内置纵肋矩形钢管混凝土轴压短柱极限承载力有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩形钢管混凝土因为其具有截面抗弯刚度大、节点构造简单、与梁连接简便、易于施工等优点,目前被大量应用于实际工程当中。内置纵肋矩形钢管混凝土是一种新型结构,可提高钢管对其核心混凝土的约束作用,以及提高构件的极限承载力和延性性能,防止发生局部屈曲,改善了矩形钢管混凝土的受力性能。本文利用通用有限元程序ANSYS对内置纵肋矩形钢管混凝土轴压短柱进行了研究分析,主要完成了以下几个方面的内容:
     (1)对内置纵肋矩形钢管混凝土轴压短柱进行了试验研究,观察并分析了试件在整个试验过程中的变形特点、破坏模式和破坏机理。研究结果表明:纵向加劲肋能够有效防止矩形钢管混凝土壁板的局部屈曲现象,从而提高试件的极限承载力。
     (2)在试验研究的基础上,对内置纵肋矩形钢管混凝土轴压短柱进行了有限元模拟,同时考虑了材料非线性、几何非线性和初始缺陷对模型的影响,并将有限元分析结果与试验结果进行了对比分析,两者吻合较好。
     (3)通过改变加劲肋高度与壁板子板件宽度的比值,对内置纵肋矩形钢管混凝土轴压短柱进行了有限元参数分析。研究了加劲肋高度与壁板子板件宽度之比仅以及子板件宽厚比β对内置纵肋矩形钢管混凝土轴压短柱极限承载力提高系数的影响情况。
     (4)在参数分析的基础上,给出了计算内置纵肋矩形钢管混凝土轴压短柱极限承载力的表达式。
     本文的研究结论可以为今后带肋矩形钢管混凝土结构的研究提供一些参考和借鉴。
Because of the strong bending-rigidity of the cross-section, simple connection details, easier to connection with beams and decoration convenience, the Rectangular Concrete-filled Steel Tubular columns (rectangular CFST) have been increasingly applied in engineering practice. Concrete-filled rectangular steel tube stub columns stiffened by inner longitudinal ribs under axial compression (stiffened rectangular CFST) is a kind of new structure, it can enhance restriction effect of the rectangular CFST to core concrete and the ultimate load carrying capacity and ductility, prevent local buckling of the steel plates, improve the mechanical performance of rectangular CFST. In this paper, stiffened rectangular CFST was studied with the universal FEM ANSYS program. The main contents are listed as follows:
     (1) The stiffened rectangular CFST were tested under axial compression load.The features of deformation, failure models and failure mechanism were observed and analyzed. The test results show that longitudinal stiffener can improve the local buckling performance of stiffened rectangular CFST efficiently, and can improve its ultimate load carrying capacity.
     (2) On the basis of the test, stiffened rectangular CFST were simulated by FEM, considering material non-linear and geometry non-linear question simultaneously, the calculating results of FEM kept in with those from tests.
     (3) Concrete-filled rectangular steel tube stub columns stiffened by inner longitudinal ribs under axial compression were analysised, where height-to-width ratio were selected as main varied parameters.This paper research that K is how to be influenced by parameters a andyβ.
     (4) Based on the analysis of parameters, the expression of ultimate load carrying capacity was given in this paper.
     Conclusions of this paper can provide some reference to the research of the same kind stiffened rectangular CFST in the future.
引文
[1]钟善桐.钢管混凝土结构[M].第三版.北京:清华大学出版社,2003
    [2]韩林海.钢管混凝土结构—理论与实践[M].第二版.北京:科学出版社,2007
    [3]韩林海,杨有福.现代钢管混凝土结构技术[M].第二版.北京:中国建筑工业出版社,2007
    [4]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [5]Richard W. Furlong. Strength of steel-encased concrete beam columns [J]. Journal of the Structure Division, ASCE.1967,94(s75):113-124
    [6]Richard W. Furlong. Design of steel-encased concrete beam columns [J]. Journal of the Structure Division, ASCE.1968,93(1):267-281
    [7]Robert B. Knowles, Robert Park. Strength of concrete-filled steel tubular columns [J]. Journal of the Structure Division, ASCE.1969,195(ST12):2565-2586
    [8]Robert B. Knowles, Robert Park. Axial load for concrete filled steel tubes [J]. Journal of the Structure Division, ASCE.1970,96(10)
    [9]Masahide Tommi, Kenji Sakino. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force [J]. Transactions of the Architectural Institute of Japan.No.281, July:81-90
    [10]Ge,H.B., Usami,T. Strength of concrete-filled thin-walledsteel box columns:Experiment [J]. Engg Struct,1982,10(5):3036-3054
    [11]Furlong R W. Columns rules of ACI, SSLC, and LRFD compared [J]. Journal of structural division, ASCE,1983,109(10):2375-2386
    [12]Shakir-Khalil H., Zeghiehe J. Experimental Behavior of Concrete-filled Rolled Rectangular Hollow-section Columns [J]. The Structural Engineering,1989,67(19): 346-353
    [13]Shakir-Khalil H., Mouli M. Further Tests on Concrete-filled Rectangular Hollow-section Columns [J]. The Structural Engineering,1990,68(20):405-413
    [14]Matsui,C., Tsuda,K., and El Din,H.Z. Stability design of slender concrete filled steel square tubular columns [J]. Proceedings of the 4th East Asia-Pacific Conference on Structural Engineering and Construction, Vol.1,1993:317-322
    [15]Bradford M. A. Design Strength of Slender Concrete-Filled Rectangular Steel Tubes [J]. ACI Structural Journal,1996,93(2):229-235
    [16]Kitada T.Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan [J].Engg Struct 1998,20(4):347-354
    [17]Young-Bong KWON, Jun-Yeup SONG, Kim-Sung KON. The Structural Behavior of Concrete-Filled Steel Piers [J].16th Congress of IABSE, Lucerne,2000
    [18]Susantha, K.A.S.(Department of Civil Engineering, Nagoya University); Ge, H.; Usami, T. Source. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes [J]. Engineering Structures,2001,23(10):1331-1347
    [19]ACI Committee 318M(ACI 318M-05),2005. Building code requirements for structural concrete and commentary [S]. American Concrete Institute, Detroit, USA
    [20]AISC 360-05,2005. Specification for structural steel buildings [S]. American Institute of Steel Construction (AISC), Chicago, USA.
