斜倾厚层岩质滑坡视向滑动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜倾厚层岩质斜坡指滑移面倾角大于地形坡度的缓、内倾斜切厚层状单斜岩质斜坡,在中国重庆、湖北、贵州、云南、四川等西南山区分布较广,在各种自然和人为等因素作用下,滑坡崩塌等地质灾害频发,存在大量的安全隐患。由于斜倾厚层岩质斜坡的失稳模式主要以侧向崩塌为主,国内外对于斜倾厚层岩质滑坡视向崩滑的研究较少,且主要集中在地质成因分析研究方面,同时在进行评价分析时也往往简化为平面应变问题。
     本论文选择典型斜倾厚层岩质滑坡-鸡尾山滑坡为例,在滑坡的详细工程地质调查基础上,结合岩体结构力学特征的综合研究,获取宏观和细观地质现象,分析了斜倾厚层岩质滑坡视向滑动的成因。建立了斜倾厚层岩质滑坡视向滑动的数值计算模型,根据室内试验及经验参数取值,分长期重力蠕滑、岩溶及地下水软化作用、采矿影响三种工况,利用离散元软件3DEC模拟斜倾厚层岩质滑坡视向滑动的初始变形破坏特征。开展了土工离心模型试验,模拟武隆鸡尾山大型山体滑坡的产生和破坏过程,揭示滑坡的形成机理,分析和验证斜倾厚层岩质滑坡视向滑动的“后部块体驱动-前缘关键块体瞬时失稳”的失稳模式。根据“后部块体驱动-前缘关键块体瞬时失稳”的失稳机制和滑坡特征,建立斜倾厚层岩质滑坡视向滑动的三维极限平衡分析力学模型,采用矢量法表示,提出了基于关键块体理论的安全系数计算方法,对鸡尾山滑坡和土工离心模型试验进行了稳定性分析。在对大型岩质斜坡失稳模式分类方法的统计对比分析基础上,综合归纳了岩质斜坡失稳模式识别和判断的方法,提出斜倾厚层岩质滑坡视向滑动的识别特征。
     通过对斜倾厚层岩质滑坡视向滑动机制的研究,本文通过对斜倾厚层岩质滑坡视向滑动机制的研究,从数值模拟、离心模拟及三维极限平衡稳定性分析三方面入手,探讨了斜倾厚层岩质斜坡的失稳破坏机理,丰富了大型岩质斜坡失稳的研究手段,为西南厚层岩质山区地质灾害风险评估和应急救灾提供技术支撑。本论文通过研究,取得了以下主要结论和成果:
     1.受地质结构及地形地貌的影响,斜倾厚层岩质斜坡的失稳模式具有复合性。一般而言,在重力作用下,山体初始顺岩层真倾角方向倾向变形蠕动。真倾向方向的蠕滑受阻,由于卸荷作用,破坏形式主要表现为侧向崩塌,崩塌体堆积在次级平台或坡脚,后续可能发展为堆积体滑坡。当斜坡前缘潜在滑面出露,斜坡变形或瞬时启动时由于局部受限,则可能呈现平面旋转滑动破坏。斜倾厚层岩质斜坡的视向滑动破坏则是由于前缘岩体发生瞬时破坏,后部岩体顺层滑动在前缘发生偏转、产生视向滑动的破坏模式。
     2.斜倾厚层岩质滑坡视向滑动受地形地貌、岩性组合、岩溶发育、工程扰动、岩体结构等方面因素控制:斜坡单斜构造为滑体视向剪出提供了临空条件;厚层灰岩夹软弱夹层是“上硬下软”的易滑结构;滑坡前缘原始地形为冲沟,岩溶发育强烈,形成强度相对脆弱的视向岩溶发育带;地下采空诱发山体应力调整,加速山体变形,对滑坡边界、平行于陡崖走向的侧向裂缝的形成具有一定的效应;斜坡岩体为层状块裂结构,节理切割,岩溶发育,岩体离散型好,滑动过程中易于解体。
     3.土工离心模型试验结果显示,随着离心加速的增大,裂缝应变片由由后缘向前缘顺序破坏,后部驱动块体首先失稳并挤压前缘关键块体,随后关键块体位移出现陡增,发生视向滑动破坏,引起斜坡整体滑动失稳。表明软弱夹层抗剪强度的持续软化和前缘关键块体的瞬时失稳,是斜倾厚层岩质滑坡视向滑动的主要原因。斜坡的破坏是由后部向前缘发展的,滑坡的初始破坏过程是一个从稳定到失稳渐进发展的过程,斜倾厚层岩质滑坡视向滑动破坏具有后部块体驱动-前缘关键块体瞬时失稳的特征。
     4.三维离散元数值模拟显示,蠕滑阶段斜坡坡顶顺层不断增大,前缘关键块体位移较小。随着软弱夹层强度降低,关键块体沿岩溶发育带视向剪切破坏,关键块体位移明显增大,滑体发生整体滑动。表明关键块体控制和阻滑作用明显,斜倾厚层岩质滑坡视向滑动的初始变形破坏过程,具有后部驱动块体顺层滑移、前缘关键块体脆性剪断的特征,软弱夹层强度降低和关键块体的瞬时破坏是滑坡发生的关键因素。
     5.根据“后部块体驱动-前缘关键块体阻滑”的力学机制,对比整体稳定性计算方法,并对土工离心模型试验进行分析,认为基于关键块体控制理论的三维极限平衡分析方法更加合理可靠。关键块体受岩溶发育带及软弱夹层的控制,驱动块体受侧向裂缝和软弱夹层控制,驱动块体和关键块体均为双面滑动,计算中采用不平衡推理传递法,以关键块体的安全系数代表滑体的稳定安全系数。
     6.根据地质成因调查、数值模拟、物理模型试验及工程统计类比分析,从地质结构、地形地貌、滑动机制等方面出发,认为斜倾厚层岩质滑坡视向滑动具有五个识别特征,即层状块裂结构条件、山体倾向阻挡条件、临空视向剪出条件、驱动块体下滑条件、关键块体阻滑条件。
Oblique inclined thick layered rock slope is a monoclonal slope dipping slightly opposite to monoclina scarp in a small intersection angle and it covers well in Southwestern China which is known as a mountainous area including Chongqing, Hubei, Guizhou, Yunnan, Sichuan, et al. Under influence of natural and human activities, geological hazards from oblique inclined thick layered rock slope failure, such as landsldes, occur frequently and potential hazards exist extensively. The most common failure mechanism is collpes, so that there are rare literatures on apparent dip slide from oblique inclined thick layered rock slope failure. Even if there are, they are also about casuses research basing on geological survey and reduce it to plane-strain problems.
