetic reconnection, J. Atmos. Solar-Terr. Phys., 2000, 62(1): 3-16.
    [148]刘经南,陈俊勇等,广域差分GPS原理和方法,测绘出版社, 1999年1月第1版.
    [149]索玉成, foF2的季节变化特征,电波科学学报, 1995, 10(4): 83-89.
    [150] Mansilla G. A., Manzano J. R., Some theoretical aspects of ionospheric storms at middle latitudes, Annli di geofisica, 1998, 41(4): 511-517.
    [151]沈长寿,资民筠,王劲松等, 1989年3月特强磁暴期间的电离层暴,地球物理学报, 2004, 47(3): 385-391.
    [152] Namgladze A. A., Zubova Y. U., Namgaladze A. N., et al., Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: A comparison of the UAM results with the ISR and NRLMSIS-00 data, Adv. Space Res., 2006, 37(2): 380-391.
    [153]邓拥军,王伟, EMD方法及Hilbert变换中边界问题的处理,科学通报, 2001, 46(3): 257-263.
    [154] Zhao J. P., Mirror extending and circular spline function for Empirical Mode Decomposition method, J. Zhejiang Univ., 2001, 2(3): 247-252.
    [155] Richardson J. D., Paularena K. I., Belcher J. W., et al., Solar wind oscillations with a 1.3 year period, Geophys. Res. Lett., 1994, 21(14): 1559-1962.
    [156] Cliver E W, Boriakoff V, Bounar K H., The 22-year cycle of geomagnetic and solar wind activity. J. Geophys. Res., 1996, 101(12): 27091-27110.
    [157] Russell C. T. and McPherron R. L., Semiannual variation of geomagnetic activity, J. Geophys. Res., 1973, 78(1): 92-108.
    [158] Murayama T., Origin of the semiannual variation of geomagnetic Kp indices, J. Geophys. Res., 1974, 79(1): 297-300.
    [159] Berthelier A., Influence of the polarity of the interplanetary magnetic field on the annual and the diurnal variations of magnetic activity, J. Geophys. Res., 1976, 81(23): 4546-4552.
    [160] Prestes A., Rigozo N. R., Echer E., et al., Spectral analysis of sunspot number andgeomagnetic indices(1986-2001), J. Atmos. Solar-Terr. Phys., 2006, 68(2): 182-190.
    [161]苗娟,田剑华,太阳黑子数及Ap指数周期变化特征的小波分析,空间科学学报, 2004, 24(1): 28-34.
    [162] Fares Saba M. M. and Gonzalez W. D., et al., Relationship between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979), Ann. Geophys., 1997, 15(9): 1265-1270.
    [163] Lantos P., Richard O., On the prediction of maximum amplitude for solar cycles using geomagnetic precursors, Solar Phys., 1998, 182: 231-246.
    [164]徐浩峰,应宏伟,朱向荣,时间序列分析方法预报基坑支撑轴力,水利学报, 2004, 49(1): 105-110.
    [165]钟秋珍,刘四清,何卷雄等,奇异谱分析在太阳10.7cm射电流量中期预测中的应用,空间科学学报, 2005, 25(3):199-203.
    [166] Engle R. F., Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 1982, 50: 987-1008.
    [167] Yule G. U., On a method of investigating periodicities in disturbed series, Phil. Trans. Roy. Soc., 1927, 226: 267-298.
    [168] Ghaddar D. K. and Tong H., Data transformation and self-exciting threshold autoregression, Appl. Statist., 1981, 30: 238-248.
    [169] Kay S. M. and Maple S. L., Spectrum analysis-a modern perspective, Proc IEEE 1981, 69: 1380-1419.
    [170] Sofia P., Fox and Schatten K. H., Forecast update for activity cycle 23 from a Dynamo-based method, Geophys. Res. Let., 1998, 25(22): 4149-4152.
    [171]田剑华,用BP神经网络预报太阳活动第23周的黑子数,空间科学学报, 1997, 17(3): 255-260.
    [172] Wang J. L., Gong J. C., Liu S. Q., et al., The prediction of maximum amplitude of solar cycles and the maximum amplitude of solar cycle 24, Chin. J. Astron. Astrophys., 2002, 2(6): 557-562.
    [173] Badalyan O. J., Obridko V. and Sykora N. J., Brightness of the coronal green line and prediction for activity cycles 23and 24, Solar Phys., 2001,199: 421-435.
    [174] Feynman J., Geomagnetic and solar wind cycles, 1900-1975, J. Geophys. Res., 1982, 87(A8): 6153-6162.
    [175] Li Y., Predictions of the features for sunspot cycle 23, Solar Phys., 1997, 170: 437-445.