    [21]AIJ,1997. Recommendations for design and construction of concrete filled tubular structures [S]. Architectural Institute of Japan (AIJ), Tokyo, Japan
    [22]British Standards Institutions BS5400,2005. Steel, concrete and composite bridges, Part 5:Code of practice for design of composite bridges [S]. London, UK
    [23]EC4,2004. Design of steel and concrete structures-Part 1-1:General rules and rules for building [S]. EN 1994-1-1:2004, Brussels, European Committee for Standardization
    [24]张正国,左明生.方钢管混凝土轴压短柱在短期一次静载下的基本性能研究[J].郑州工学院学报,1985(2):19-32
    [25]罗力.方钢管混凝土长柱在轴心荷载作用下的试验研究[D].郑州:郑州工学院,1989
    [26]陶忠.方形截面钢管混凝土力学性能及承载力的理论分析与试验研究[D].哈尔滨:哈尔滨建筑大学,1998
    [27]吕西林,余勇,陈以一.轴心受压方钢管混凝土短柱的性能研究:Ⅰ试验[J].建筑结构,1999(10):41-43
    [28]余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:Ⅱ分析[J].建筑结构,2000(2):43-46
    [29]郭兰慧.方形、矩形钢管混凝土高强混凝土构件力学性能分析与试验研究[D].哈尔 滨:哈尔滨工业大学硕士论文,2002
    [30]叶再利.方形、矩形钢管高强混凝土轴压短柱基本力学性能研究[D].哈尔滨:哈尔滨工业大学硕士论文,2001
    [31]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31
    [32]蒋涛,沈之容,余志伟.矩形钢管混凝土轴压短柱承载力计算[J].特种结构,2002,19(2):4-6
    [33]王蕾,江雪.矩形钢管混凝土短柱受压承载力计算[J].桂林工学院学报,2003,10(4):441-444
    [34]张素梅,郭兰慧,叶再利等.方钢管高强混凝土轴压短柱的试验研究[J].哈尔滨工业大学学报,2004,36(12):1610-1614
    [35]张耀春,陈勇.设直肋方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006,27(5):16-22
    [36]陈勇,张耀春,董志军.不同截面形式方形薄壁钢管混凝土轴压短柱的静力试验研究[J].哈尔滨工业大学学报,2005,37(增刊):89-92
    [37]高金良,姚民乐.轴心受压矩形钢管混凝土短柱承载力研究[J].建筑材料学报,2006(06)
    [38]王志滨,陶忠.带肋薄壁方钢管混凝土轴压短柱设计探讨[J].工业建筑,2007,37(12):13-17
    [39]林震宇,沈祖炎,罗金辉等.L形钢管混凝土轴压短柱力学性能研究[J].建筑钢结构进展,2009,11(6):14-19
    [40]龙跃凌,蔡健,黄炎生.矩形钢管混凝土短柱轴压承载力[J].工业建筑,2010,40(7),95-99
    [41]黄宏,张安哥,李毅等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报,2011,32(2):75-82
    [42]CECS28:90,钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992
    [43]DL/T 5085-1999,钢-混凝土组合结构设计规范[S].北京:中国电力出版社,1999
    [44]GJB4142—2000,战时军港抢修早强型组合结构技术规程[S].北京:中国人民解放军总后勤部,2001
    [45]DBJ13—51—2003,钢管混凝土结构技术规程[S].福州:福建省建设厅,2003
    [46]CECS 159:2004,矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004
    [47]CECS188:2005,钢管混凝土叠合柱结构技术规程[S]北京:中国计划出版社,2005
    [48]刘永健,张俊光,黄健超等.双层桥面三桁刚性悬索加劲钢桁梁桥全桥试验模型[J].建筑科学与工程学报,2008,25(3):61-65
    [49]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.10
    [50]龚曙光,谢桂兰,黄云清.ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009.8
    [51]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.10
    [52]余勇.方钢管混凝土结构受力性能研究[D].同济大学博士论文,2000
    [53]王玉银,张素梅.钢管混凝土轴压短柱性能三参数分析与计算[J].哈尔滨工业大学学报,2007,39(2):210-215
    [54]陶忠,于清.新型组合结构柱—试验、理论与方法[M].北京:科学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700