     This paper takes Jiweishan Landslide as example and reveals casuses of apparent dip slide from oblique inclined thick layered rock slope failure via detailed geological investigation and comprehensive research on rock mass strcutre mechanics, interms of understanding of macroscopic and microscopic geological phenomena. A3D computational model has been built and3DEC is brought in to simulate initial failure process involving gravitational creep, karstification and weak layer soften, mining goaf. Values of parameters adopted in numerical simulation refer to laboratory tests and empirical values. Centrifuge modeling tests have been carried out to investigate intiation and instantaneous failure processes and characteristics of Jiweishan Landslide and validate the unique rear-blocks-driving-key-block-fail-instantaneously failure mechanism of apparent dip slide from oblique inclined thick layered rock slope failure. According the unique failure mechanism and landslide characteristics, a mechanical model for3D limited equilibrium analysis is established. An analytical method for safety factor based on a key block theory is put forward and applied to stability analysis of Jiweishan Landslide and centrifuge model. In the end, statistic and contrastive analysis of classification methods for massive rock slope failure are conducted, so as synthesis and generalization of identification methoeds of rock slope failure mechanism. Then several recongnition characteristics for apparent dip slide from oblique inclined thick layered rock slope failure are proposed. During the research on mechanism of apparent dip slide from oblique inclined thick layered rock slope failure, methods of atablility analysis including numerical simulation, centrifuge modeling and limited equibrilium have been discussed. The research and results are meant to provide technical support for risk assessment and emergenct relief, so as to deepen and expand reaearch on massive rock slope failure. Several results and conclusions from the research are assembaled as follows:
     1. Confined by geologic structure and topography, failure mode of oblique inclined thick layered rock slope has the character of compound. The slope creeps to the dip initially as usually and is most likely to collapse because of unloading effect. Formed deposits may transform into landslides due to earthquake or rainfall. If the potential slide plane is reveal in the front, a planar rotational could occour when local resistance exists. Apparent dip slide from oblique inclined thick layered rock slope failure is in consequence of key block in the front failure which casuses slide in the rear and then apparent dip slide in the front.
     2. The reasons of apparent dip slide from oblique inclined thick layered rock slope failure are revealed in terms of topography, lithology, karst, mining activity and geological structure as follows:monocline provides free face for apparent dip slide; thick layered limestone sandwiching weak layers is a susceptible lithology; favorable original terrain for catchment developes into a relative weak belt in apparent dip due to karst; mining goafs generate cantilever effect which accelerates slope deformation and promotes the formation of lateral deep crack ending up to landslide boundary; fissured rock slope with joints and karst is discrete and easy to disintegrate during run-out.
