煤田自燃灾害遥感信息与区域地质综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层自燃是煤炭资源的主要危害之一,它对煤层的破坏作用巨大,导致自燃煤层周围煤炭资源的开采困难和贬值,同时也对生态环境产生了恶劣影响。在全球范围内,许多煤田都存在煤层自燃问题。由于我国西北地区煤田特殊的地理位置以及适宜的气候条件,使中国成为世界上煤田自燃灾害最为严重的国家。
     我国大面积煤田火灾主要分布在新疆、内蒙古和宁夏等地区,给我国煤炭资源及生态环境造成很大损失和破坏,监测和治理煤火已成为亟待解决的问题。因此本文在充分研究掌握煤田区域地质特征基础上,选择具有代表性的内蒙古古拉本地区进行重点研究,以遥感技术和煤田火区自燃研究的新技术、新方法为指导思想,结合区域地质结构构造特征,应用高光谱遥感图像、TM遥感图像等多种遥感图像,重点研究区域地质构造对煤火的控制作用、高光谱图像的预处理、热红外和烧变岩信息提取等,掌握高光谱遥感在煤田自燃领域的研究方法,达到煤火有效监测的目的。
     通过对内蒙古古拉本矿区煤田火区进行区域地质和遥感信息的综合研究,所取得的主要进展如下:
     1.利用高光谱夜航图像进行了火区的准确定位从宏观上准确圈定了火区范围、温度异常区范围、高温异常区范围。
     2.利用夜航航空高光谱扫描图像进行了地物红外辐射温度反演。研究表明大于70℃的区域可作为高温异常区。图像辐射温度的大小不仅与实际辐射温度高低有关,还与热异常面积有关。
     3.根据高光谱遥感图像各波段包含的信息量、波段间的相关性及影像中各地物亮度值光谱曲线的差异性来进行最佳波段选择,以达到遥感数据各地物的有效分类,弥补了以往波段选择的不足之处,取得了较好的效果。
     4.首次从区域构造角度对古拉本地区煤层的分布以及煤田自燃特征进行了分析,认为区域地质对煤田自燃的控制起着决定性的作用。
     5.对研究区的高光谱遥感数据进行了多种方法的预处理,使图像质量得到很大改善,为后续信息提取研究提供了良好的信息源。
     6.对研究区广泛发育的烧变岩信息进行了提取研究。
     7.采用热红外遥感图像对煤火异常信息进行了分析和处理,甄别出了重要的热异常信息。
Spontaneous combustion of coal seam is one of the main hazards of coal resources, it hugely destroyed underground coal seams, leading to those resources unable to exploitation and coal resources devaluation which around the spontaneous combustion coal seams, it has produced a bad influence to the ecological environment, causing harmful material in the air far exceeded its normal level. On a global scale, there are many coalfields suffered from spontaneous combustion of coal seam problems. Because of the special geographic position and suitable climatic conditions, making the coalfields in Northwest China become the world's most serious coalfield disasters affected by spontaneous combustion.
     China's large area of coalfield fires mainly distributed in Xinjiang Uigur Autonomous Region, Inner Mongolia Autonomous Region and Ningxia Hui Autonomous Region, and other areas, it caused great loss and destruction to China's coal resources and to the ecological environment, monitoring and controlling coal fires have become issues requiring urgent solution. Therefore,under the the full study and master of the geological features in coalfield region, this paper choosing the representative region of Gulaben in Inner Mongolia to carry out focused research, with remote sensing technology and new technologies of coalfield fire spontaneous combustion, new methods as guiding ideology, in combining with the regional geological structural characteristics, applying hyperspectral remote sensing imagery, TM remote sensing images and other remote sensing imageries, focus on the controlling of regional tectonic to the coal fires, preprocessing of hyperspectral image, thermal infrared and burning rock information extraction, mastering the research methods of hyperspectral remote sensing in the coalfield areas of spontaneous combustion, to achieve the purpose of effective monitoring the coal fires.
     Through the comprehensive study of regional geological and remote sensing information in Gulaben Coal Mining Area Fire District, Inner Mongolia, the major progress achieved by the following:
     1. Using hyperspectral night image to precisely positioning the fire area, from the macro scale accurately delineated the fire area, the area of abnormal temperature, high temperature anomaly area.
     2. Using the night Airborne Hyperspectral scanning image calculating the infrared radiation temperature from the surface features. Research shows that the temperature anomalies of those regions higher than 70℃can be used as high-temperature zone. Image is not only the size of radiation temperature and the actual level of radiation temperature, but also the thermal anomaly area.