    [176]徐彤,吴健,吴振森等,地磁Ap指数滞后太阳周循环分析,空间科学学报,2008, 28(3): 210-214.
    [177] Bilitza D., Ionospheric models for radiao propagation studies, in the review of Radio Science 1999-2002 edited by W. R. Stone, IEEE Press, Piscataway N J, 2002, 625-679.
    [178] Zolesi B. and Cander Lj R., Evolution of the ionospheric mapping and modeling during the last four decades, Fisica de la Tierra, 2000, 12: 127-154.
    [179] Atadill D., Arrazola D., Blanch E., et al., Solar activity variations of ionosonde measurements and modeling results, Adv. Space Res., 2008, 42(4): 610-616.
    [180] Szuszczewicz E P., A comparative study of global ionospheric responses to intense magnetic storm conditions, J. Geophys. Res., 1998, 103: 11655-11684.
    [181] Kouris S. S., Fotiadis D. N. and Zolesi B., Specifications of the F-region variations for quiet and disturbed conditions, Phys. Chem. Earth, 1999, 24: 321-327.
    [182] De Franceschi G., Gulyaeva T., Perrone L., et al., MAC: an oriented magnetic activity catalogue for ionospheric applications, U.R.S.I. International Reference Ionosphere News Letter, 1999, 6: 5-6.
    [183]于福江,张占海, Kalman滤波风暴潮数值预报四维同化模型研究进展,海洋预报, 2002, 19(1) :105-112.
    [184] Hoteit I., Triantafyllou G., Petihakis G., et al., A singular evolutive extended Kalman filter to assimulate real in situ data a 1-D marine ecosystem model, Ann. Geophys., 2003, 21(1): 389-397.
    [185] Dabrowski B. and Banaszkiewicz M., Muti-rover navigation on the luar surface, Adv. Space Res., 2008, 42(2): 369-378.
    [186]王莉,黄嘉佑, Kalman滤波的试验应用研究,应用气象学报, 1999, 10(3): 276-282.
    [187]陆如华,徐传玉,张玲等,卡尔曼滤波的初值计算方法及其应用,应用气象学报, 1997, 8(1): 34-42.
    [188] Roble R.G., The calculated and observed diurnal variation of the ionosphere over Millstone Hill on 23-24 March, 1970, Planet. Space Sci., 1975, 23: 1017-1033.
    [189] Taieb C. and Poinsard P., Modeling of the mid-latitude ionosphere. I, Ann. Geophys., 1984, 2(2): 197-206.
    [190] Zhang S. R. and Huang X. Y., A numerical study of ionspheric profiles for mid-latitudes, Ann. Geophys., 1995, 13(5): 551-557.
    [191] Rishbeth H., and Garriott O. K., Introduction to ionospheric physics, New York, Academic Press, 1969.
    [192] Titheridge J. E., An approximate form for the Chapman grazing incidence function, J. Atmos. Terr. Phys., 1988, 50: 699-701.
    [193] Richards P. G. and Torr D. G., Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 1988, 93(A5): 4060-4066.
    [194] Strobel D. F., Young T. R., Meier R. R., et al., The nighttime ionosphere: E region and lower F region, J. Geophys. Res., 1974, 79: 3171-3178.
    [195] Titherige J. E., Modelling the peak of the ionospheric E-layer, J. Atmos. Solar-Terr. Phys., 2000, 62: 93-114.
    [196] Huba J. D. and Joyce G., Sami2 is another model of the ionosphere (ASMI2): A new low-latitude ionosphere model, J. Geophys. Res., 2000, 105(A10): 23035 -13053.
    [197] Diloy P. Y., Robineau A., Lilensten J., et al., A numerical model of the ionosphere, including the E-region above EISCAT, Ann. Geophys., 1996, 14: 191-200.
    [198] Torr D. G., The photochemistry of the upper atmosphere, in The Photochemistry of Atmosphere, edited by J. S. Levine, 165-278, Academic San Diega, Calif., 1985.
    [199] St.-Maurice J. P. and Torr D. G., Nonthermal rate coefficients in the ionosphere: The reaction of O+ with N2, O2 and NO, J. Geophys. Res., 1978, 83: 969-977.
    [200] Hierl P. M., Dotan I., Seeley J. V., et al., Rate constants for reaction of O+ with N2 and O2 as a function of temperature(300-1800K), J. Chem. Phys., 1997, 106: 3540-3544.
    [201] Lindinger W., Fehsenfeld F. C., Schmeltekopf Al L. et al., Temperature dependence of some ionospheric ion-neutral reactions from 300○K to 900○K, J. Geophys. Res., 1974, 79: 4753-4756.