     3. Centrifuge modeling tests shows that the crack strain gauges are damaged in consequence from back to front as centrifuge acceleration ascends. During the process, the driving blocks in the rear lose stability and crush on the key block in the front, then sudden displacement rise happens to the key block which indicates instantaneous apparent slip failure and triggers entire landslide. The results state that the initial failure is a progressive failure process from the rear to the front of the slope and from stable to instable. Apparent dip slide from oblique inclined thick layered rock slope failure has a character of blocks in the rear driving and the key block destabilized instantaneously.
     5. During creep process of numerical modeling, displacement of slope in the rear increases gradually while displacement of the key block is small. As strength of weak layer reduces, the key block has a sudden displacement rise and occurs apparent shear failure and triggers the entire landslide. It demonstrates that during the initial failure of apparent dip slide of oblique inclined thick layered rock slope, the key block palys a obvious role of control and resistance. In initial failure process, the blocks in the rear creep to the dip and drive on the key block which ends up with instantaneous apparent sheat failure. The strength reduction of weak layer and instantaneous failure of the key block are main reasons for landslide.
     5. According to failure mechanism of "blocks in the rear driving and the key block in the front resisting" and comparison with stability analysis in a whole, it is believed that the3D limited equilibrium analysis method based on the key block theory is reasonable and available after being applied toanalysis of centrfigue tests. During this method, the key block is confined by karst belt and weak layer while the drving blocks by lateral crack and weak layer. The concept is imbalance thrust force method and the safety factor of the key block represents the stability of the slope.
     6. Basing on geological investigation, numerical modeling, physical modeling and statistic analogic analysis, five reconginition chacteristics have been pointed out in terms with geologic structure, topographic and failure behavior which are thick layered fissured rock, stable resistance in the dip, free face for apparent dip slide, driving blocks in the rear, the key block instantaneous failure.
引文
[1]. S.G.Evans, G.Scarascia Mugunozza, A.L.Strom, et al. Lnadslides from massive rock slope failure and associated phenomena[A].//Stephen G.Evans, Gabriele Scarascia Mugnozza, Alexander Strom, Reginald L.Hermanns (eds), Landsldies from massive rock slope failure, Netherlands:Springlink, 2006:3-52.
    [2]. Alexander L.Storm, Oliver Kourup. Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyragyzstan[J]. Landslides,2006,3 (2):125-136.
    [3]. Robert L.Schuster, Donald Alford. Usoi Landslide dam and Lake Sarez Pamir Moutains, Tajikistan[J]. Environmental and Engineering Geoscience,2004,10 (2):151-168.
    [4]. E.Semenza, M.Ghirotti. History of the 1963 Vaiont slide:the importance of geological factors[J].Landlsides,2000,59 (2):87-97.
    [5]. D.N.Petley, D.J.Petley. On the initiation of large rockslides:perspectives from a new analysis of the vaiont movement record[A].//Stephen G.Evans, Gabriele Scarascia Mugnozza, Alexander Strom, Reginald L.Hermanns (eds), Landsldies from massive rock slope failure, Netherlands:Springlink, 2006:77-84.
    [6]. Leopold Muller. The rock slide in the Vajont Valley[J]. Rock mechanics and engineering geology, 1964,2 (3-4):148-212
    [7]. Leopold MUller. New considerations on the Vaiont Slide[J]. Rock mechanics and engineering geology. 1968,6 (1/2):4-91
    [8]. Leopold Muller. The Vaiont catastrophe-a personal review[J]. Engineering geology.] 987, 24:423-444.
    [9]. Casassa G., Marangunic C. The Rio Colorado rockslide and debris flow, Central Andes, Chile[J]. Bulletin of the association of the engineering geologists,30:321-330.
    [10].A.Hauser. Rock avalanche and resulting debris flow in Estero Parraguire and Rio Colorado, Region Metropolitana, Chile[A].In Evans, S.G., Degraff, J.V., eds.Catastrophic landslides:effects, occurrence, and mechanisms:Boulder, Colorado, Geological Society of America Reviews in Engineering Geology. 2002:135-148.
    [11].张玉琪.论盐池河磷矿山崩的采矿技术因素及教训[J].化工矿山技术.1981,(5):25-28.
    [12].姚宝魁,孙玉科.宜昌盐池河磷矿山崩及其崩坍破坏机制[A].见:中国地质学会岩质滑坡稳定性和评价方法讨论会.中国典型滑坡[C].北京:科学出版社,1988:89-98
    [13].贾雪浪.湖北宜昌盐池河磷矿山体崩滑机理及其运动方式的研究[D].北京:中国地质科学院,1983.