     3. According to the hyperspectral remote sensing image information contained in different bands, the correlation between bands and the brightness spectrum curves heterogeneity of the various parts of ground objects in the image to choosing the best bands, in order to achieve the effective classification of various ground objects on the remote sensing data, cover the deficiencies of band selection, achieving better results.
     4. Analyzing the coal seam distribution and coalfield spontaneous combustion characteristics of Gulaben area from the perspective of regional geological for the first time, considering the regional geological characters play a decisive role in the controlling of coalfield spontaneous combustion.
     5. Conducting a variety of preprocessing methods to hyperspectral remote sensing data, making a significant improvement in image quality, providing a good source of information to the follow-up information extraction.
     6. Carrying out the information extracting to the extensive distribution burned rock in the research area.
     7. Analyzing and transacting the coal fires anomaly information using thermal infrared remote sensing images, screening out important geothermal anomaly informations.
引文
Agarwal,Abhishek,LeMoigne,Jacqueline,Joiner,Joanna et al.Wavelet dimension reduction of AIRS infrared(IR)hyperspectral data[J].International Geoscience and Remote Sensing Symposium(IGARSS),2004.
    Ahmed,F.Relationships of mineral deposits and lineament analysis of the Red Sea region,Northeastern Sudan[J].Adv.Space Research,(2):71-79,1983.
    Ananaba,S E et al.Evidence of tectonic control of mineralization in Nigeria from lineament density analysis:A Landsat-study[J].International Journey of Remote Sensing.(10),1445-1453,1987.
    Anupma Prakash,Zoltan Vekerdy.Design and implementation of a dedicated prototype GIS for coal fire investigations in North China[J].International Jorunal of Coal Geology,2004(59):107-119.
    Arief A.S.&.Gillies A.D.S.A practical test of coal spontaneous combustion combustion[J].In Proceedding of the AusIMM Annual conference,Newcastle,Melbourne,Australia:The Austanlasian Institute of Mining and Metallurgy,1995,111-114.
    Baumgardner,M.F.L.F.Silva,L.L.Biehl,and E.R.Stoner.Reflectance properties of soils[J].Advances in Agronomy,1985,38,1-44.
    Boer C B de,Hoof A A M van,Zhang X M,et al..Native Iron inBacked Sediments Due to Spontaneous Underground Combustion of CoalSeam[C].Annual General Assembly of European Geophysical Society,1997,23-25.
    Boris Zhukov,Klaus Briess,Eckehard Lorenz.Detection and analysis of high-temperature events in the BIRD mission[J],Acta Astronautica,2005,56(1-2):65-71.
    Bosch,Edward H and Lin,Jeng-Eng.Wavelet-based dimension reduction for hyperspectral image classification[J].Proceedings of SPIE-The International Society for Optical Engineering,v5093,2003,57-69.
    Btooks Kevin,Svanas Nicoloas,Glasser David.Critical temperatures of some Turkish coals due to spontaneous combustion[J].Journal of Mines,Metals & Fuels.1988,36(9):434-436.
    Carlos Leiva,Luis F.Vilches,Jose Vale.Influence of the type of ash on the fire resistance characteristics of ash-enriched mortars[J].Fuel.2005,84(11):1433-1439.
    Cecill C B,Tewal S.Coal extraction-environmental prediction[Z],U.S.Geological Survey Fact Sheet 073-02,Sep.2002.
    Chen Xiaodong.On the fundamentals of diffusive self-heating in water containing combustible materials[J].Chemical Engineering and Processing,1998,37(5):367-378.
    Clemens,A.H.,Matheson,T.W.,Rogers,D.E.Low temperture oxisation studies of dried new Zealand coals[J].Fuel,1991,70,215-221.
    Clemens,A.H.,Matheson,T.W.,Rogers,D.E.DTA studies of the Low temperature oxisation of the tow rank coals[J].Fuel,1990,69,255-256.
    Cloutis E A.Hyperspectral geological remote sensing:evaluation of analytical techniques[J].Int J.Remote Sensing,1996,17(12):2215-2242.
    Colaizzi,Gary J.Prevention,control and/or extinguishment of coal seam fires using cellular grout[J].International Journal of Coal Geology,2004(59):75-81.
