工业装置蒸汽透平网络模拟和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽透平网络是工业装置的重要组成部分,隶属于公用工程,其安全稳定的运行是石化企业长期生产的保证。蒸汽透平网络的模拟和优化,对降低装置能耗和运行成本,提高能源利用率具有重要的意义。
     蒸汽透平网络系统包括压缩机透平、泵透平(备用电泵)、减温减压器等设备以及不同蒸汽等级的管网。本文围绕蒸汽透平网络的模拟和优化展开研究,主要内容和创新点概况如下:
     将蒸汽透平网络系统分解为压缩机透平网络、减温减压器和泵透平(备用电泵)依次建立模型。第一步,利用Aspen Plus对压缩机透平网络进行了模拟和分析。在模拟过程中,针对Aspen Plus软件的稳态特性和实际工厂中参数的动态变化,着重考虑了因透平排汽量变化而引起的非线性做功问题。考察了凝汽器内压力的确定及其影响因素并推导出了凝汽器压力随透平排汽量变化的关系式,再以Fortran语句的形式写入Aspen Plus软件,提高了Aspen Plus的动态实用性,使模拟得出的结果更符合现场实际。第二步,使用数学规划法建立了减温减压器和泵透平(备用电泵)的模型。第三步,两者结合构成了运用Aspen Plus模拟和数学规划法建模的蒸汽透平网络混合模型。
     基于所建立的混合模型,以各透平抽汽量、减温减压器进口流量和电泵/透平泵的投用和备用组合为自变量,以蒸汽透平网络系统运行费用为目标变量,在满足各透平输出功率以及低等级管网蒸汽用量需求的前提下,通过Matlab——Aspen Plus接口工具,用粒子群优化算法搜索蒸汽透平网络的最优操作条件。结果表明:(1)为了补充管网蒸汽量,应尽可能多的使用透平抽汽,当抽汽量不足时才考虑将高品质蒸汽通过减温减压器直接降级使用;(2)通过合理分配各压缩机透平的抽汽量能够降低透平网络超高压蒸汽(SS)消耗量。优化后的透平网络运行费用可节省2145元/小时,节能效果显著,能够为乙烯装置蒸汽管网现场的调优工作起到良好的指导作用。
Steam turbine network is an important part of the industrial device and it belongs to the utilities. Its safe and stable operation guarantees the long-term production of the enterprise. Simulation and optimization of Steam turbine network are of great significance in reducing the energy consumption, decreasing the device operating cost and Improving energy efficiency.
     Steam turbine network system includes compressor turbine, pump turbine (spare electric pump), let-down station and steam pipe network of different levels. Simulation and optimization of Steam turbine network are researched in this paper. The main contents and innovative points are listed as follows:
     The steam turbine network system is divided into compressor turbine networks, let-down station and pump turbine (spare electric pump). Each section set a model in turn. The first step, the compressor turbine network is simulated and analyzed with Aspen Plus. During the simulation process, according to the steady characteristics of Aspen Plus and parameters'dynamic changes in actual factory Problem of nolinear doing work due to the change of turbine exhaust steam flow is taken into consideration. The condenser pressure and its influencing factors are investigated and the formula between condenser pressure and turbine exhaust steam flow is deduced. The formula is put into Aspen Plus as the form of FORTRAN statement. Then the dynamic practicability of Aspen Plus is improved and the simulation results can fit the actual more accurately. The second step, the models of let-down station and pump turbine (spare electric pump) are established using mathematical programming. The third step, the hybrid model of steam turbine network with Aspen Plus simulation and mathematical programming is established.
