船用蒸汽动力装置调节/保护多目标控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船用的蒸汽动力装置是船舶的主要设备,在其运行过程中,负荷变化频繁、幅度大,对系统的响应性能要求高,而其中的机炉系统控制则是蒸汽动力装置控制中的一个难点。由于其具有非线性、强耦合、参数时变、大迟延等特性,采用常规的控制策略往往不能满足系统的要求。因此锅炉与汽轮机在运行过程中,特别是大变工况过程中要兼顾船舶安全性和快速性,两者的协调控制显得尤为重要。本文在分析了机炉系统动态特性模型的基础上,对其进行控制方法研究。
     本文首先根据船用蒸汽动力装置复杂的气动热力过程分别建立了船舶锅炉模型和汽轮机电液控制系统非线性模型。接着进行了仿真计算,从机理上分析所得模型的正确性。由此得到的船用蒸汽动力装置非线性模型是分析机组特性、研究其控制规律、并对控制系统进行设计和仿真的基础。
     其次,在现有的船舶蒸汽动力装置的控制方案的基础上,本文采用了锅炉侧采用直接能量平衡(DEB)控制方法的锅炉跟随汽轮机的控制系统。接着分析了DEB控制系统的物理规律。然后通过仿真得出船用蒸汽动力装置在大范围变工况和小范围变工况时的各个参数动态响应,最后提出了船用蒸汽动力装置在大范围变工况时的安全性和快速性之间的矛盾。
     船用蒸汽动力装置运行时,工况经常大范围变化的快速响应与安全性之间的矛盾,决定船用蒸汽动力装置控制的特殊性。为此论文在结合船舶蒸汽动力装置的安全运行要求的基础上,论述了船舶蒸汽动力装置的调节/保护的基本思想,给出了船用蒸汽动力装置调节/保护的控制结构,并提出了一种基于Max/Min的切换规则并在此基础上设计PI控制器,最后分析了基于Max/Min的切换规则的存在的问题,给出了解决的方法。最后通过仿真验证了—基于切换控制的船用蒸汽动力装置调节/保护的控制方法能够较好的解决船用蒸汽动力装置工况大范围变化时的快速响应与安全性之间的矛盾。
     为满足船舶在紧急工况下的安全性和快速性的统一,根据船用汽轮机的特点—存在倒车汽轮机,提出了结合正倒车汽轮机协调控制的方法,最后通过仿真计算验证了正倒车协调方法的有效性。
Ship steam power equipment is one of the most important equipments of ship. when it was running, the loads varied frequently, and the varying range is big. So it required a high response performance for the system. Furthermore, the boiler-turbine control is one difficulty of the steam power equipment control. Because the characters of nonlinear, strong coupling, time-vary and big delay, routine control strategy can't satisfy the requirements of the system. It is important for both to be coordinated better during the operation of the boiler and the turbine, especially off-design working condition. Based on the analysis of the dynamic characters of the boiler-turbine system, this dissertation researched the mathematic modeling and control of the coordinated system.
     First, establish the nonlinear model of the boiler-turbine by it’s complex thermodynamic process which include improving the existed thermodynamic model of the boiler and establishing the Digital Electro-Hydraulic control of model. In nature, it is a two-input and two-output of the nonlinear characteristics model. Then we do a series of simulation calculation using this model, and validate the correctness of the model from the side of physics. Analyze the model characteristic, research its control law, and design the controller system are on the basis of the nonlinear components model. The components model also the basis to establish real-time model and expansion the research of performance parameters.
     Based on analyzing two basic schemes—boiler followed turbine and turbine followed boiler in the traditional boiler-turbine control system, this dissertation expatiated the principle of coordinated control system and given its structure diagram. Then we use the control strategy of boiler followed turbine. The DEB (Direct Energy Balance) control scheme, which is now widely in practice, is able to realize the thought of Gain Scheduling and Static decoupling, partially neutralize the nonlinearity of the system Then we give dynamic response of every parameter in the small and big loads varying.
     The paper considered the control problems of ship steam power equipment and the contradiction between the high maneuverability and safety due to the big loads varying frequently. The paper analyzed the control tasks, safe boundaries during working, the boiler-turbine working conditions. And the paper expounded the multi-objective control problem is a multi-model control problem, and proposed the multi-loop control system in structure, and according to the Max/Min switching strategy to control. Then we design the PI control system. Based on this switching strategy, analyze the problem of switching strategy and give the solution of the problem. Finally, we validate the correctness of the model by simulation calculation.
     Moreover, according to the properties of ship main turbine it has reverse turbine. In order to meet the combination of control strategy on the safety and flexibility, we propose a feasible solution to advance and reverse conditions. Finally, we validate the correctness of the model by simulation calculation.
