燃气轮机冷热电联供系统性能及运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷热电联供系统(CCHP)是一种建立在能量梯级利用概念基础之上,将制冷、供热及发电过程一体化的多联产能源系统,目的在于提高能源利用效率,减少碳化物及有害气体的排放,以天然气为一次能源的冷热电联供系统更是实现建筑节能减排和天然气高效利用的最佳选择。冷热电联供系统被世界广泛认为是解决能源、经济以及环境问题最好的选择之一,各发达国家都在积极推进冷热电联供的应用。目前,基于燃气轮机、内燃机、燃料电池等为发电装置的冷热电联供系统在美国、英国、日本等国广泛应用,起到了良好的示范作用。在此背景下,本文首先介绍冷热电联产系统的基本概念和配置模式,确定本文的研究对象;然后以燃气轮机冷热电联供系统为例,介绍了其组成及主要设备特性,根据燃气轮机冷热电联供系统能流结构,以热力学理论为基础,主要分析了系统回热度、补燃率和电制冷率在能量数量、能量品质及能量节约方面对联供系统的影响。结果表明:从能量的数量方面来看,增大回热度、电制冷率对于能量的利用是不利的,而增大补燃率在一定的条件下对能量的利用是有利的;从能量的品质和节约方面来看,增大回热度对于能量的利用是有利的,增大电制冷率和补燃率对于能量的利用是不利的。
     其次本文还根据最优化设计理论,针对“以电定热”、“混合模式”两种不同的冷热电联供系统运行模式,以发电、制冷和供热设备的性能特征作为优化约束条件,以年运行费用最低为优化目标函数建立了联供系统设备配置与运行策略的数学优化模型,并以上海某办公楼为例,在给定的能源价格和冷热电负荷条件下,应用模式搜索法对联供系统数学优化模型进行求解计算,得出了系统优化配置和运行策略,并与分供系统作比较,分析了联供系统在经济、节能和环保方面的优势;最后针对已经得出的系统优化配置,分析了电价、天然气价格变化对联供系统经济性、节能性和环保性的影响。结果表明:联供系统采用“混合模式”策略较“以电定热”策略在经济性、节能性和环保性方面更具有优势。当联供系统建成投入运行后,电价降低,其经济性不受影响,节能性和环保性变差,但仍优于分供系统,而电价上涨,其节能性和环保性均不受影响,经济性更好;天然气价格降低,其节能性和环保性均不受影响,经济性更好,天然气价格上涨,其节能性、经济性和环保性变差。
CCHP is a cogeneration system that can accomplish the production of cooling, heating, and power at the same time by making use of both the electrical and "waste" heat discharged from gas turbine unit. In contrast to the conventional system, it can use energy-resources more efficiently, creating opportunities for reduction both in purchased energy costs and in environmental impact. Using natural gas as primary energy for CCHP system is the best choice to achieve building energy-saving and to efficiently utilize natural gas. The combined cooling, heating and power (CCHP) system is broadly identified as an alternative for the world to solve energy, economic and environmental problems. Generations systems, driven by gas turbine, gas engine and fuel battery, have been applied to combined cooling, heating and power system (CCHP) in developed countries like USA, UK and Japan.
     Just under this background, firstly, this paper introduced the basic concept and configuration models of CCHP system, to determine the research object of this paper. Then based on a gas turbine cogeneration system, the main parts and equipments characteristics of MT-CCHP are summarized and introduced. So based on the energy balance and performance characteristics of cogeneration system, the influence of heat recover ratio, secondary combustion rate and electrical energy use for cooling in the amount, taste and saving of energy is studied in this paper. The results show that: for the amount of energy, increasing heat recover ratio, electrical energy use for cooling is negative, while under certain conditions increasing the secondary combustion rate is beneficial; for the taste and savings of energy, increasing heat recover ratio is beneficial, increasing the electrical energy use for cooling and secondary combustion rate is negative to the use of energy.
