不同草本层三倍体毛白杨林地细根和草根生长及土壤抗蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是在天全县退耕还林(草)区内,以未退耕的陡坡耕地作对比,应用土柱法,对两种不同草本层模式(自然条件下生长的草本层一以下简称自然草林地和人工种植的黑麦草)毛白杨幼林的细根生物量和空间分布以及与土壤的抗蚀性关系进行了研究,结果表明:
     ①两种模式毛白杨林地内,黑麦草林地0~1mm细根全年总生物量为0.359t·hm~(-2)。其中上层生物量平均为0.179 t·hm~(-2),活细根生物量占82.9%;中层为0.118t·hm~(-2),活细根占81.41%;上、中、下三层生物量之比为50:33:17。自然草林地0~1mm细根全年总生物量平均为0.1891 t·hm~(-2)。其中上层生物量平均为0.101 t·hm~(-2),活细根生物量占87.4%;中层为0.054 t·hm~(-2),活细根占77.69%;下层平均生物量为0.034t·hm~(-2),活细根占71.25%。上、中、下三层生物量之比为53:29:18。两种模式内0~1mm细根在上层和中层均占80%以上,且黑麦草林地0~1mm细根总生物量约为自然草林地的2倍。两种模式内活细根和死细根之比约为4:1。
     黑麦草林地1~2mm细根全年总生物量平均为0.254t·hm~(-2),上、中、下三层生物量之比为40:41:19。自然草林地1~2mm细根全年总生物量平均为0.276t.hm~(-2),上、中、下三层生物量之比为42:34:24。两种模式内1~2mm细根在上层和中层均占80%左右,黑麦草林地1~2mm细根总生物量和自然草林地的相差不大。两种模式内活细根和死细根之比也约为4:1。
     黑麦草林地0~2mm根系生物量为0.7335 t·hm~(-2),其中草根0.121 t·hm~(-2),占16.5%;上层生物量为0.3832 t·hm~(-2),占52.2%,中层占32.9%,下层占14.9%。自然草林地0~2mm根系生物量为0.998 t·hm~(-2),其中草根0.533 t·hm~(-2),占53.4%;上层生物量为0.5879t·hm~(-2),占58.9%,中层占23.5%,下层占17.5%。
     ②从两种模式毛白杨林地内0~2mm总根系生物量的垂直分布及月变化看来,在上层均呈双峰型变化趋势,峰值都出现在5月和9月,且比较平缓,黑麦草林地最高值为0.5142 t·hm~(-2),自然草林地为0.8066 t·hm~(-2)。尽管黑麦草林地在上层0~1mm和1~2mm的细根生物量均较自然草林地的高,但由于自然草林地内草根的生物量远比黑麦草林地的高,所以就0~2mm根系总量来说,自然草林地的更高;中层两模式林地
With the steep plowland by contrast, the biomass spatial distribution and its relationship with the soil anti-erodibility of fine root <2mm in diameter between two herbages' types (grass grown in natural conditions and ryegrass) of triploid populus tomentosa Carr woodland in Tianquan county, Sichuan province were studied. By using coring methods in the paper, the results were as follows:1. In the populus tomentosa Carr woodland under two types: In the ryegrass woodland, the average total biomass of tree root 0~1mm in diameter was 0.359 t.hm~-2 , the upper layer was 0.179 t.hm~-2 , live fine roots' accounted for 82.9%; Middle layer was0.118 t.hm~-2, live fine roots' accounted for 81.41 %; the ratio of biomass in upper layer, middle layer and down layer is 50 : 33 : 17. In the nature grass woodland, the average total biomass of tree root 0~1mm in diameter was 0.1891t.hm~-2, the upper layer was 0.101 t.hm~-2, live fine roots' accounted for 87.4%; Middle layer was 0.054t.hm~-2 , live fine roots' accounted for 77.69%, down layer was0.034 t.hm~-2, live fine roots' accounted for 71.25%; the ratio of biomass in upper layer, middle layer and down layer was 53 : 29 : 18. In these two types, the both total fine root of upper layer and middle layer accounted for over 80%, and in ryegrass, the total biomass of 0~ 1mm fine root was about 2 times as much as those in the nature grass. And the ratio of live root and died root was about 4 :1.In the ryegrass woodland, the average total biomass of fine root 1 ~2mm in diameter was 0.254 t.hm~-2, The ratio of biomass in upper layer, middle layer and down layer was 40 : 41 : 19. In the natural grass woodland, the average total biomass of fine root 1~2mm in diameter amounted to 0.276 t.hm~-2, The ratio of biomass in upper layer, middle layer and down layer was 42 : 34 : 24. In these two types, the both total fine root of upper layer and middle layer accounted for 80%, but the total biomass is similar. The ratio of live root and died root was also about 4 :1.