    [14].李玉生.鸡扒子滑坡-长江三峡地区老滑坡复活的一个实例[A].见:中国地质学会岩质滑坡稳定性和评价方法讨论会.中国典型滑坡[C].北京:科学出版社,1988:323-328.
    [15].刘传正.重庆鸡尾山危岩体形成与崩塌成因分析[J].工程地质学报,2010,18(3):297-304
    [16].重庆武隆“6.5”山体垮塌专家组.重庆武隆“6.5”山体垮塌专家组调查报告[R].2009.6.29
    [17].殷跃平.斜倾厚层岩质斜坡滑坡视向滑动机制研究——以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报,2010,19(2):217-226
    [18].殷跃平.中国典型滑坡[M].北京:中国大地出版社,2008.
    [19].刘雄.新滩大滑坡机制探讨[J].岩土力学.1986,7(2):53-60.
    [20].严福章、王思敬、徐瑞春.清江隔河岩水库蓄水后茅坪滑坡的变形机理及其发展趋势研究[J].工程地质学报.2003,1](1):15-24
    [21].许利凯,李世海,朱而千,等.清江水库茅坪滑坡监测与发展趋势预测[J].中国地质灾害与防治学报.2006,17(1):9-13
    [22].许强,黄润秋,殷跃平,等.2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报,2009,17(4):433-444
    [23]. Yueping Yin, Ping Sun, Ming Zhang, et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides.2011,8 (11):49-95.
    [24]. Stephen G.Evans, Gabriele Scarascia Mugnozza, Alexander Strom, Reginald L.Hermanns (eds) Landsldies from massive rock slope failure[M], Netherlands:Springlink,2006:xi.
    [25].Evert Hoek, John Bray. Rock Slope Engineering.[M] London and New York:Tylaor & Francis Group, 1974.
    [26].D.J.Varnes. Slope movement types and processes[A].//R.L.Schuster, R.J.Krizek (eds).Landslides:analysis and control[R].Washington: Transportation Research Board Business Office,1987:11-33.
    [27].Hungr O, Evans S G. The occurrence and classification of massive rock slope failure[J]. Felsbau,2004, 22 (2):16-23.
    [28].Huchinson J N. Massive rock slope failure:perspectives and retrospectives on state-of-the-art[A].In Stephen G.Evans, Gabriele Scarascia Mugnozza, Alexander Strom, Reginald L.Hermanns (eds) Landsldies from massive rock slope failure, Netherlands:Springlink,2006:619-662.
    [29].Voight, B., H. Glicken, R. J. Janda, and P. M. Douglas.1981. Catastrophic rockslide avalanche of May 18[A]. In P. W. Lipman and D. R. Mullineaux, eds. Washington. U.S. Geological Survey Professional Paper 1250, pp.347-377.
    [30].G.H.Eisbacher, J.J. Clague. Destructive mass movements in high mountains:hazard and management [A].//Geol. Surv. Can. Pap 84-16 (1984) [R]:12-68.
    [31]. J.Glastonbury、R.Fell. Report on the analysis of "rapid" natural rock slope failure[R].Sydney: The University of New South Wales,2000.
    [32].. Rober L.Schuster, Daniel A.Salcedo,Luis Valenzuela. Overview of catastrophic landslides of South America in the tweentieth centrury[A]. In Evans, S.G., Degraff, J.V., eds.Catastrophic landslides: effects, occurrence, and mechanisms[M]:Boulder, Colorado, Geological Society of America Reviews in Engineering Geology.2002:1-34.
    [33].Ioannis Vardoulakis.Catastrophic landslides due to frictional heating of the failure plane [Jj.Mechanims of cohesive frictional materials,2000,5 (6):443-467.
    [34].L.Goren. Long runout landslides:The role of frictional heating and hydraulic diffusivity[J]. Geophysical Research Letter,2007,34:L07310
    [35].L.Goren, E.Aharonov, M.Anders. Thermo-poro-mechanical effects in landslide dynamics[J]. In Ioannis Vardoulakis, eds. Meso-scal shear physics in earthquake and landslide mechanics[M], CRC Press,2009:255-274.
    [36].Broili, L. New knowledge on the geomorphology of the vajont slide slipe surface[J]. Rock mechanics and engineering geology,1967, V:38-88.
    [37].Hendron, AJ, Patton, FD. Vajont Slide--A Geotechnical Analysis Based on New Geologic Observations of the Failure Surface[J]. Engineering geology,1987,24 (1/4):475-491.
    [38].Christopher R.J Kilburn, David N Pertley. Forecasting gaint, catastrophic slope collapse:lesson from Vajont, Northern Italy[J]. Geomorphology,2003,54 (1/2):21-32.