     Secondly, this article also according to the optimization design theory, in view of two different operation pattern, the "set heat by electric" and the "mixed mode", the performance parameters of the power generation, cooling and heating equipment are used for the constraint of the optimizing. An integrated optimization model of CCHP system on micro gas turbines is established. The optimization model is solving by applying the pattern search method and taking the minimal operation cost meeting the annual load demand of cooling, heating and power as optimizing function. And compared with comparison system, this paper analyzes the advantage of CCHP system in the economy, energy saving and environmental. Finally, according to the optimal system allocation has been obtained, analyzes the influence of the electricity price, natural gas prices change on CCHP system. The results show that: the CCHP system uses "mixed mode" strategy have more advantage in terms of the economy, energy conservation and environmental protection. When a CCHP system is completed, price fell, its economy is not affected, energy conservation and environmental protection become poor, but still better than comparison system. And the electricity price rise, the energy conservation and environmental protection will not be affected, economy is better. Natural gas prices fell, the energy conservation and environmental protection will not be affected, economy is better. Natural gas price rise, the energy conservation, economy and environmental protection become poor.
引文
[1]贾承造.我国能源前景与能源科技前沿.2011,17(2):151-160.
    [2]朱成章,从热电联产走向冷热电联产.中国能源网,2002
    [3]张洪伟,黄素逸,龙研.分布式能源系统与可持续发展战略.节能,2004(2):41-44
    [4]徐建中.分布式供电和冷热电联产的前景.节能与环保.2002,30(3):10-14.
    [5]杨勇平.分布式能量系统[M].化学工业出版社.2011,2
    [6]孔祥强;王如竹;黄兴华.浅谈分布式区域冷热电联供系统[J].中国建设信息(供热制冷专刊).2002,5
    [7]李永兵,岳建华,沈炳耘.冷热电分布式供能系统的应用和发展[J].燃气轮机技术.2008,21(3):4-7.
    [8]孙建国,冯志兵.冷热电联供系统的发展及前景.燃气轮机技术[J].2006,19(2):11-17
    [9]D.W. Wu, R.Z. Wang.Combined cooling, heating and power: A review.Progress in Energy and Combustion Science,2006,32:459-495.
    [10]Maidment G G,Zhao X,Riffat S B.Combined cooling and heating using a gas engine in a supermarket.Applied Energy,2001,68:321-335
    [11]Pedro J. Mago,Anna K. Hueffed.Evaluation of a turbine driven CCHP system for large office buildings under different operating strategies.Energy and Buildings,2010,42: 1628-1636
    [12]胡小坚,张雪梅,蔡路茵.冷热电三联供系统(CCHP)的优化研究进展[J].能源研究与管理.2010(2):13-16
    [13]赵豫,于尔铿.新型分散式发电装置-微型燃气轮机.2004,28(4):47-50
    [14]强国芳.国外热电冷三联产的现状和前景—热电联产工程系列报道之四.热能动力工程.1995,10(5):259-267.
    [15]尾崎裕.日本燃气利用技术的现状和展望.城市燃气.2004,347:6-9.
    [16]张万坤,陆震,陈子煜等.天然气热、电、冷联产系统及其在国内外的应用现状.流体机械,2002,30(12):50-53
    [17]刘道平,马博,李瑞阳等.分布式供能技术的发展现状与展望[J],能源研究与信息,2002,18(1):7-8.
    [18]高伟.基于全年负荷的冷热电联供系统优化分析:[硕士学位论文],东华大学,上海:2010
    [19]郑国耀,李道林,张时飞.黄浦区中心医院“热、电、冷”三联供工程设计及实践[J].动力工程,1999,19(3):59-64.
    [20]刘丽红,袁益超,刘幸拯.分布式供能的现状与发展.热力发电.2006(8):4-7
    [21]忻奇峰.天然气燃气轮机在上海浦东国际机场“三联供”的应用[J].能源技术,2001,22(5):201-203.
    [22]忻奇峰.燃气轮机热电联供系统运行经济性综合分析[C].中国—欧盟热电冷分布式能源的政策机制、创新技术及市场前景国际研讨会论文集.中国杭州,2004:87-96.
    [23]李雅兰,丛万军,刘燕,等.北京市燃气集团指挥调度中心热电冷三联供工程[C].中国—欧盟热电冷分布式能源的政策机制、创新技术及市场前景国际研讨会论文集.中国杭州,2004:117-120.