    In the ryegrass woodland, the average total biomass of tree root 0~2mm in diameter was 0.7335 thm"2, the grass roots' was 0.121 thm"2, made up 16.5% of the total biomass; In upper layer, the biomass amounted to 0.3832 t-hm"2, accounted for 52.2%; the middle layer and down layer were 32.9% and 14.9% respectively. In the natural grass woodland, the average total biomass of tree root 0~2mm in diameter amounted to 0.998 t-hm", the grass roots' was 0.533 t-hm"2 and made up 53.4% of the total biomass. In upper layer, the biomass amounted to 0.5879 t-hm"2, accounted for 58.9% ,the middle layer and down layer were 23.5% and 17.5% respectively 02. From the vertical distribution and monthly changes of biomass of root 0~2mm in diameter under two types: The upper layer biomass showed mild double-peak trend, with peak in May and September; the maximum in ryegrass and natural grass forest were 0.5142 t-hm'2 and 0.8066 t-hm"2 respectively. The total biomass of tree root of 0~lmm and l~2mm in diameter in ryegrass forest were more than those in the natural grass forest. However, the grass root biomass in the natural grass forest was far more than that in the ryegrass forest; therefore, the total root amount of 0~2mm in the natural grass forest was more than that in the ryegrass forest. The biomass in the middle layer under two types both showed single-peak trend. The biomass in the ryegrass forest increased steadily and reached the highest in June, but the biomass in the natural grass forest increased little before June, and reached the highest in July. The down layer root biomass under two types changed smoothly, with little fluctuation.3. After 4 years in the land of converting from cropland to forest, between the woodland and steep plowland, the total content of water stable aggregate had little variation.The content of water stable aggregate in step plowland changed unorderly. But both two types showed that the content of bigger water stable aggregate in upper layer was more than that in the middle and down layer. The total content of water stable aggregate had little difference between the forest and step plowland. However, the bigger water stable aggregate in the upper and middle layer in the forest was obviously more than that in step plowland. In general, the content in the natural grass forest was more than that in the ryegrass forest.In the same depth, the organic matter content of the upper, middle and down layer in
    the step plowland were more than those in the forest. The organic matter content of the upper and middle layer in the natural forest were less than those in the ryegrass forest. However, in the down layer the natural grass root input more organic matter to the soil than that in the ryegrass forest, which demonstrated that it was a relatively slow process increasing soil organic matter content through root.Disperse coefficient and disperse rate were taken as the index to soil anti- erodibility. To some extent, they could reflect the disperse and concretion capacity of the soil, but the bigger particle diameter water stable aggregate was more suitable to denote the anti-erodibility of the soil.4. With regard to increasing the content of bigger water stable aggregate(>5mm, 5~3mm) and the totals' and reducing the content of small water stable aggregate in the soil, the effect of 0~2mm root was notable on the whole, and the significant coefficients were 0.752, 0.572, 0.786 and -0.563 respectively. 0~lmm root also played an important role, and the function of grass root is very significant. The root could increase the bigger water stable aggregate and decrease the small water stable aggregate content in the soil. In this way, fine roots increased the soil anti-erodibility.In conclusion, the converting farmland to forest (grass) was a comparatively suitable popularization method for increasing the soil anti-erodibility.