    [39].Mencl, V. The influence of the stiffness of a sliding mass on the stability of slopes[J]. Rock mechanics and engineering geology,1966, IV:127-131.
    [40].Mencl,V. Mechanics of landslides with non-circular slip surfaces[J]. Geothechnique,1996, XVI.
    [41]. Adrian E.Scheidegger. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock mechanics and rock engineering,1973,5 (4):231-236.
    [42].R.M. Iverson. Forecasting runout of rock and debris avalanches[A]. In Stephen G.Evans, Gabriele Scarascia Mugnozza, Alexander Strom, Reginald L.Hermanns (eds), Landsldies from massive rock slope failure[C], Netherlands:Springlink,2006:197-209.
    [43].M.Pastor, T.Blanc, M.J.Pastor. A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures:Application to fast catastrophic landslides[J]. Journal of Non-Newtonian Fluid Mechanics.2009,158 (1-3):142-153
    [44].Francesco Cecinato, Antonis Zervos, Emmanuil VeveakisA thermo-mechanical model for the catastrophic collapse of large landslides[J]. International journal for numerical and analytical methods in geomechanics.2011,35 (14):1507-1535.
    [45].Bernd Imre,Jan Laue,Sarah Marcella Springman.Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge[J]. Granular matter.2010,12 (3):267-285.
    [46].陈自生,张晓刚.1994-04-30四川省武隆鸡冠岭滑坡-崩塌-碎屑流-堵江灾害链[J].山地灾害,1994,12(4):225-229.
    [47].刘传正,黄学斌,黎力,乌江鸡冠岭山崩堵江地质灾害及其防治对策[J].水文地质工程地质,1995,22(4):6~11
    [48].谢守益,徐卫亚.降雨诱发滑坡机制研究[J].武汉水利电力大学学报,1999,32(1):21-23.
    [49].殷坤龙,汪洋,唐仲华.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,21(1):75-78.
    [50].张缙.岩块崩塌与运动初析[A].见:岩体工程地质学问题(三)[C].北京:科学出版社,1980:133-143
    [51].卢万年.用空气动力学分析坡体告诉滑坡的滑行问题[J].西安地质学院学报,1991,13(4):77-85
    [52].刘涌江,胡厚田,赵晓彦.高速滑坡岩体碰撞效应的试验研究[J].岩土力学,2004,25(2):255-260
    [53].胡厚田,刘涌江,邢爱国.高速远程滑坡流体动力学理论的研究[M].成都,西南交通大学出版社,2003:51-75.
    [54].邢爱国,高广运.大型高速滑坡近程空气动力学效应研究[J].岩石力学与工程学报,2003,22(5):778-783.
    [55].陈禄俊,邢爱国,陈龙珠等.高速远程滑坡飞行数值模拟[J].水文地质工程地质.2008,(5):1-6.
    [56].张明,殷跃平,吴树仁等.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报,2010,18(6):805-817
    [57].殷跃平.西藏波密易贡高速巨型滑坡特征及减灾研究[J].水文地质工程地质,2000,(4):8-1].
    [58].殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报,2009,17(2):153-166
    [59]. Yin Yue-ping, Wang Fa-wu, Sun. Ping. Landslide hazards triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslide.2009, (6):139-151
    [60].邓建辉,D.H.Chan, C.D.Martin, N.R.Morgenstan.一例由蓄水诱发的库岸斜坡变形[J].中国地质灾害与防治学报,2002,13(1):21-24
    [61].陈谦恭,张倬元,黄润秋.侧翼与滑床复合锁固切向层状岩质滑坡动力学机理与稳定性判据[J].岩石力学与工程学报.2004,23(11):1874-1882
    [62].刘传正,施韬,张明霞.链子崖危岩体T8-T12缝段开裂变形机制的研究[J].工程地质学报,1995,3(2):29-41.
    [63].Qiang Xu, Xuanmei Fan, Runqiu Huang, et al. A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009:background, characterization, and causes[J]. Landsldie,2009, (7):75-87.
    [64].赵法琐,王启耀,王勇智等.平面旋转坡体稳定性的悬臂梁法[J].岩土工程学报,2000,22(4):493-495
    [65].陈谦恭,张倬元,崔鹏等.中部“砥柱”锁固平面旋转切向层状岩质滑坡起动力学机理与稳定性判据[J].岩石力学与工程学报,2004,23(16):2718-2725
    [66].柳源.山体崩滑破坏的视滑力问题-以链子崖危岩体为例[J].工程地质学报.1999,7(3):272-278
    [67].殷跃平,康宏达,张颖.链子崖危岩体稳定性分析及锚固工程优化设计[J].岩土工程学报,2000,22(5):599-603.