引文
1 F.P.de Mello, Fello.Dynamic Models for Fossil Fueled Steam Units in Power System Studies. IEEE Transactions on Power Systems, Vo1.6, No.2,May 1991:753-761
    2 Bruce.P.Gibbs, etc. Application of Nonlinear Model-Based Predictive Control to Fossil Power Plants, Proc. Of the 30th conference on Decision and Control, England, 1991
    3曾德良.汽包锅炉的动态模型结构与负荷/压力增量预测模型.中国电机工程学报. 2000(12):75-79
    4 Liu changliang. Nonlinear Boiler Model of 300MW Power Unit for system Dynamic Performance studies,2001 IEEE ISIE, Vo1.2,June,2006, Pusan, Korea
    5 K.J. Astrom, R.D. Bell. Dynamic models for Boiler-turbine-alternator Units: Data Logs and Parameter Estimation for a 160MW Unit. Dep. Automatic Contr. Lund Institute Tech. Lund, Sweden, RepLUTFD2/(TFRT-3192), 1987:1-137
    6曾德良. 500MW机组锅炉模型及实验分析.中国电机工程学报. 2000,20(12):75-79
    7张贻深.对协调控制系统中几种锅炉主控前馈信号的分析.电力技术. 1986(9)
    8张贻深. 200MW供热单元机组协调控制系统.华北电力学院学报. 2007(3)
    9李遵基.单元机组数字式协调控制系统.电力系统自动化. 2006(3),53-57
    10牛玉广. SPEC200Micro自整定功能的应用.自动化仪表. 1989(5),31-33
    11陈彦桥. 200MW直流单元机组协调控制系统设计与应用.华北电力技术. 2000(1):6-8
    12李希武.直接能量平衡法(DEB)控制系统分析.中国电力. 2000(6):65-69
    13翁—武,于达仁,徐基豫.锅炉跟随控制的构成—兼论直接能量平衡控制的动态特性.动力工程. 2001, 21(1): 1050-1053, 1009页
    14 Chen K W, Asok R. Robust Wide-Range Control of Steam-Electric Power Plants. IEEE Transactions on Control Systems Technology, 1997,6(1):74-88P
    15 Tan W, Marquez H J, Chen T W. Multivariable Robust Controller Design for a Boiler System. IEEE Transactions on Control Systems Technology,2002, 10(5): 735-742P
    16 Frederic L M, Gilles D. Design of a Controller for a Steam Generator of a Power Plant Using Robust Control and Genetic Algorithm[C]. Proceedings of IEEE International Conference on Control Applications, Glasgow, Scotland, U. K, 2002, 1050-1055P
    17 Hogg B W, El-Rabaie N M. Generalized predictive control of steam pressure in a drum boiler. IEEE Transactions on Energy Conversion, 1990,6(3): 485-492P
    18 Hogg B W, El-Rabaie N M. Multivariable generalized predictive control of a boiler system. IEEE Transactions on Energy Conversion, 1991, 6(2):282-288P
    19 Lu S, Hogg B W. Predictive coordinated control for power-plant steam pressure and power output. Control eng. Practice, 1997, 5(1): 79-84P
    20 Prasad G, Irwin G W, Swidenbank E, Hogg B W. Plant-wide predictive control for a thermal power plant based on physical plant model. IEEE Proceedings-Control Theory and Applications, 2000, 147(5): 523-537P
    21于达仁,翁一武,王仲奇.火电单元机组的柔性控制.中国电机工程学报. 2002, 22(7): 129-133页
    22 Mortensen J H, Moelbak T, Andersen P, Pedersen T S. Optimization of boiler control to improve the load-following capability of power-plant units.Control Engineering Practice, 1998, 6: 1551-1539P
    23 IsidoriA. Nonlinear Control Systems (Second Edition).New York, Springer-verlag, l989
    24 Bolek W, Sasiadek S, Wisniewski T. Li. Nearization of non-linear MIMO model of large power plant station. Proceedings of American Control Conference, 2000:4435-4436P
    25葛友,李春文.反馈线性化方法在锅炉—汽轮机系统控制中的应用.清华大学学报(自然科学版). 2001, 41(7): 125-128页
    26房方,刘吉臻,谭文.单元机组协调系统的非线性内模控制.中国电机工程学报. 2004, 24(4): 195-199页
    27王东风.锅炉—汽轮机系统的逆系统控制方法.自动化与仪器仪表. 2001, 27(1): 12-13, 19页
    28 Krstic M, Kanellakopoulos I,Kokotovic P. Nonlinear and Adaptive Control Design. New York: John Wiley&Sons, 1995