    D.A.Landgrebe,S.B.Serpico,M.M.Grawford,Vern Singhroy.Introduction to the Special Issue on Analysis of Hyper-spectral Image Data[J].IEEE Trans.On Geoseience and Remote Sensing.2001,39(7):1343-1344.
    D.F.Michael and R.M.Mersereau.On the impact of PCA dimension reduction for hyperspoctral detection of difficult targets[J].IEEE Geoscience and Remote Sensing Letters,2005,2(2):192-195.
    D.Manolakis and D.Marden.Dimensionality reduction of hyperspectral imaging data using local principal components transforms[J].Proceedings of SPIE,2004,5425:393-401.
    D.R.Humphreys.A study of the propensity of Queensland coals to spontaneous combustion[R],METhesis,The University of Queenslands,Brisbane,Australia,1979,108-109.
    Deng W.Wan Y Q,Zhao R C.Detecting coal fires with a neural network to reduce the effect of solar radiation on landsat thematic mapper thermal infrared images[J].International Journal of Remote Sensing,2001,22(6):933-944.
    Eleanora beral Robbins.Microbial and spectral reflectance techniques to distinguish neutral and acidic drainage[Z].USGS Fact Sheet FS-118-99,1999.
    Feng K.K.Spontaneous combustion of Canadian coals[R].CIM Bulletin.1985,78(5):71-75.
    G.Venkataraman,B.Babu Madhavan,et al.Spatial Modeling for Base-Metal Mineral Exploration Through Integration of Geolgieal Data Sets[J].Natural Resources Research,Vol.9,No.1,27-41,2000.
    Genderen,Van J L,Cassells C J S,et al.The Synergistic use of remote Sensing data for the detection of Underground Coal fires[C].International archives of Photogrammetry and Remote Sensing,1996(7):9-19.
    Goetz A F H,Rowan L C.Geological remote sensing[J].Science,1981,211:781-791.
    Gouws M J,Gibbon G J,Wade L,et al.Adiabatic apparatus to establish the spontaneous combustion propensity of coal[J].Mining Sci.Technol.,1991,13(3):417-422.
    Green A.A.,Berman M.,Switzer P.,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J].IEEE Trans.Geosci.Remote Sens.,1988,26(1):65-74.
    Hapke B.Bidireetioual reflectance spectroscopy Theory[J].Journal of Geophysical research,1981,86(B4):3039-3054.
    Heffern,E.L.;Coates,D.A.Geologic history of natural coal-bed fires,Powder River basin,USA[J].International Journal of Coal Geology,2004(59):25-47.
    Hunt G R.(1979)Near-infrared(1.3-2.4nm)spectral of alteration minerals-potential for use in remote sensing[J].Geophysics 44(12):1974-1986.
    Ingo Walter,Klaus Briess,Wolfgang Baerwald.A microsatellite platform for hot spot dedection[J].Acta Astronautica,2005,56(1-2):221-229.
    J.C.Jones.A new more reliable test for the propensity of coal and carbons to spontaneous heating[J].Journal of loss prevention in the process Industries,2000(13),67-71.
    J.C.Jones.Calculation of the Frank-Kamenetskii critical parameter for cubic reactant shape from experimental results on bituminous coals[J].Fuel,1999(78):89-91.
    J.M.Kuchta,V R.Rowe,D.S.Brugress.Spontaneous combustion susceptibility of US coals[R].US Bureu of Mines Report of Investigations RI 8474,1980,37.
    Jia Xiuping,J.A.Richards.Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification[J].IEEE Geoscience and Remote Sensing,1999,37(1):538-542.
    Jia,Xiuping,Richards,John A.Efficient transmission and classification of hyperspectral image data[J].IEEE Transactions on Geoscience and Remote Sensing.2003,41(5):1129-1131.
    Jimenez Luis O,Rivera-Medina Jorge L.Integration of spatial and spectral information homogenous by means of unsupervised extraction and classification for objects applied to multispectral and hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing.2005,43(4):844-851.
    K.Briel,W.Birwald,E.Gill.Technology demonstration by the BIRD-mission[J].Acta Astronantica,2005,56(1-2):57-63.
    Lee J.B.,Woodyatt S,and Berman M.Enhancement of high spectral resolution remote-sensing data by a noise-Adjust principal components transform[J].IEEE Trans.Geosci.Remote Sens.,1990,28(3):295-304.
    M.Misz,M.Fabianska and S.Cmiel.Organic components in thermally altered coal waste:Preliminary petrographic and geochemical investigations[J].International Journal of Coal Geology,2006.