引文
[1] 方学敏,万兆惠,徐永年.土壤抗蚀性研究现状综述[J].泥沙研究,1997,6(2):88~91
    [2] 吴彦,刘世全,付秀琴等.植物根系提高土壤水稳性团粒含量的研究[J].土壤侵蚀与水土保持学报,1997,3(1):45~49
    [3] 刘建军.林木根系生态研究综述[J].西北林学院学报,1998,13(3):74~78
    [4] 李勇,吴淑霞,夏侯国风.紫色土区刺槐林根系对土壤结构的稳定作用[J].土壤侵蚀与水土保持学报,1998,4(2):1~7
    [5] 张小全,吴可红,Dieter March.树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875~880
    [6] 黄建辉,韩兴国,陈灵芝.森林生态系统生物量研究进展[J].生态学报,1999,19(2):270~275
    [7] 李培芝,范世华,王力华等.杨树细根及草根的生产力与周转的研究[J].应用生态学报,2001,12(6):829~832
    [8] 张小全,吴可红.森林细根生产与周转研究[J].林业科学,2001,37(3):126~135
    [9] 李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337~340
    [10] 单建平,陶大立,王淼等.长白山阔叶红松林细根动态[J].应用生态学报,1993,4(3):241~245
    [11] Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped byclimate, climate forest type and species. Plant and Soil, 1996, 187: 159~219
    [12] Bauhus J, Bartsch N. Fine-root growth in beech(Fagus sylvatica)forest gaps. Can. J For Res., 1996, 26: 2153~2159.
    [13] 刘建军,崔宏安,王得祥等.延安市张梁试区退耕地植被自然恢复与多样性变化[J].西北林学院学报.2002,17(3):8~11
    [14] D.Santantonio~1 And J. C. Grace. Estimating fine-root production and turnover from biomass and decomposition data: a compartment-flow model. Forest Research Institute, Rotorua, New Zealand. 1987.5.
    [15] S. K. Srivastava, ~1K. P. Singh, And R. S. Upadhyay. Fine root growth dynamics in teak. Ecology Research Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-220115, India 1986, 8.
    [16] 廖利平,陈楚莹,张家武等.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7~10
    [17] 罗承德,张健,刘继龙.四川盆周山地杉木人工林衰退与铝毒害阈值的探讨[J].林业科学,2000,36(1):9~14
    [18] 张健,李贤伟,胡庭兴.铝毒害与森林衰退研究评述[J].世界林业研究,1999,2(12):28~30
    [19] 李勇,徐晓琴,朱显谟.黄土高原植物根系提高土壤抗冲性机制初步研究[J].中国科学(B辑),1992(3):254~259
    [20] 陈文德.三倍体毛白杨幼林—黑麦草复合模式根系生长与养分特性研究.硕士毕业论文,2003,5
    [21] 赵勇刚.黄河流域三倍体毛白杨区域生态经济[J].山西林业科技,1999,(2):1~13
    [22] 陈默君,贾慎修主编.中国饲用植物[M],(一)禾本科.中国农业出版社,2002,202~205
    [23] 劳家柽等.土壤农化分析手册[M].农业出版社,1988,12
    [24] 中华人民共和国国家标准.GB7846—87,GB7845—87,GB7857—87。
    [25] 马秀玲,陆光明,徐竹龄等.农林复合系统中林带和作物的根系分布特征[J].中国农业大学学报,1997,2(1):109~116
    [26] 宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927~932
    [27] 李鹏,赵忠,李占斌等.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17(2):26~32
    [28] 张小全.环境因子对树木细根生物量、生产与周转的影响[J].林业科学研究,2001,14(5):566~573
    [29] Harris W F. et al, 1977. Comparison of below-ground biomass in nature deciduous forests and loblolly pine plantation. Pedobiologia. 17: 369~381
    [30] Grier C C. et al. 1981. Biomass distribution and above-and-below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can. J. For. Res, 11: 155~167