     Based on the established hybrid model, with extraction steam flow of turbine, inlet steam flow of Pressure Reducer and Attemperator and the combination of turbine pump and electric pump as independent variable, steam turbine network system operation cost as target variables, the steam turbine network is optimized by PSO through the interface toolkit MAP in the condition of meeting the same output power and the requirement of the other pipe networks. The results show that:(1) in order to complement the steam content of pipe network, the turbine extraction steam should be used as much as possible, only when the extraction steam isn't enough, can the high quality steam be directly used through let-down station. (2) the steam consumption of SS level can be reduced by selecting the extraction capacity of every turbine reasonably. After the optimization, the operation cost of turbine network can reduce 2145 RMB/hour and the energy-saving effect is remarkable so the result can be a good guidance for the optimization of steam piping network.
引文
[1]史国青.火电厂机组负荷优化组合分配问题的研究[D].华北电力大学硕士学位论文,2005
    [2]吕伟业.中国电力工业发展及产业结构调整[J].中国电力.2002,1:20-22
    [3]陈和平.节能是我国经济和社会发展的一项长远战略方针[J].信息产品与节能.2000,1:11-15
    [4]国家经贸委资源节约与综合利用司.能源节约与资源综合利用“十五”规划[J].节能.2002,1:25-32
    [5]高志海.莱城电厂300MW汽轮机组变负荷优化运行试验研究[D].华北电力大学硕士学位论文,2007
    [6]李会泉.低温过程系统整体能量优化综合的复合式方法研究[D].大连理工大学硕士学位论文,1999
    [7]Yi H.-S., Han C, Yeo Y.G. Optimal multiperiod planning of utility systems considering discrete/continuous variance in internal energy demand based on decomposition method[J]. Chemical Engineering Journal.2000,33:456
    [8]Chi-Wai Hui. Determining marginal values of intermediate material and utility using a site model[J]. Computer& Chemical Engineering.2000,24(2-7):1023-1029
    [9]Kim J., Lee B., Lee E.-S. Optimal production sequence and processing schedules of multiproduct batch processes for heat integration and minimum equipment costs[J]. Chemical Engineering Journal.2001,18:599
    [10]Heui-Seok Yi, Jeong Hwan Kim, etc. Periodical replanning with hierarchical repairing for the optimal operation of a utility plant[J]. Control Engineering Practice.2003,11(8): 881-894
    [11]Shang Z., Kokossis A. A transshipment model for the optimization of steam levels of total site utility system for multiperiod operation[J]. Computer& Chemical Engineering. 2004,28:1673
    [12]Saxena, M.N. Optimize gas turbine-driven centrifugal compressors[J]. Hydrocarbon process,2000,61-64
    [13]张国喜,华贲,刘金平.石化企业蒸汽动力系统的多工况操作优化[J].石油炼制与化工.2001,32(5):42-46
    [14]罗向龙,华贲,张冰剑.石化企业蒸汽动力系统的多周期运行优化[J].计算机与应用化学.2006,23(1):41-45
    [15]In-Su Han, Young-Hak Lee, etc. Modeling and Optimization of the Condensing Steam Turbine Network of a Chemical Plant[J]. Ind.Eng.Chem.Res.2006,45:670-680
    [16]Tor-Martin Tveit, Carl-Johan Fogelholm. Multi-period steam turbine network optimisati-on. Part I:Simulation based regression models and an evolutionary algorithm for finding D-optimal designs[J]. Applied Thermal Engineering.2006,26:993-1000