    Madeira Netto,J.Spectral reflectance properties of soils[J].Photo-interpretation,1996,2,59-76.
    Mansor S B,Shilin B V,Gornyi V I.Monitoring ofunderground coal fires using thermal infrared data[J].International Journal of Remote Sensing,1994,15(8):1675-1685.
    Martin R R,Macphee J A,Younger C.Sequential derivation and the SIMS imaging of coal[J].Energy sources.1989,11(1):1-8.
    N.Kambhatla and R.A.Leen.Dimension reduction by local principal component analysis[J].Neural Computation 1997,9(7):1493-1516.
    Nolter,Melissa A.;Vice,Daniel H.Looking back at the Centralia coal fire:a synopsis of its present status[J].International Journal of Coal Geology,2004(59):99-106.
    Obukhov & Orlov(1964):in:Sov.Soil Sci.,2:174-184,cited from Baumgardner et al.(1985):Reflectance properties of soils[J],in:Adv,in Agronomy,38:1-44.
    Prakash A,Fielding E J,Gens R.Data fusion forinvestigating land subsidence and coal fire hazards in acoal mining area[J].International Journal of Remote Sensing,2001,22(6):921-932.
    Prakash A,Gem R,Vekerdy Z.Monitoring coalfires using multi-temporal night-time thermal imagesin a coalfield in north-west China[J].International Journal of Remote Sensing,1999,20(14):2883-2888.
    Prakash A,Sastry R G S,Gupta R P,et al..Estimating the depth ofburial hot features from thermal IR remote sensing data:a con-ceptualapproach[J].Int.J.Remote Sensing,1995,(16):2503-2510.
    Prakash,A..Coal Fire Web Page[EB],Geophysical Institute,Uni-vcrsity of Alaska-Fairbank.http://www.gi.alaska.cdu/~prakash(November 2003).
    Prakash,A.,Fielding,E.J.,Gens R.,van Genderen,J.L.,Evans.Data infusion for investigating land subsidence and coal fire hazards in a coal mining area[J].International Journal of Remote Sensing,2000,22(6):921-932.
    Prakash,Anupma;Vekerdy,Zoltan.Design and implementation of a dedicated prototype GIS for coal fire investigations in North China[J].International Journal of Coal Geology,2004(59):107-119.
    R.S.Chatterjee.Coal fire mapping from satellite thermal IR data-A case example in Jharia Coalfield,Jharkhand,India[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,60(2):113-128.
    Reinhaeckel G,Zhukov B,Oertel D,Mueller A.Unmixing of simulated aster data with applications for the assessment of mining impacts in central Germany[A].Imaging Spectrometry Ⅳ Proceedings of SPIE[C].Vol 3438,345-354,1998.
    Roger N.Clark,Spectroscopy of Rocks and Minerals,and Principles of Spectroscopy,Derived from Chapter Ⅰ[A].In:A.Renez Manual of Remote Serving[C].New York:John Wiley and Sons,Inc,1999.
    S.Kaewpijit,J.Le Moigne,and E1-Ghazawi.Feature reduction of hyperspectral imagery using hybrid wavelet-principal component analysis[J].Optical Engineering,v 43,n 2,February,2004,350-362.
    S.C.Banerjee,spontaneous combustion ofcoal and mine fires[R],Balkema,Rotterdam,1985,166.
    Singh R N,Shonhardt J A,Terezopoulos N.A new dimension to studies of spontaneous combustion of coal[J].Mineral Resources Engineering,2002,11(2):147-163.
    Smith B D,McCafferty A E.Coutilization of airborne magnetic electromagnetic,and radiometric data in abandoned mine land investigations[A].Fifth International Conference on Acid Rock Drainage[C].20-26 May 2000,Denver,CO Society for Mine Metallurgy,and Exploration,Inc.(SME),Littleton,CO.ISBN;0-87335-182-7.Vol 2,1525-1530,2000.
    Stephen A.Shaver,Cortland F.Eble,James C.Hower.Petrography,palynology,and paleoecology of the Lower Pennsylvanian Bon Air coal,Franklin County,Cumberland Plateau,southeast Tennessee[J].International Journal of Coal Geology,2006,67(1-2):17-46.
    Stracher,Glenn B.;Taylor,Tammy P.Coal fires burning out of control around the world:thermodynamic recipe for environmental catastrophe[J].International Journal of Coal Geology,2004(59):7-17.