    [31] Aber J D. et al. 1985. Fine root turnover in forest ecosystems in relation to quality and form of nitrogen availability: a comparison of two methods. Oecologia, 66: 317~321
    [32] Vogt K A, Grier C C, Vogt D J. 1986. Production, turnover and nutrient dynamics of above-and belowground detritus of world forests. Adv. Ecol. Res, 15: 303~377
    [33] McClaugherty C A. et al. 1984. Decomposition dynamics of fine roots in forested ecosystems. Oikos, 42: 378~386
    [34] 沈慧.水土保持林土壤抗蚀性能及其评价指标[A].中国博士后科学基金会编.2000年中国博士后学术大会论文集——西部与农林发展分册[C].科学出版社 2001,2,120~125
    [35] 王忠林,李会科.花椒地埂林土壤抗蚀性研究[J].西北林学院学报,1998,13(2):30~33
    [36] 常庆瑞,安韶山,刘京等.黄土高原恢复植被防止土地退化效益研究[J].土壤侵蚀与水土保持学报,1999,5(4):6~9
    [37] 党坤良,雷瑞德.秦岭火地塘林地区不同林分水源涵养效能的研究[J].土壤侵蚀与水土保持学报,1995,1(1):79~84
    [38] 闫俊华,周国逸,唐旭利等.鼎湖山3种演替群落凋落物及其水分特征及对比研究[J].应用生态学报,2001,12(4):509~512
    [39] 赵垦田.国外针叶树种根系生态学研究综述[J].世界林业研究,2000,13(5):7~11
    [40] 刘建军,王得祥,雷瑞德等.秦岭林区天然油松、锐齿栎林细根周转过程与能态变化[J].林业科学,2002,38(4):1~6
    [41] [联邦德国]W.伯姆著(薛德榕等译).根系研究法[M].北京:科学出版社,1985
    [42] 翟明普,将三乃,贾黎明.沙地杨树刺槐混交林细根动态[J].北京林业大学学报,2002,24(5):39~44
    [43] 陈金林,许新建,姜志林等.空青山次生栎林细根周转[J].南京林业大学学报,1999,23(1):6~10
    [44] 温达志,魏平,张佑昌.鼎湖山南亚热带常绿阔叶林定位研究[M].锥栗、黄果厚壳桂群落细根生物量,生产力的估算.热带亚热带森林生态系统研究.气象出版社,1998,40~45
    [45] 石培礼,钟章成,李旭光.桤柏混交林根系研究.国家林业局四川森林生态与资源环境实验室年报[M],1998,112~120
    [46] Nadelhoffer K J, Aber J D, Mellilo J M. Fine root, net primary production, and soil nitrogen availability: A new hypothesis. Ecology, 1985, 66: 1377~1390
    [47] 高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992,12(5):59~63
    [48] 张立恭.土壤抗侵蚀能力研究概述[J].四川林堪设计,1996(1):1~3
    [49] 赵新宇,赵岭,王立刚等.阿伦河流域水土保持林土壤抗蚀性研究[J].防护林科技,2000,9(3):21~23
    [50] 丁文峰,李占斌.土壤抗蚀性的研究动态[J].水土保持科技情报,2001(1):36~39
    [51] 高维森.土壤抗蚀性指标及其适用性初步研究[J].水土保持学报,1991,5(2):60~65
    [52] 吴淑安,蔡强国,马绍嘉.土壤坑蚀性实验研究[J].云南地理环境研究,1996,8(1):73~80
    [53] 孙传生,王艳玲.提高土壤抗蚀性措施研究[J].中国水土保持,1994,2:17~18
    [54] 吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究[J].干旱区资源与环境,1999,13(3):35~43
    [55] Middleton H E. Properties of soils which influence soil erosion[J].USDA Tech. Bull., 1930, 178: 6
    [56] Bouyoucos, G J The clay ratio as a criterion of susceptibility of soils to erosion [J]. J. of American Society of Agronomy. 1935, 27: 738~741.
    [57] Andeson H W. SusPended sediment discharge as related to streamflow, topography, soil and land use[J]. Trans. Am. Geophys. Union., 1954, 35: 268~281.
    [58] Woodburn R, Kozachyn J. Study of relative erodibility of a group of Mississippi gully soils[J]. Trans. Am. Geophys Union, 1956, 37: 749~753.