    [68].孙广忠.岩体结构力学[M].北京,科学出版社,1988.
    [69]. Goodman, R.E., and Gen-Hua Shi. Geology and rock slope stability—application of a "keyblock" concept for rock slopes[A]. Proceedings 3rd International Conference on Stability in Open Pit Mining[C]. Vancouver, June 1981.
    [70].石根华.岩体稳定的几何分析方法[J].中国科学A辑,1981,(4):487-495.
    [71].石根华.一般自由面上多面节理生成、节理块切割与关键块搜寻方法(英文)[J].岩石力学与工程学报,2006,25(11):2161-2170.
    [72].王在泉,华安增.确定斜坡潜在滑面的块体理论方法及稳定性分析[J].工程地质学报,1991,(01):40-45
    [73].许强,黄润秋,巨能攀等.斜坡岩体块体稳定性分析系统的开发与研究[J].工程地质学报,2001,(04):408-413
    [74].黄志全,崔江利,刘汉东.滑坡稳定性预测的混沌神经网络方法[J].岩石力学与工程学报.2004,(22):3808-3812
    [75].殷跃平,康宏达,张颖等.地质工程设计支持系统与链子崖锚固设计[M].北京,地质出版社,1995.
    [76]. Johannes L.Wibowo. Consideration of secondary blocks in key-block analysis[J]. International journal of rock mechanics and mining science.1997,34 (3-4):333.el-333.e12
    [77].徐明毅,汪卫明,陈胜宏等.岩石斜坡的危险滑动块体组合研究[J].岩土力学,2000,21(2):148-151.
    [78].Itasca Consulting Group, Inc.3 Dimensional Distinct Element Code User's Guide [R].2003
    [79].高磊.广巴高速公路隧道围岩变形破坏机制及稳定性研究[D].四川,成都:成都理工大学,2008.
    [80].郑清.山岭隧道震害分析及洞口段地震动力响应研究[D].四川,成都:西南交通大学,2010.
    [81].任艳芳.浅埋煤层长壁开采覆岩结构特征研究[D].北京:煤炭科学研究总院,2008.
    [82].苑俊杰.节理的存在对隧道动力响应的影响分析[D].四川,成都:西南交通大学,2011.
    [83].Taylor R N. Geotechnical Centrifuge Technology[M]. London:Blackie Academic & Professional, 1994.
    [84].汪小刚,张建红,赵毓芝等.用离心模型研究岩石斜坡的倾倒破坏[J].岩土工程学报.1996,18(05):14~21.
    [85].邓卫东,吴光勇,唐树名.路堑斜坡破坏机理的试验与计算分析[J].中国公路学报.2001,14(03):21~24.
    [86].韩世浩,王慧华.离心模型技术在三峡工程高斜坡研究中的应用[J].长江科学院院报.1991,(S1):32~38.
    [87].陈祖煜,汪小刚,邢义川等.斜坡稳定分析最大原理的理论分析和试验验证[J].岩土工程学报. 2005,27(05):495~499.
    [88].李青云,濮家骝,张建民等.防渗墙施工中堤身裂缝机理的综合研究[J].人民长江.2002,33(08):54~56.
    [89].章为民,徐光明.土石坝填筑过程的离心模拟方法[J].水利学报.1997,(02):8-13.
    [90].饶锡保,包承纲.离心试验技术在土石坝工程中的应用[J].长江科学院院报.1992,9(02):21-27.
    [91].郦能惠,孙大伟,王年香等.混凝土面板堆石混合坝性状的预测[J].岩土工程学报.2009,31(08):1149~1155.
    [92].冯光愈.岱黄公路软土地基土工离心模型试验[J].长江科学院院报.1987,(02):72~81.
    [93].杜建成,张利民.广钢站软基处理的离心模型试验研究[J].四川建筑.1997,17(03):44~45.
    [94].董云,柴贺军,阎宗岭.土石混填路基沉降变形特征的离心模型试验研究[J].公路交通科技.2007,24(03):25~29.
    [95].唐志成,彭胤宗,宋教吾.无粘性土中刚性挡土墙离心模型试验研究[J].重庆交通学院学报.1988,(02):48~58.
    [96].殷跃平,鄢毅,陈波等.三峡库区巫山新城超高加筋挡墙变形破坏及修复研究[J].工程地质学报.2003,11(01):89~99.
    [97].宋飞,张建民.考虑侧向变形的各向异性砂土土压力试验研究[J].岩石力学与工程学报.2009,28(09):1884~1895.
    [98].李玫,包承纲,单人.梁柱式海洋平台基础与土相互作用的离心模型试验[J].岩土工程学报.1995,17(05):1-6.