    Voigt,S.et al.Integrating satellite remote sensing techniques for detection and analysis of uncontrolled coal seam fires in North China[J].Fuel and Energy Abstracts,2005,46(2):84.
    Whitehouse,Alfred E.;Mulyana,Asep A.S.Coal fires in Indonesia[J].International Journal of Coal Geology,2004(59):91-97.
    Wiwik Sujanti,Dong-ke Zhang,Xiaodong Cheng,Low-teperature oxidation of coal studied using wire-mesh reaction with both steady-state and transient methods[J],Combustion and Flame,1999(117):646-651.
    Zhang X,Genderen J V,Guan H Y,et al.Spatial analysis of thermal anomalies from airborne multi-spectral data[J].International Journal of Remote Sensing,2003,24(9):3727-3742.
    Zhang X,Genderen J V,Kroonenberg S B.A method to evaluate the capability of Landsat-5 TM band 6 data for sub-pixel coal firedetection[J].International Journal of Remote Sensing,1997,18(15):3279-3288.
    Zhang X,Zhang J,Kuenzer C,et al.Capability evaluation of 3-Sμm and 8-12.5μm airborne thermal data for underground coal fire detection[J].International Journal of Remote Sensing,2004,25(17):3047-3058.
    A.K.格卢赫.利用航空摄影资料解译评述构造断裂带中矿床的予期分布[J].遥感专辑.武汉地质学院情报资料室,1979.
    I.M.查科乌-艾克,J.W.诺曼.尼日利亚卫星影象上的含矿断裂[J].遥感专辑.武汉地质学院情报资料室,1979.
    N.B.潘菲若娃,确定矿体内因火灾的中心位置[J].国外煤矿安全信息,1995(6):42-44.
    Rafael C.Gonzalez,Richard E.Woods.数字图像处理(第二版)[M].北京:电子工业出版,2003.
    阿斯阔成斯基.煤矿火灾[M].矿业学院编译室译.北京:煤炭工业出版社,1958.
    曹代勇.加强煤炭资源地质研究确保国家能源安全[J].中国矿业,2004,13(11):5-7.
    查哈罗夫.煤炭自燃的化学活性鉴定[J].工业劳动安全,1989(7):38-39.
    陈传波,金先级.数字图像处理[M].北京:机械工业出版社,2004.
    陈赶良,杨柏林.黔桂微细浸染型金矿区遥感线性体的统计特征及其与金矿的关系[J].黄金科学技术.Vol.3 No.4,1995.
    陈孟进,汪泽成.鄂尔多斯西缘前陆盆地油气地质[M].北京:石油工业出版社,2006.
    陈建平,胡明铭,李巨初.康滇地轴中南段区域构造格架的遥感地质统计分析[J].成都理工学院学报,1999,26(1):78-81.
    陈宁强,戴锦芳.苏南现代化进程中的遥感土地利用动态监测[J].长江流域资源与环境,1999,8(3):288-293.
    陈云浩,李京,杨波.基于遥感和GIS的煤田火灾监测研究-以宁夏汝箕沟煤田为例[J].中国矿业大学学报,2005(34):226-230.
    崔承禹、支毅乔、张晋开,等.红外遥感用于地震预报的基础实验研究[J].见:遥感科学新进展[M],北京:科学出版社,1995.
    崔洪义.煤自燃早期预测预测与火源探测技术[M].北京:煤炭工业出版社,2002.
    邓军.综放面采空区温度场动态数学模型及应用[J].中国矿业大学学报,1999(2):179-181.
    地质构造判释委员会.日木东北地方性线状特征与矿床分布关系[J].遥感专辑.武汉地质学院情报资料室,1979.
    杜培军,郭达志.GIS支持下遥感图像中采煤塌陷地提取方法研究[J].中国图像图形学报,2003,8(2):231-235.
    付中英,谈干军.塌陷土地时空变异性动态监测方法[J].江苏煤炭,1999,(1):10-11.
    管海晏,冯·享特伦,谭永杰.中国北方煤田白燃环境调查与研究[M].北京:煤炭工业出版社,1998.
    黄汲清.中国主要地质构造单位[M].北京:地质出版社1954,63-64.
    黄侃.煤矿重大灾害事故救灾与勘察技术[M].北京:煤炭工业出版社,2000.
    黄乐亭.地表动态沉陷变形的三个阶段与规律[J].矿山测量,2003,3:18-21.