    29 Bolek W, Sasiadek J, Wisniewski T. Adaptive backstepping control of a power plant station model. IFAC 15th Triennial World Congress, 2002.1650-1655P
    30陈彦桥,刘吉臻,谭文.模糊多模型控制及其对300MW单元机组协调控制系统的仿真研究.中国电机工程学报. 2003, 23(10): 199-203页
    31黄祖毅,李东海,姜学志.机炉协调的增益调度伺服系统.中国电机工程学报. 2003, 23(10): 191-198页
    32 Ben-Abdennour A and Lee K Y. Autonomous Control System for Boiler-Turbine Units. IEEE Transaction on Energy Conversion, 1996,11(2): 401-406P
    33 Beheshti M. T. H and Rezaee M. M. A New Hybrid Boiler Master Controller. Proceedings of American Control Conference, Anchorage, AK,2002, 2070-2075P
    34 Abdennour A. An intelligent supervisory system for drum type boilers during severe disturbances. Electrical Power and Energy Systems, 2002, 22:381-387P
    35 Harnold Chi-Li-Ma, Lee K Y. Free-model based neural networks for a boiler-turbine plant. Power Engineering Society Winter Meeting, PA, USA,2000, 1140-1144P
    36 Alturki F A, Abdennour A B. Neuro-fuzzy Control of a steam boiler-turbine unit. Proceedings of International Conference on Control Applications, Hawaii, USA, 1999,1050-1055P
    37李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究.中国电机工程学报. 2002, 22(4): 90-93页
    38 Kim Dong-Wan, Hwang Hyun-Joon, Hwang Chang-Sun. A design on model following optimal multivariable H∞control system using GA.Proceedings of the 37th SICE Annual Conference, Chiba, Japan, 1998,975-978P
    39 Dimeo R D, Lee K Y. The use of a genetic algorithm in power plant control system design. Proceedings of 3`d IEEE Conference on Decision and Control, New Orleans, LA, 1995, 737-742P
    40曾德良.基于速率优化的智能协调控制系统的研究和应用.保定:华北电力大学.1999
    41刘恩鸽.机炉协调控制技术研究.哈尔滨工业大学硕士论文. 2006
    42张少凯,吕淑菊,刘环.船用蒸汽动力装置机炉协调系统的总体结构设计.热能动力工程. 2005, 20(6): 643-646页
    43 Jogen Malmborg. Analysis and Design of Hybrid Control Systems[D]. Department of Automatic Control, Lund Institute of Technology, Sweden, 1998.
    44 Michael Tittus, Bo Egardt. Control Design for Integrator Hybrid Systems. IEEETransactions on Automatic Control, 1998, 43(4):491-500
    45 Panos J. Antsaklis. Special Issue on Hybrid Systems: Theory and Applications A Brief Introduction to the Theory and Applications of Hybrid Systems. Proceedings of the IEEE, 2000, 88(7):879-887
    46孙文安.几类线性切换系统的鲁棒控制.东北大学博士论文. 2005
    47孔洋洋.不确定的切换系统鲁棒控制.曲埠师范大学硕士论文. 2007
    48 F.P.de Mello Fellow. Boiler models for system performance studies [J]. IEEE. Trans. ON. P.S. 1991,6:66-74
    49 Le Huu Son. Sam results of analyzing of marine steam turbine propulsion plant in the transient states using the mathematical model. IEEE. 2004,8:2296-2301
    50倪维斗,徐基豫.自动调节原理与透平机械自动调节.机械工业出版社, 1981
    51郑起,曹在基. DEB协调控制系统.动力工程. 1989,9(4): 1-8页
    52陈来九.单元机组协调控制系统策略─兼议L&N公司协调控制的发展.火电厂热工自动化. 1993,(1): 17-22
    53于达仁,徐志强等. DEB的新认识—增益调度控制.热能动力工程.1999 14(5):379-381
    54郑昶,曹在基. DEB协调控制系统.动力工程. 1989,(4): 1-83
    55陈允济,易凡. DEB IV协调控制系统的特点及分析.华东电力. 1996,(4): 6-10
    56王冲.推进汽轮机建模与智能控制算法研究.哈尔滨锅炉涡轮机研究所. 2005:47-52
    57樊泉桂,阎维平.锅炉原理.中国电力出版社,2004
    58张俊迈,胡德明.船用汽轮机.北京:国防工业出版社, 1992.
    59何惠明.船艇波浪中自航试验研究.上海船舶运输科学研究所学报. 2005, 28(1):1-10
    60王凤武,吴兆麟.船舶耐波性与船舶航速.世界海运. 2003, 26(3):1-3
    61何惠明,王维宇,高家镛等.浅吃水肥大船螺旋桨出水概率的试验研究.交通部上海船舶运输科学研究所学报. 1986, 18(2):66-71
    62何保成.弹用涡扇发动机控制系统故障仿真研究[D].哈尔滨工业大学工程硕士论文. 2000
    63高军伟.切换系统建模、控制理论与应用研究.铁道科学研究院.2003:61-65
    65丁继民.船舶控制安全航速的基本原则.航海工程. 2002,149(5):33-36
    64陆金铭.船舶动力装置概论.国防工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700