    [202] Fehsenfeld F. C., The reaction of O+ with atomic nitrogen and NO+·H2O and NO+ with atomic oxygen, Planet. Space Sci., 1977, 25: 195-196.
    [203] McFarland M., Albritton D. L., Fehsenfeld F. C., Energy dependence and branching ratio of the N2++O reaction, J. Geophys. Res., 1974, 79: 2925-2926.
    [204] Peterson J. R., Padellec Le A., Danared H., et al., Dissociative recombination and excitation of N2+: cross sections and product branching ration, J. Chem. Phys., 1998,108: 1978-1988.
    [205] Johnsen R. and Biondi M. A., Laboratory measurements of the O+(2D)+O2 reaction rate coefficients and their ionospheric implications, Geophy. Res. Lett., 1980, 7: 401-403.
    [206] Fox J. L. and Dalgarno A., The vibrational distribution of N2+ in the terrestrial ionosphere, J. Geophys. Res., 1985, 90: 7557-7567.
    [207] Pavlov A. V., New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere, Ann. Geophys., 2003, 21(7): 1601-1628.
    [208] Rees M. H., Physics and chemistry of the upper atmosphere, Cambridge Univ. Press, Cambridge, 125-126, 1989.
    [209] Chang T., Torr D. G., Richards P. G., et al., Reevaluation of the O+(2P) reaction rate coefficients from atmosphere explorer C observations, J. Geophys. Res., 1993, 98: 15589-15597.
    [210] Kaufman V. and Sugar J., Forbidden lines in ns2npk ground configuration and nsnp excited configurations of Beryllium through Molybdenum atoms and ions, J. Phys. Chem. Ref. Data, 1986, 15: 321-426.
    [211] Hedin A. E., MSIS-86 thermospheric model, J. Geophys. Res., 1987, 92: 4649 -4662.
    [212] Picone J. M., Hedin A. E. and Drob D. P., NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues, J. Geopys. Res., 2002, 107(A2), doi:10.1029/2002JA009430.
    [213] Titheridge J. E., Model results for the ionopsheric E-region: solar and seasonal changes, Ann. Geophys., 1997, 15: 63-78.
    [214] Hedin A. E., Fleming E. L., Manson A. H., et al., Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Solar-Terr. Phys., 1996, 58(13): 1421-1447.
    [215] Pavlov A. V. and Buonsanto M. J., Comparison of model electron densities and temperatures with Millstone Hill observations during undisturbed periods and the geomagnetic storms of 16-23 March and 6-12 April 1990, Ann. Geophys., 1997, 15(3): 327-344.
    [216] Salah J. E., Interim standard for the ion-neutral atomic oxygen collision frequency, Geophys. Res. Lett., 1993, 20: 1543-1546.
    [217] Banks P. M. and Kockarts G., Aeronomy, Part A, Academic Press, New York and London, 1973.
    [218] Richmond A. D., Blanc M., Emery B. A., et al. An empirical model of quiet-day ionospheric fields at middle and low latitudes, J. Geophys. Res., 1980, 85(A9): 4658-4664.
    [219] Tobiska K., Recent solar extreme ultraviolet irradiance observations and modeling: A review, J. Geophys. Res., 1993, 98(A11): 18879-18893.
    [220] Hinteregger H. E., Representation of solar EUV fluxes for aeronomicalapplications, Adv. Space Res. 1981, 1: 39-52.
    [221] Nusinov A. A., Models for prediction of EUV and X-ray solar radiation based on 10.7cm radio emission, in Proceeding of the Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., July, 1992, edited by R. F. Donnely, 354-359.
    [222] Richards P. G., Fennelly J. A. and Torr D. G., EUVAC: a solar EUV flux model for aeronomic calculations, J. Geophys. Res., 1994, 99(A5): 8981-8092.
    [223] Tobiska W., Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin K., Modeled soft X-ray solar irradiance, Solar Phys., 1994, 152: 207-215.
    [224] Tobiska W. K., Woods T., Eparvier F., et al., The SOLAR2000 empirical solar irradiance model and forecast tool, J. Atmos. Solar-Terr. Phys., 2000, 62(14): 1233-1250.
    [225] Crowley G., Emery B. A., Roble R. G., et al., Thermospheric dynamics during September 18-19, 1984, I, Model simulations, J. Geophy. Res., 1989, 94: 16925- 16944.
    [226]涂传诒等,日地空间物理学,科学出版社, 1988.
    [227]雷久侯,刘立波,万卫星等,热层风场的理论模拟与分析,地球物理学报, 2003, 46(6): 736-742.
    [228]张奇伟,郭兼善,张公亮,磁暴期间中纬度电离层剖面结构变化的数值模拟,空间科学学报, 1994, 14(1): 39-47.