    [59] 雷俊山,杨勤科.土壤因子研究综述[J].水土保持研究,2004,11(2):156~159
    [60] 张立恭.四川盆地主要土壤类型抗侵蚀能力研究[J].四川林堪设计,1996(2):15~23
    [61] 余树全,苏增建.沱江上游深丘地区不同立地土壤抗蚀性、渗透性及其影响因素[J].防护林科技,2003,3(1):1~4
    [62] 王忠林,李会科,贺秀贤.渭北旱源花椒地埂林土壤抗蚀抗冲性研究[J].水土保持研究,2000,7(1):33~37
    [63] 李尚妙.营造台湾相思水土保持林对土壤抗蚀性影响[J].福建水土保持,1998,4:44~46
    [64] 章明奎,韩常灿.浙江省丘陵土壤的抗蚀性[J].浙江农业学报,2000,12(1):25~30
    [65] 林光耀,陈永葆.侵蚀劣地种植不同果树后土壤抗蚀性[J].福建林学院学报,2001,21(3):233~236
    [66] 林光耀,林文莲,陈永葆.侵蚀丘陵地种植杨梅后土壤抗蚀性变化的研究[J].福建水土保持,1998,2:54~56
    [67] 尤万学,常发君,冯起勇等.沙棘林地土壤抗蚀性的研究[J].宁夏农林科技,2004,4:13~15
    [68] 杨玉盛,叶旺,林建华.水保林对紫色土抗蚀性的影响[J].中国水土保持,1992,5:31~32
    [69] 沈慧,姜风歧,杜晓军.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11 (3):345~348
    [70] 杨安学.麻江县主要土壤类型的物理性质与土壤抗蚀性的关系的初步研究[J].贵州林业科技,2004,32(2):25~29
    [71] 谢锦升,杨玉盛,陈光水等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报,2002,22(3):236~239
    [72] 郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(3):48~51
    [73] 于大炮,刘明国,邓红兵等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10~14
    [74] 沈林洪,黄炎和,谢晋生等.闽南不同土壤侵蚀强度的土壤性状特征[J].福建农业学报,2002,17(2):95~97
    [75] 唐水红,姜准兵.模拟降雨条件下不同林分类型土壤抗蚀性研究[J].湖南林业科技,1996,23(2):30~35
    [76] 何富广,赵荣慧,胡承海.辽西地区油松混交林抗蚀改土效益的研究[J].土壤学报,1994,31(2):170~179
    [77] 高维森,王佑民.黄土丘陵区柠条林地土壤抗蚀性[J].西北林学院学报,1991,6(3):70~78
    [78] 王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11~16
    [79] 郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].中国水土保持,1992,4:27~30
    [80] 胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘,1999,12(1):14~20
    [81] 张启昌,孟庆繁,兰晓龙.黄土低山丘陵土壤抗蚀性影响因素的初步研究[J].水土保持通报,1996,16(3):23~26
    [82] 张启昌,张晶,徐程杨.黄土低山丘陵区土壤抗蚀性的综合研究[J].吉林林学院学报,1994,10(2):109~112
    [83] 吴刚.广东土地抗蚀潜势初步研究[J].热带亚热带七壤科学,1997,6(2):100~103
    [84] 伏水,吴雄诲.关于土壤可蚀性指标的讨论[J].水土保持通报,1996,16(6):68~72
    [85] 牛德奎.赣南山地丘陵区崩塌侵蚀阶段发育的研究[J].江西农业大学学报,1990,12(42):29~36
    [86] 吴发荣,袁位高,徐卫南等.富春江两岸江滩林带树木根系与土壤抗蚀性能关系研究[J].浙江林业科技,1999,19(4):28~32
    [87] 杨玉盛,何宗明,林光耀.不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报,1996,2(2):32~37
    [88] 卞相玲,邢德天,吕曙光.侧柏麻栋混交林水土保持效益研究[J].山东林业科技,2003,6:13~14
    [89] 张松阳.不同治理措施对土壤抗蚀性因子的影响[J].福建水土保持,1999,11(3):49~52
    [90] 徐秋芳,姜培坤,俞益武等.不同林用地土壤抗蚀性能研究[J].浙江林学院学报,2001,18(4):362~365
    [91] 安和平.北盘江中游地区土壤抗蚀性及预测模型研究[J].水土保持学报,2000,14(4):38~42
    [92] 余清珠,师明洲.半干旱黄土丘陵沟望区人工混交林土壤抗蚀性研究初报[J].水土保持通报,1990,10(5):5~9
    [93] Comeau P. G., Kimmins J.P. Above-and below-ground biomass and production of lodge pole pine on sites with differing soil moisture regimes, Can. J. For Res., 1989, 19: 447~454
    [94] Bauhus J and Bartsch N. Fine-root growth in beech (Fagus sylvatica) forest gaps. Can. J For. Res., 1996, 26: 2153~2159.
    [95] 郭东信,黄以职,赵秀峰.青藏公路风火山垭口盆地融冻泥流阶地初步研究[J].冰川冻土,1993,15(1):58~62
    [96] 黄以职,郭东倍,赵秀锋.青藏高原冻土区沙漠化及其对环境的影响[J].冰川冻土,1993,15(1):53~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700