    霍彦光,张志.新疆拜城地区煤田煤层自燃的陆地卫星遥感探测方法研究[J].国土资源遥感,2004,(1):36-40.
    蒋卫国,李加洪,李京,等.基于遥感和GIS的内蒙古乌达矿区煤火变化监测研究[J].遥感信息,2005(3):39-43.
    金智新,白希军,王爱国.煤矿地下多层火区探测技术研究与应用[J].华北科技学院学报,2006(1):9-13.
    康高峰,雷学武,万余庆.遥感技术在煤矿区地质灾害中的应用[J].中国煤田地质,2000,12(2):23-25.
    康高峰,雷学武.TM图像在新疆奇台北山煤田火区动态监测中的应用[J].国土资源遥感,1996,(2):57-62.
    拉曼·格德,詹姆斯·范·沃莫尔,路易斯·夏皮罗.阿拉斯加中南部的构造线性体和板块构造[J].遥感专辑.武汉地质学院情报资料室,1979
    李仁发,沈洪远,年晓红.基于物理仿真的煤炭自然发火研究[J].仿真学报,2001,13(2):231-233.
    李四光.旋卷和一般扭动构造及地质构造体系复合问题(第一辑)[M].北京:科学出版社,1955,32-49.
    李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114.
    刘池洋,赵红格,王锋,等.鄂尔多斯盆地西缘(部)中生代构造属性[J].地质学报,2005,79(6):737-746.
    刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中田图像图形学报,2005,10(2):218-222.
    刘德权,唐延龄,周汝洪.天山古生代造山带的演化与成矿[J].见:陈毓川主编,当代矿产资源勘看评价的理论与方法[M].北京:地震出版社,1999,549-560.
    刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究[M].中国科学院研究生院学报.1999,16(2):152-161.
    刘剑,王继仁,孙宝铮.煤的活化能理论研究[J].煤炭学报,1999,24(3):316-320.
    刘毓文.宁夏汝箕沟煤自燃机理研究[D],西安矿业学院硕士论文,1993.
    陆关祥.造山带复杂结构构造区遥感-构造综合解析-以南天山铜花山-榆树沟地区为例[D].西北大学博士论文.2002.
    罗的光.红外遥感探测井下煤体自燃的研究[J].广西煤炭,1993(4):32-36.
    罗海珠.煤吸附流态氧的动力学特性及其在煤自燃倾向性色谱吸氧鉴定法中的应用[J],煤矿安全,1990(6):24-28.
    莽东鸿.中国煤盆地构造[M].北京:地质出版社,1994.
    煤炭科学研究总院抚顺分院情报室.利用磁感应及远距离测定作出煤层火灾区域地图[J].国外煤矿安全信息,1996(7):14-18.
    煤炭科学研究总院抚顺分院情报室.探寻煤炭自燃位置的方法[J].国外煤矿安全信息,1996(1):18-23.
    潘志刚,姚艳斌,黄文辉.煤矸石的污染危害与综合利用途径分析[J].资源与产业,2005,7(1):46-49.
    彭苏萍,王磊,孟召平等.遥感技术在煤矿区积水塌陷动态监测中的应用,煤炭学报,2002,27(4):374-378.
    浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000,1-2.
    戚英敏.煤吸附流态氧的燃烧特性及在矿井火灾预测中的应用[J],煤矿安全,1994(6):9-11.
    祁明星、万兆昌.陕北煤田火区磁探工作方法及效果[J],物探与化探,1987(8):21-23.
    邵辉.浅析煤自燃指标气体的优选与使用[J].煤炭科学技术,1996,24(9):43-46.
    石显鑫、李华.探测煤田自燃火区方法综述[J].陕西煤炭技术,1998(2):50-53.
    宋志,曹坤,孙宝铮.采场自燃发火的预测和识别[J].黑龙江矿业学院学报,1999,9(3):22-25.
    苏春乾,杨兴科,刘继庆,等.从贺兰山区的三叠-侏罗系论国内前陆盆地的研究[J].岩石矿物学杂志,2004,23(4):318-326.
    孙家齐,马瑞士,舒良树.新疆乌鲁木齐煤田自燃烧变岩岩石特征[J].南京建筑工程学院学报,2001,4(59):15-19.
    谭衢霖,霍建平.试论遥感找矿进展[J].地质找矿论从.Vol.14,4,1999.