    [17]Tor-Martin Tverit, Carl-Johan Fogelholm. Multi-period steam turbine network optimisat-ion. Part II:Development of a multi-period MINLP model of a utility system[J]. Applied Thermal Engineering.2006,26:1730-1736
    [18]Ali Chaibakhsh, Ali Ghaffari. Steam turbine model. Simulation Modelling Practice and Theory[J].2008,16:1145-1162
    [19]胡珏.Aspen Plus应用于环己酮装置烷精馏流程的模拟[J].合成纤维工业.2010,33(4):59
    [20]张博.镁法烟气脱硫工艺副产物热解回收研究[D].华东理工大学硕士学位论文,2009
    [21]王松岭,胡红丽,张学镭.基于ASPEN PLUS软件的燃气——蒸汽联合循环的模拟[J].汽轮机技术.2005,47(6):417-420
    [22]杨光军.厂级负荷优化分配系统的研究[D].华北电力大学硕士学位论文,2003
    [23]Lee F N. The Application of Commitment Utilization Factor (CUF) to Thermal Unit Commitment[J]. IEEE Trans on PWRS.1991,6(2):691-698
    [24]Tomonobu Senjyu, Tsukasa Miyagi, Ahmed Yousuf Saber, etc. Emerging solution of large-scale unit commitment problem by Stochastic Priority List[J]. Electric Power Systems Research.2006,76(5):283-292
    [25]Nieva R, Inda A, Guillen I. Lagrangian Reduction of Search—Range for Large Scale Unit Commitment[J]. IEEE Trans on PWRS.1987,2(2):52
    [26]Aiying Rong, Henri Hakonen, Risto Lahdelma. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems[J]. Energy Conversion and Management.2009,50(4):1108-1115
    [27]茅波.基于统一边际电价结算的电力市场下考虑消除阻塞费用最小的竞价算法[D].天津大学硕士学位论文,2004
    [28]Guan X, Luh P B, Zhang L. Nonlinear Approximation Method in Lagrangian Relaxation-Based Algorithms for Hydrothermal Scheduling[J]. IEEE Trans on PWRS.1995,10(21): 772-778
    [29]Guan X, Luh P B, Prasannan B. Power System Scheduling with Fuzzy Reserve Require-ments[J]. IEEE Trans on PWRS.1996,11(2):864-869
    [30]Prasonnan B, Luh P B, Yan H, et al. Optimization-Based Sale Transactions and Hydrot-hermal Scheduling[J]. IEEE Trans on PWRS.1996,11(21):137-142
    [31]Ivo C. Silva Jr., Sandoval Carneiro Jr., Edimar J. de Oliveira, etc. A Lagrangian multiplier based sensitive index to determine the unit commitment of thermal units[J]. International Journal of Electrical Power & Energy Systems.2008,30(9):504-510
    [32]Farid Benhamida, Bendaoud Abdelbar. Enhanced Lagrangian relaxation solution to the generation scheduling problem[J]. International Journal of Electrical Power & Energy Systems.2010,32(10):1099-1105
    [33]蒋腾旭.智能优化算法概述.电脑知识与技术[J].2007,2(8):507-509
    [34]孟鑫.智能算法在火电机组运行中的应用[D].天津大学硕士学位论文,2008
    [35]刘涌,侯志俭,蒋传文.求解机组组合问题的改进离散粒子群算法[J].电力系统自动化.2006,30(4):35-39
    [36]B. Zhao, C.X. Guo, B.R. Bai, Y.J. Cao. An improved particle swarm optimization algorithm for unit commitment[J]. International Journal of Electrical Power & Energy Systems.28(7):482-490
    [37]李丹,高立群,王珂等.电力系统机组组合问题的动态双种群粒子群算法[J].计算机应用.2008,28(1):104-107
    [38]V.S.Pappal, I.Erlieh. A New Approach for Solving the Unit Commitment Problem by Adaptive Particle Swarm Optimization[C]. Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century.2008 IEEE 20-24 July 2008:1-6