    [99].曾友金,章为民,王年香等.某大型哑铃型承台群桩基础与土体共同作用竖向承载变形特性数值模拟分析[J].岩土工程学报.2005,27(10):1129~1135.
    [100].张建红,劳敏慈,胡黎明.非饱和土中水分迁移及污染物扩散的离心模拟[J].岩土工程学报.2002,24(05):622~625.
    [101].张建红,吕禾,王文成.铜离子在非饱和土中迁移的离心模型试验研究[J].岩土力学.2006,27(11):1885~1890.
    [102].张建红,胡黎明.重金属离子和LNAPLs在非饱和土中的运移规律研究[J].岩土工程学报.2006,28(02):277~280.
    [103].牟太平,张嘎,张建民.土坡破坏过程的离心模型试验研究[J].清华大学学报(自然科学版)2006,46(09):1522~1525.
    [104]周小文,程展林,孙常青,饶锡保.软土地基路堤施工控制的离心模拟试验研究[J].岩土力学.2009,(05):1253~1256.
    [105].蔡正银,李景林,徐光明,焦志斌.土工离心模拟技术及其在港口工程中的应用[J].港工技术.2005,(S1):47-50.
    [106].一明.土工离心模型试验为沙漠、浅海石油勘探开发服务的潜在优势[J].石油工程建设.1989,15(03):9~10.
    [107].Yan Shuwang, Li Sa. Centrifugal Test Study on the Behavior of Soft Clay at Sea Bottom Under The Action of Wave Force[J]. Transactions of Tianjin University.1999,5 (02):206-210.
    [108].Adhikary D P, Dyskin A V, Jewell R J,et al.. A study of the mechanism of flexural toppling failure of rock slopes[J]. Rock Mechanics and Rock Engineering,1997,30 (2):75-93.
    [109].Adhikary D P, Dyskin A V. Modelling of progressive and instantaneous failure of foliated rock slopes[J]. Rock Mechanics and Rock Engineering,2007,40 (4):349-362.
    [110].Z.Y.Chen,J.H.Zhang,W.X.Wang,et al. Centrifuge modeling for rock slopes[A].In Ng.Zhang, Wang, eds. Physical modeling in geotechnics[C]. London:Taylor & Francis Group,2006:19-28
    [110].Sjoberg J. Large scale of slope stability in open pit mining-a review[R]. Lulea, Sweden:Lulea University of Technology,1996:56-57
    [11 l].Sugawara K, Akimoto M, Kaneko K, and Okamura H.. Experimental study on rock slope stability by the use of a centrifuge[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, A. A. Balkema,1994,21 (4):152.
    [112].韩世浩,王慧华,周晓雁.长江三峡链子崖危岩体整治工程可行性研究报告-附件(三)-离心机模型试验报告[R].武汉:长江科学院.1991.
    [113].王慧华,韩世浩,周晓雁.长江三峡链子崖危岩体离心机模型试验研究[J].施工设计研究,1991,(4):27-31.
    [114].Davies, M.C.R., Hamza, O., Lumsden, B.W.,et al. Laboratory measurement of the shear strength of ice filled rock joints[J]. Annals of Glaciology.2000,31:463-467.
    [115].M.C.R.Davis, O.Hamza, C.Harris. Physical modeling of permafrost warming in rock slopes[A].In Phillips, Springman, Arenson, eds. Permafrost[C].Lisse:Swets & Zeitlinger,2003:169-174.
    [116].F.K.Gunzel, M.C.R.Davis. Influence of warming permafrost on the stability of ice filled rock joints[A]. In Ng.Zhang, Wang, eds. Physical modeling in geotechnics[C]. London:Taylor & Francis Group,2006:343-348
    [117].刑建营,刑义川,陈祖煜等.岩质斜坡楔形体破坏的离心模型试验方法研究[J].水土保持通报,2005,25(3):15-19.
    [118].秦震.四川省武隆县、贵州省道真县普查地质报告[R].西南地质局,1955.
    [119].李建兴等.四川省南川-武隆区域地质调查报告[R].四川省地质局钾盐队,1961.
    [120].陈福鑫,肖节卿.四川武隆铁匠沟铁矿区1954年地表地质工作总结报告[R].西南钢铁公司721队,1955.
    [121].陈福鑫等.四川武隆铁匠沟铁矿详细勘探总结报告[R].重工业部重庆地质勘探公司60]队,1955.
    [123].潘志中等.四川省武隆铁矿铁局昂狗矿区评价报告[R].四川冶金地质勘探公司603队,1974.
    [124].1.罗先启,葛修润.滑坡模型试验理论及其应用[M].北京:水利水电出版社,2008.
