竖向荷载作用下密肋复合墙体受力性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密肋壁板结构是一种节能抗震型建筑结构新体系,具有很好的发展前景,在前期的研究工作中取得了许多卓有成效的成果。然而,作为一种新型结构体系还有许多问题需要进行研究与完善。本文以密肋壁板结构的主要受力构件——密肋复合墙体为研究对象,在总结分析已有研究成果的基础上,利用试验研究、理论分析和有限元数值模拟,对多层和小高层密肋复合墙体在竖向荷载作用下的受力性能、轴力分配特点、轴心受压承载能力和稳定性进行了研究。主要研究内容包括:
     1、对5榀1/2比例单层单跨密肋复合墙体进行了竖向荷载作用下的试验研究,研究了密肋复合墙体在竖向荷载作用下的破坏过程、破坏模式和竖向变形性能;分析了肋梁在轴心受压墙体中的作用;竖向荷载在边框柱、肋柱及砌块之间的分配特点及其各自对墙体抗压的贡献;分析了初始缺陷、加载偏心、高厚比、有无填充砌块和不同加载方式等因素对墙体受压承载力的影响,为建立密肋复合墙体正截面轴心受压承载力计算公式提供了依据。
     2、建立了密肋复合墙体有限元分析模型,利用试验数据验证了模型的精确度和可行性;对竖向荷载在密肋复合墙体边框柱、肋柱和砌块间的分配情况进行了线弹性分析,得出总层数和所在楼层位置等不同因素对墙体各构件轴力分配系数大小的影响规律;应用曲线拟合方法建立了竖向荷载作用下多层和小高层密肋复合墙体各构件轴力分配系数的实用设计计算公式。
     3、建立了考虑砌块对墙体轴心受压承载力提高系数和稳定系数的密肋复合墙体正截面轴心受压承载力实用计算公式;应用有限元方法对密肋复合墙体进行了非线性分析,着重分析墙体的稳定性,探讨不同因素对墙体稳定系数的影响,得出考虑砌块的密肋复合墙体稳定系数计算公式;采用有限元模型分析了墙体的平面内极限承载力,给出了砌块对墙体轴心受压承载力提高系数的计算公式。
Multi-ribbed slab structure is a new structural system, characterized by energy-saving and good aseismic performance, whose development prospect is very good. Though much fruitful progress has been achieved in previous study, there still remains a lot to be studied and perfected as a new structural system. The thesis is devoted to studying on the multi-ribbed composite wall, which is the main bearing member in multi-ribbed slab structure. On the basis of the previous researches, experiments, theoretical analysis and numerical simulation by finite are employed to study the load-bearing performance, axial force distribution, bearing capacity under axial press and stabilization of the multi-story and moderate high- story multi-ribbed composite wall subjected to the vertical load. The main contents are presented as follows:
    1、 Five 1/2-scaled model experiments of the multi-ribbed composite walls with one span and one story under vertical load are presented; the failure process, failure mode and vertical deformation performance of the wall under vertical load are studied; the thesis analyses the effect of ribbed beams in the wall under axial force and discuses the distribution characteristic and contribution of the vertical load among frame columns, ribbed-columns and filled blocks; meanwhile the impaction on compression capacity of multi-ribbed composite wall put by some factors such as initial flaw, eccentric loading, ratio of height to sectional thickness, with the filled blocks or not and different loading way is discussed, which provides the base for the built of the normal section bearing capacity formula of multi-ribbed composite wall under vertical load.
    2、 Finite element analysis model of the multi-ribbed composite walls is established, and the precision and feasibility of models are proved by test data; the linear elastic analysis is used to study the axial force distribution among frame columns, ribbed-columns and filled blocks, which can obtain the influences on axial force distribution coefficient of each components by the number and location of layers and so on; the practical computing formula for distribution coefficient of axial force of each component in the multi-ribbed composite wall under vertical loads is built by the curve fitting.
    3、 The paper constructs the practical normal section bearing capacity formula of multi-ribbed composite wall under vertical load with considering such two coefficients, which are developed by the blocks, as elevated coefficient of the axial compression capacity and stability coefficient of the multi-ribbed composite wall; By means of Finite Element Method (FEM), the paper performs nonlinear analysis on the multi-ribbed composite wall with focusing on the wall's stability. The effect of different factors to the wall's stability coefficient is discussed to get the computing formula for stability coefficient of the multi-ribbed composite wall with considering the blocks. Adopting the finite element model to analyses ultimate load in-plane cable-arch of the wall, and the computing formula for the elevated coefficient of bearing capacity of multi-ribbed composite wall under axial load is derived.