    [24]李胜,吴静怡,王如竹.冷热电联供系统的研究热点概述[J].制冷与空调.2008,8(6),1-9
    [25]Benonysson A.Operational optimization in a district heating system. Energy conversion and management,1995,36(5):297-314.
    [26]Lee J B,Lyu S H,Kim J H.A daily operation seheduling on cogeneration system with thermal storage tank.IEEE Trans,1994,10:1295—1302.
    [27]P. J. Mago, N. Fumo. Performance analysis of CCHP and CHP systems operating following the thermal and electric load.International Journal of Energy Research,2009,33:852-864
    [28]Colella W G. Modelling results for the thermal management subsystem of a combined heat and power(CHP) fuel cell system. Journal of Power Sources,2003,118:129-149.
    [29]Hubert C E,Achard P,Metkemeijer R.Study of a small heat and power PEM fuel cell system generator.Journal of Power Sources,2006,156(1):64-70.
    [30]江亿,付林.城市天然气采暖的新途径.中国能源.2001,6:8-12.
    [31]张万坤.楼宇冷热电联供系统(BCHP)的配置及其最优运行分析[D].上海:上海交通大学,2003.
    [32]任禾盛.微型燃气轮机热电联供系统的热经济学最优化分析[J].上海理工大学学报,2004,26(5):443-446.
    [33]刘凤强BCHP系统中余热锅炉结构参数的热经济学优化[J].燃气轮机技术.2005,18(2):52-56.
    [34]张颖颖.Research on a simulated 60kW PEMFC cogeneration system for domestic application.Journal of Zhe jiang University SCIENCE,2006,7(3):450-457.
    [35]Mohammad Ameri,Ali Behbahaninia,Amir Abbas Tanha.Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system.Energy,2010,35:2203-2209.
    [36]Biezma M V,San Cristobal J R. Investment criteria for the selection of cogeneration Plants-a state of the art review.Applied Thermal Engineering,2006,26:583-588.
    [37]Gorsek A,Glavic P. Process integration of a steam turbine. Applied Thermal Engineering, 2003,23:1227-1234.
    [38]Silveira J L, Leal E M, Ragonha Jr L F.Analysis of a molten carbonate fuel cell: cogeneration to produce electricity and cold water. Energy,2001,26:891-904.
    [39]贾明生,凌长明.热电冷联供系统的几种主要评价模型分析[J].制冷与空调,2004,4(4):34-38.
    [40]冯志兵,金红光.冷热电联供系统的评价准则[J].工热物理学报,2005,26(5):725-728.
    [41]吕静,王中铮.热电冷三联供评价标准述评[J].节能,1998,7:10-12.
    [42]皇甫艺,吴静怡,王如竹等.冷热电联供CCHP综合评价模型的研究[J].工程热物理学报,2005,26(6):13-16.
    [43]Gigliucci G,Petruzzi L,Demonstration of a residential CHP system based on PEM fuel cells. Journal of Power Sources,2004,131:62-68.
    [44]Sontag R, Lange A. Cost effectiveness of decentralized energy supply systems taking solar and wind utilization plants into account.Renewable Energy,2003,28 (12):1865-1880.
    [45]Riffat S.B,Zhao X. A novel hybrid heat pipe solar collector/CHP system-Partl:System design and construction.Renewable energy,2004,29 (15):2217-2233.
    [46]Marbe A,Harvey S,Berntsson T. Biofuel gasification combined heat and power new implementation opportunities resulting from combined supply of process steam and district heating.Energy,2004,29(8):1117-1137.
    [47]苏亚欣,费正定,杨翔翔.太阳能冷热电联供分布式能源系统的研究.能源工程,2004(5):24-27.
    [48]李新禹,苏文.生物质能用于冷热电三联供系统的可行性.能源工程,2005(4):14-16.
    [49]孟薇.浅析我省农业生物质能热电联供综合利用.应用能源技术,2007(3):18-20.