    [125].C.W.W.Ng, W.K.Pun, S.S.K.Kwok,et al. Centrifuge modeling in engineering practice in Hong Kong[A].In Proc. of the geotechnical Division's annual seminar[C], Hong Kong Institute of Engineers, 2007:55-68.
    [126].冯振,殷跃平.我国土工离心模型试验技术发展综述[J].工程地质学报,2011,19(3):323-331
    [127].马迁,何英杰.光弹模型离心加载技术的新发展[J].长江科学院院报.1992,9(01):73~76.
    [128].王城,于晓瑞.光弹模型离心加载技术的进一步研究[J].长江科学院院报.1990,7(01):50~55.
    [129].包承纲.我国离心模型试验技术的现状与展望[J].岩土工程学报.1991,13(06):92~97.
    [130].刘守华,蔡正银.土工离心模型填料装置研究[J].岩土工程学报.1996,18(03):74~79.
    [131].李崛华.用振冲法加固土石坝软基的离心模型试验研究[J].水力发电学报.1995,(02):17~28.
    [132].李崛华,张天明,林天宏等.深厚软基筑坝可行性——离心模拟试验研究[J].应用基础与工程科学学报.1995,3(02):137~147.
    [133].周正濂,田良灿.胶结充填设计的离心模型研究[J].采矿技术.1988,(07):8-11.
    [134].周正濂,王维德.充填体爆破载荷的离心模型研究[J].采矿技术.1992,8(08):12-14.
    [135].张利民,胡定.高重力场中离心模型的水流控制设备[J].四川大学学报(工程科学版).1989,(03):93~97.
    [136].张利民,胡定.用离心模型模拟横向受荷桩中残余效应研究[J].土木工程学报.1992,25(03):42~50.
    [137].濮家骝.士工离心模型试验及其应用的发展趋势[J].岩土工程学报.1996,18(05):92~94.
    [138].徐东,周顺华,黄广军等.上海粘土的成拱能力探讨[J].上海铁道大学学报.1999,20(06):49~54.
    [139].Ng.C.W.W, Springman.S.M, Norrish.A.R.M. Centrifuge modeling of spread-base integral bridge abutments[J]. Journal of Geotechnical and Geoenvironmental Engineering.1998,124 (5):376-388.
    [140].Ng.C.W.W, Li.X.S, Van.Laak.P.A, et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes[J]. Soil Dynamics and Earthquake Engineering (1984).2004,24 (4):305-318.
    [141].Rowe P. W. & Craig W. H.1976. Studies of offshore caissons founded on Oosterschelde sand[J]. Design and Construction of Offshore Structure:49-55. London:Institution of Civil Engineers.
    [142].张利民,胡定.瀑布沟高土石坝离心模型试验研究[J].水利学报,1990, (9):60-65.
    [143].张利民,胡定.小比例尺离心模型的屈服和破坏特性[J].成都科技大学学报,1990,(2):7-12
    [144].张延亿,徐泽平,温彦峰等.糯扎渡高心墙堆石坝离心模拟实验研究[J].中国水利水电科学研究院学报,2008,6(2):86-92.
    [145].Talesnick M L, Bar Ya' acov N, Cruitoro A. Modeling of multiply jointed voussoir beam in the centrifuge[J]. Rock mechanics and rock engineering,2007,40 (4):383-404.
    [146].Stimpson, B. Modelling materials for engineering rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences,1970.7 (1):p.77-121.
    [147].Ramberg, H. and O. Stephansson, Note on centrifuged models of excavations in rocks[J]. Tectonophysics,1965,2 (4):p.281-298.
    [148].侯克鹏,阮永芬.离散元模拟滑坡稳定性若干问题探讨[J].昆明理工大学学报,2000,25(1):92-94.
    [149].高延法,张庆松.矿山岩体力学[M].徐州:中国矿业大学出版社,2000.
    [150].蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [151].高速远程滑坡形成机制研究[R].武汉:中国地质大学(武汉)地调院,2010.
    [152].许强,唐然,彭国喜.西南复杂斜坡滑坡形成条件与失稳机理研究[R].成都:成都理工大学,2010.
    [153].李本亮,孙岩,朱文斌等.川东地区层滑参数系统研究[J].西南石油学院学报,2001,23(1):29-33
    [154].付兵.四川省武都水库坝基岩溶发育特征及其对工程影响研究[D].成都:西南交通大学.2005.
    [155]].熊传治.岩石斜坡工程[M].长沙:中南大学出版社,2010.
    [156]孙广忠.工程地质与地质工程.北京[M]:地质出版社,1993.
    [157].陈祖煜,岩质斜坡稳定分析-原理·方法·程序[M].北京:中国水利水电出版社:57-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700