    [229] Furumoto A. S., Pr?lss G. W., Weaver P. F., et al., Acoustic coupling into the ionosphere from seismic waves of the earthquake at Kuile Islands on August 11, 1969, Nature, 1971, 226: 1239-1241.
    [230] Chen Y. I., Chuo Y. J, Liu J. Y., et al., Statistical study of ionospheric precursors of strong earthquakes at Taiwan area, XXVI URSI General Assembly, Toronto, 13-21 August 1999, Abstract 745.
    [231] Mikhailov Y. M., Mikhailova G. A., Kapustina O. V., et al., Variations of power spectra of electric field of the near-ground atmosphere on Kamchatka, Geomagn. Aeron., 2003, 4(3): 422-428.
    [232] Rulenko O. P., Operative precursors of earthquakes in the electricity of near-Earth atmosphere, Vokanol. Seismol., 2000, 4: 57-68.
    [233] Pulinets S. A, Legenka A. D., Karpachev A. T., et al., The earthquakes prediction possibility on the base of topside sounding data, IZMIRAN preprint N 34a(981), 1991, 25.
    [234]卓裕荣,电离层地震前兆之研究,国立中央大学太空科学研究所博士论文, 2002年.
    [235] Devi M., Barbara A. K. and Depueva A., Association of total electron content and foF2 variations with earthquake, Ann. Geophysics, 2004, 47(1): 83-91.
    [236]张陪震,徐锡伟,闻学泽等, 2008年汶川8.0级地震发震断裂的滑动速率复发周期和构造原因,地球物理学报, 2008, 51(4): 1066-1073.
    [237]曾中超,张蓓,方广有等,利用DEMETER卫星数据分析汶川地震前的电离层异常,地球物理学报, 2009, 52(1): 11-19.
    [238]林剑,吴云,祝芙英等,基于GPS探测汶川地震电离层TEC的异常,地球物理学报, 2009, 52(1): 297-300.
    [239] Liu J. Y., Chuo Y. J., Shan S. J., et al., Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurement, Ann. Gephys., 2004, 22(5): 1585-1593.
    [240] Ondoh T., Seismo-ionospheric effect Atmospheric and ionopsheric electro- magnetic phenomena associated with earthquakes. TERRAPUB, Tokyo, 1999, 789-803.
    [241] Smirnov V. V., Ionization in troposphere, Gidrometeoizdat Publ., Sankt-Peterburg, 1992.
    [242] Stozhkov Y. I., Bazilevskaya G. A., Ermakov V. I., et al., Ion formation in the atmosphere, Izvestiya RAS, Phys., 1997, 61(6):1155.
    [243]丁鉴海,申旭辉,潘威炎等,地震电离层前兆研究进展,电波科学学报, 2006, 21(5): 791-801.
    [244] Gokhberg M. B., Pilipenko V. A., Pokhotelov O. A., Seismic precursors in the ionosphere, Izvestiya Earth Phys., 1983, 19: 762-765.
    [245] Park C. G. and Dejnakarintra M., Penetration of thundercloud electric fields into the ionosphere and magnetosphere. I, Middle and subauroral latitudes, J. Geophys. Res., 1973, 78(28): 6623-6633.
    [246] Grimalsky V. V., Hayakawa M., Ivchenko V. N., et al., Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes, J. Atmos. Solar-Terr. Phys., 2003, 65(4): 319-407.
    [247] Cole R. K. and Pierce E. T., Electrification in the Earth’s atmosphere for altitudes between 0 and 100 kilometers, J. Geophys. Res., 1965, 70(12): 2735-2749.
    [248] Vershinin E. F., Buzevich A. V., Yumoto K., et al., Correlation of seismic activity with electromagnetic emissions and variations in Kamchatka region. In: Hayakawa M edited, Atmospheric and ionospheric electromagnetic phenomenaassociated with earthquakes, Terrapub, Tokyo, 1999, 513-517.
    [249] Rapoport Y., Grimalsky V., Hayakawa M., et al., Change of ionospheric plasma parameters under the influence of electric field which has lithospheric origin and due to radon emanation, Phys. Chem. Earth, 2004, 29(4-9): 579-587.
    [250] Chimonas G., Heines G. O., Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 1970, 18(4): 565-582.
    [251] Chmyre V. M., Isaev N. V., Bilichenko S. V., et al., Observation by space-born detectors of electric field and hydro magnetic waves in the ionosphere over an earthquake center, Phys. Earth Planet. In., 1989, 57: 110-114.
    [252] Gousheva M. N., Glavcheva R.P., Danov D. L., et al., Electric field and ion density anomalies in the mid latitude ionosphere: possible connection with earthquake?, Adv. Space Res., 2008, 42(1): 206-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700