    谭永杰.中国煤田自燃火害及其防治对策[J].煤田地质与勘探,2000,28(6):8-10.
    汤锡元,郭忠明,陈荷立,等.陕甘宁盆地西缘逆冲推覆构造及油气勘探[M].西安:西北大学出版社,1992.
    童庆禧.高光谱遥感原理、技术与应用[M].北京:科学出版社.2006
    王锋.贺兰山中段中生代构造环境分析[D].西北大学博士学位论文,2007.
    于家文,曹宇.MATLAB6.5图形图像处理[M].北京:国防工业出版社,2004.
    于生全,王贵荣,常青,等.褶皱中和面对煤层的控制性研究[J].煤田地质与勘探.2006,34(4):16-18.
    王省身,张国枢.矿井火灾防治[M].北京:中国矿业大学出版社,1990.
    王思恩,张志诚,姚培毅.中国侏罗.白垩纪含煤地层与聚煤规律[M].北京:地质出版社,1994.
    王晓鹏,万余庆,张光超.多源遥感技术在汝箕沟煤田火区动态监测中的应用[J].中国煤田地质,2005,17(5):28-31.
    王玉新.鄂尔多斯西缘褶皱-冲断带及其前陆盆地的形成与形变[D].北京:中国地质大学,1991.
    尉茂河.关于煤自燃的内外因分析及其预防对策[J].煤矿安全,1998(2):30-33.
    吴德文.青海芒崖地区遥感找矿信息提取方法及应用研究[D].北京:中国地质大学地球科学学院,2001.
    吴君丽.CBERS-1卫星IRMSS数据在中国北方汝箕沟煤田煤自燃区遥感分析中的试应用研究[J].航天返回与遥感,2001,22(2):59-64.
    谢振华,金龙析,宋存义.程序升温条件下煤自燃特性[J].北京科技大学学学报,2003,25(1):6-13.
    熊盛青.地下煤层自然遥感与地球物理探测技术[M].北京:地质出版社,2006,2-3.
    徐涵秋,涂平,肖桂荣.基于“3S”技术的县级土地资源动态监测技术系统[J].遥感技术与应用,2000,15(1):22-27.
    徐精彩,邓军,文虎.耐高温水胶体直接灭火技术在煤自燃火灾中的应用[J].矿业安全与环保,2000,27(1):40-41.
    徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社,2002.
    余明高,贾海林,潘荣锟.乌达矿区煤自燃预测标志气体研究[J].河南理工大学学报,2005,24(2):89-94.
    余明高,王清安,范维澄.煤自燃发火期预测的研究[J].中国矿业大学学报,2001,30(4):384-387.
    张炳智,张继贤,张丽.土地利用动态遥感监测中多源遥感影像融合方法比较研究[J].测绘科学,2000,25(3):46-50.
    张伯声.中国地壳的波浪状镶嵌构造[M].北京:科学出版社,1980,58-63.
    张文佑.断块构造导论[M].北京:石油工业出版社,1984,218-224.
    张发旺,侯新伟,韩占涛等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19(3):67-70.
    张国枢,戴广龙,王卫平.煤炭自燃模拟实验装置设计与研制[J].淮南工业学院学报,1999,19(4):11-13.
    张慧,晋香兰,张泓,等.鄂尔多斯盆地西缘汝箕沟煤矿区的石英脉及其地质意义[J].地质学报,2006,80(5):768-775.
    张建民,宁书年,曹燕.中国北方地区煤自燃环境影响及其治理对策研究[J].中国减灾,1998,8(1):55-66.
    张建民.煤自燃三维动态监测方法研究[D].北京:中国矿业大学,1998.
    赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004(5):28-36.
    赵向军.无督神经网络在开采煤层自燃危险性预测中的应用[J].中国矿业,1999(1):84-86.
    赵重远.鄂尔多斯盆地的演化历史、形成机制和含油气有利地区[M].西安:西北大学出版 社,1990,93-102.
    周斌,杨柏林.运用多时相直接分类法对土地利用进行遥感动态监测的研究[J].自然资源学报,2001,16(3):263-268.
    周鼎武.鄂尔多斯盆地西南缘地质特征及其与秦岭造山带的关系[M].北京:地质出版社,1994,115-119.
    周心权,吴兵.矿井火灾救灾理论与实践[M].北京:煤炭工业出版社,1990.
    庄培仁,赵不亿.遥感技术及地质应用研究[M].北京:地质出版社,1985,130-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700