    [39]韩恺,赵均,钱积新.电力系统机组组合问题的闭环粒子群算法[J].电力系统自动化.2009,33(1):36-40
    [40]Xiaohui Yuan, Hao Nie, Anjun Su, etc. An improved binary particle swarm optimization for unit commitment problem[J]. Expert Systems with Applications.2009,36(4):8049-8055
    [41]Lingfeng Wang, Chanan Singh. Unit commitment considering generator outages rhrough a mixed-integer particle swarm optimization algorithm[J]. Applied Soft Computing.2009, 9(3):927-953
    [42]S.Khanmohammadi, M.Amiri, M.Tarafdar Haque. A new three-stage method for solving unit commitment problem [J]. Energy.2010,35(7):3072-3080
    [43]Cheng-Chien Kuo, Chun-Yao Lee, Yu-Chen Sheim. Unit commitment with energy dispatch using a computationally efficient encoding structure[J]. Energy Conversion and Management.2011,52(3):1575-1582
    [44]孙国栋.丙烯制冷压缩机透平GT-501运行故障分析[J].化工进展.2004,78-82
    [45]Alireza Bahadori, Hari B.Vuthaluru. Estimation of performance of steam turbines using a simple predictive tool[J]. Applied Thermal Engineering.2010,30(13):1832-1838
    [46]沈士,庄贺庆,康松等.汽轮机原理[M].北京:水利电力出版社,1992
    [47]Christer Karlsson, Jaime Arriagada, Magnus Genrup. Detection and interactive isolation of faults in steam turbines to support maintenance decidions[J]. Simulation Modelling Practice and Theory.2008,16(10):1689-1703
    [48]A.Zaleta-Aguila, L.Correas-Uson, J.Kubiak-Szyszka, etc. Concept on thermoeconomic evaluation of steam turbine[J]. Applied Thermal Engineering.2007,27(2):457-466
    [49]闫素英,韩伟实.减温减压器大扰动工况实验研究[J].能源技术.2004,25(4):143-146
    [50]吴高峰.蒸汽节能——应用技术及实施方案[M].北京:机械工业出版社,2008
    [51]王雷.基于模糊PID技术的供热机组节能控制系统应用研究[D].东南大学硕士学位论文,2010
    [52]沈士一,庆贺庆,康松等.汽轮机原理[M].北京:中国电力出版社,2005
    [53]郭亚楠.汽轮机冷端系统在线监测与优化运行的研究[D].东南大学硕士学位论文,2003
    [54]郑李坤,顾昌,闫桂焕.运行参数变化对凝汽器真空影响的探讨[J].汽轮机技术.2002,44(6):362-364
    [55]崔修强.300MW机组循环水系统运行方式优化[D].山东大学硕士学位论文,2004
    [56]罗俊.凝汽器低真空故障及诊断方法[J].科技经济市场.2007,8:142-143
    [57]李荣梅.凝汽器传热分析与节能途径[D].黑龙江电力.2008,30(4):279-281
    [58]宗世田.凝汽器运行、维护中应注意的问题[C].全国火电100MW级机组技术协作会第6届年会.2007
    [59]崔亚明.基于Aspen Plus的电站燃煤锅炉(火用)分布特性研究[D].华北电力大学硕士学位论文,2009
    [60]王松岭,胡红丽,张学镭.基于ASPEN PLUS软件的燃气-蒸汽联合循环的模拟[J].汽轮机技术.2005,47(6):417-420
    [61]施云海.化工热力学[M].上海:华东理工大学出版社,2007
    [62]王绍艳,袁绍华.工业汽轮机技术问答[M].北京:化学工业出版社,2009
    [63]汤奇峰.协同量子粒子算法及其在蒸汽管网用能优化中的应用[D].华东理工大学硕士学位论文,2010
    [64]刘金平.过程工业蒸汽动力系统集成建模理论及应用的研究[D].华南理工大学硕士学位论文,2002
    [65]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEI Internation-al Conference on Neural Networks.1995,1942-1948
    [66]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009
    [67]李开晴,何富连,谢生荣等.基于改进粒子群算法的地应力场反分析研究[J].煤炭技术.2010,29(12):160-162
    [68]张军,詹志辉等.计算智能[M].北京:清华大学出版社,2009
    [69]Shi Y, Eberhart RC. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation.1998,69-73
    [70]耿大钊,陈曦,邵之江等.基于COM技术的MATLAB与Aspen Plus接口及高级应用[J].化工自动化及仪表.2006,22(3):30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700