引文
[1] 沈建忠.《经济日报》记者采访时的发言.2006
    [2] 西安建筑科技大学建筑工程新技术研究所.密肋壁板轻型框架结构理论与应用研究.科学技术研究报告.2000
    [3] 《小康住宅建筑结构体系成套技术指南》编写组.小康住宅建筑结构体系成套技术指南.中国建筑工业出版社.2001
    [4] 姚谦峰.新型建筑结构住宅体系发展与应用.工业建筑.2002 08
    [5] 黄炜,姚谦峰等.加外框密肋复合墙板抗震性能研究.工业建筑.2003 01
    [6] 姚谦峰,黄炜.新型住宅结构体系发展与应用研究综述.施工技术.2003 10
    [7] 姚谦峰.新型节能住宅结构体系的研究与发展.工程力学.2001(增刊)
    [8] 唐岱新.砌体结构.高等教育出版社.2003
    [9] 梁兴文,童岳生,史庆轩.钢筋混凝土结构设计.2003
    [10] 丰定国,王社良.抗震结构设计.武汉工业大学出版社.2001
    [11] 沈蒲生.高层建筑结构.中国建筑工业出版社.2006
    [12] 黄炜.密肋复合墙体抗震性能及设计理论研究.西安建筑科技大学博士学位论文.2003
    [13] 姚谦峰,陈平.土木工程结构试验.中国建筑工业出版社.2001
    [14] 过镇海,时旭东.钢筋混凝土原理和分析.清华大学出版社.2003
    [15] 中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).中国建筑工业出版社.2002
    [16] Bathe K. J. Finite Element Procedures. Prentice Hall, Englewood Cliffs, New Jersey, 1996
    [17] Suidan M., Schnobrich W. C. Finite element analysis of reinforced concrete, J. of the Structural Division. Vol. 99, 1997.10
    [18] ADINA Engineering ADINA-IN. A Program for Generation of Input Data to ADINA. 1983
    [19] Park R, paulay T. Reinforceed concrete structures. A Wiley interscience publication. 1975
    [20] 郝文化.ANSYS土木工程应用实例.中国水利水电出版社.2005
    [21] 叶先磊,史亚杰.ANSYS工程分析软件应用实例.清华大学出版社.2003
    [22] 尧南,王寿梅.结构分析中的非线性有限元素法.北京航空学院出版社.1986
    [23] 张汝清,詹先义.非线性有限元分析.重庆大学出版社.1990
    [24] 沈聚敏,王传志.钢筋混凝土有限元与板壳极限分析.清华大学出版社.1993 01
    [25] R. S. H. AL-Mahaidi. Nonlinear Finite Element Analysis of Reinforced Concrete Subjected to Shear Loading. Heron. 26(1a), 1981
    [26] 吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.同济大学出版社.1997
    [27] J. Houde, M. S. Mirza. A Finite Element Analysis of Shear Strength of Reinforced Concrete Beams, Shear in Reinforced Concrete, 1, SP-42, ACI, Detroit, Michigan. 1974
    [28] Automatic Dynamic Incremental Nonlinear Analysis. ADINA Inc. 2003
    [29] Zienkiewicz, O. C. The Finite Element Method. lMcGraw-Hill Company, London. 1977
    [30] William, K. J. University of Colorado, Boulder, (Private Communication). 1982
    [31] Bathe, K. J. and Wilson, E. J. SAPIV. A Structural Analysis Program for Static and Dynamic Response of Linear System. University of California, Berkeley. 1973
    [32] William, K. J., and Wamke, E. D. "Constitutive Model for the Triaxial Behavior of Concrete", Proceedings, International Association for Bridge and Structural Engineering,. Vol. 19, ISMES, Bergamo, Italy, p. 174 1975
    [33] Bathe, K. J. Finite Element Procedures in Engineering Analysis. Prentice-HallEnglewood Cliffs. 1982
    [34] 电脑辅助工程分析:ANSYS使用指南
    [35] ANSYS. INC. Theory Reference. 1998
    [36] 王爱民.中高层密肋壁板结构密肋复合墙体受力性能及设计方法研究.西安建筑科技大学博士学位论文.2006
    [37] 薛毅.数值分析与实验.北京工业大学出版社.2005
    [38] 韩旭里,万中.数值分析与实验.科学出版社.2006
    [39] 混凝土结构设计原理.中国建筑工业出版社.2001
    [40] 陈骥.钢结构稳定理论与设计.科学出版社.2001
    [41] 马静.密肋复合墙体在竖向荷载作用下的受力机理及稳定性研究.西安建筑科技大学硕士学位论文.2005
    [42] 丁美.结构稳定分析中的ANSYS应用.低温建筑技术.2003 06
    [43] 邬喆华,楼文娟等.薄壁混凝土墙体稳定性分析.浙江大学学报.2002 04
    [44] Cui Weicheng. Buckling and Ultimate Strength Analysis of Stiffened Panels. Journal of Ship Mechanics. Jun,1998
    [45] 杨福运,张豫.加肋平板稳定问题的探讨.华东交通大学学报.2000 09
    [46] 张涛,刘士光.初始缺陷加筋板的屈曲与后屈曲分析.船舶力学.2003 02
    [47] 陕西省工程建设标准.密肋壁板结构技术规程(DBJ/T61-43-2006).陕西省建设厅.2006
    [48] 孙志忠.数值分析.东南大学出版社.2002
    [49] 王能超.数值分析简明教程.高等教育出版社.2003
    [50] 杨泮池.计算方法.陕西科学技术出版社.1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700