    [50]赵廷林,曹冬辉,陈夫进等.生物质能吸收式制冷系统的研究.农业环境与发展,2007(3):33-35
    [51]R. Chacartegui, D. Sanchez, A. Munoz, T. Sanchez. Real time simulation of medium size gas turbines.Energy Conversion and Management,2011,52(1):713-724.
    [52]F. Haglind.Variable geometry gas turbines for improving the part-load performance of marine combined cycles-gas turbine performance.Energy,2010,35(2):562-570.
    [53]刘亚仑,翁一武,余南华,陈启梅.楼宇冷热电联供系统变工况仿真研究[J].能源技术,2005,26(2):72-76.
    [54]付德钢.直燃型双效溴化锂制冷机扰动工况的动态仿真[J].上海交通大学学报,2004,2:281-285.
    [55]张泰岩.基于微型燃气轮机的冷热电联供系统仿真[D].保定:华北电力大学硕士学位论文,2006.
    [56]李淑英.船用燃气轮机发电机组仿真技术研究[D].哈尔滨工程大学硕士论文数据库,2008,5.
    [57]安青松.基于燃气轮机的冷热电三联供系统优化模拟:[硕士学位论文],天津大学,天津:2004.
    [58]Robert Fanner. Gas Turbine World 2003 GTW Handbook. Fairfield:Pequot Publishing, 2003
    [59]冯志兵.燃气轮机冷热电联产系统集成理论与特性规律[博士学位论文],中国科学院研究生院,2006
    [60]余又红,王义等.回热循环燃气轮机中回热器的动态特性研究[J].海军工程大学学报,2005,17(2):19-22
    [61]张娜,蔡睿贤.单轴恒速燃气轮机及其功热并供装置的变工况显式解析解[J].工程热物理学报,1998,19(2),141-144
    [62]冯志兵,金红光.燃气轮机冷热电联产系统及其热力分析[J].动力工程,2005,25(4):487-492
    [63]倪维斗,徐向东,李政等.热动力系统建模与控制的若干问题[M].北京:科学出版社,1996.
    [64]Jose Luz Silveira. Combined cycle versus one thousand diesel power plants:pollutant emissions, ecological efficiency and economic analysis. Renewable and Sustainable Energy Reviews.2007,11:524-535.
    [65]戴永庆.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,2000
    [66]车得福,刘艳华.烟气热能梯级利用[M].北京:化学工业出版社,2006
    [67]V. Havelsky. Energetic efficiency of cogeneration systems for combined heat, cold and power production. International Journal of Refrigeration,1999,22:479-485
    [68]Mehmet Kanoglu. Performance characteristics of a Diesel engine power plant. Energy Conversion and Management,2005,46:1692-1702
    [69]傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学出版社,2005
    [70]和彬彬,杨勇平,段立强.微型燃气轮机冷热电联供系统变工况性能研究[J].热能动力工程,2008,23(6),615-619
    [71]冯志兵,金红光.冷热电系统特性的探讨[J].工程热物理学报,2004,9(25):1-4
    [72]郑国耀,李道林,张时飞.黄浦区中心医院“热、电、冷”三联供工程设计及实践[J].动力工程,1999,19(3):59-64
    [73]刘凤强,张时飞,潘卫国等.楼宇冷热电联供系统的变工况及热力学分析[J].动力工程,2002,22(5):2005-2010
    [74]E. Cardona, A. Piacentino. Optimal design of CHCP plants in the civil sector by thermoeconomics. Applied Energy,2007,84,729-748
    [75]马原良,曹家枞.楼宇冷热电联供系统的优化设计研究[J],建筑热能通风空调.2008,27(2):77-80
    [76]LIH,Nalim R,Haldi P-A.Thermal Economic optimization of a distributed multi-generation energy system-a case study of Beijing. Applied Thermal Engineering,2006,26:709-719.
    [77]Chicco G,Mancarella P.Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems.models and indicators.Energy,2008,33(3):410-417.
    [78]孔祥强,李瑛,王如竹,黄兴华.燃气轮机冷热电联供系统优化与节能经济性研究[J].暖通空调,2005,35(7):4-9
    [79]雷英杰,张善文等.遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700