方钢管混凝土力学性能有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以ABAQUS为平台,建立一套分析钢管混凝土的有限元模型。其中核心混凝土采用混凝土损伤塑性模型,钢管采用弹塑性模型,界面采用节理模型。在轴压、纯弯和压弯情况下分析钢管混凝土柱力学性能受混凝土强度、含钢率和钢材屈服强度等参数的影响规律及其破坏机理。具体的工作有以下几个方面:
     1.模型验证
     选取有代表性的Kupfer混凝土双轴材料试验,使用混凝土损伤塑性模型进行计算模拟,计算结果与试验结果具有较好的一致性,说明混凝土损伤塑性模型能够很好地模拟混凝土力学性能。
     选取有代表性的轴压、压弯钢管混凝土结构试验,使用建立的有限元模型进行计算分析,并与试验结果相比较。结果表明,两者具有较好的一致性,从而验证了建立的模型能较好地模拟钢管混凝土极限承载力和破坏全过程。
     2.力学性能分析
     用建立的有限元模型进行计算分析在轴压、纯弯和压弯三种情况下混凝土强度、含钢率和钢材屈服强度对方钢管混凝土极限承载力的影响。在含钢率相同情况下,与圆钢管混凝土比较承载力以及荷载位移曲线的差别。
     轴压情况下,采用节理模型考虑界面影响,界面之间随机挖去一定比例单元,模拟空隙率影响。压弯情况下,计算分析方钢管混凝土构件受偏心距、轴压比以及长细比等参数的影响,并分析随轴压比增大延性降低,结构变脆的机理。
     3.提高承载力措施
     在上面分析的基础上,提出一种提高方钢管混凝土极限承载力和延性的方法,即采用对穿钢筋锚固。计算分析结果表明,该方法效果明显。
This paper presents a finite element method (FEM) model for the analysis of concrete filled steel tubes (CFT) based on ABAQUS. The damage plasticity model is used to describe core concrete and elastic-plasticity model to describe the steel tube. The jointed material model is used to model interface between the concrete and the steel tube. Under the condition of axial compression, simple bending and compression-bending, the effects of parameters to CFT's mechanical performance are studied. The parameters taken in account are concrete compression strength, steel ratio, steel strength.
    Details are listed below:
    1. Model verification
    The representative experiment (Kupfer, concrete biaxial material experiment) is selected for verification of the concrete damage plasticity model. Results have shown that the model is appropriate.
    Representative structural experiments of CFT subjected to axial compression and compression-bending are selected to verify the FEA model presented in this paper. The results of the FEM analysis agree well with the experiments. This shows that the FEA model does well with the simulation of CFT's ultimate bearing resistance and full failure process.
    2. Mechanical performance analysis
    Under the condition of axial compression, simple bending and compression- bending, the effect of main parameters to CFT and failure mechanism are studied. The parameters taken in account are concrete compression strength, steel ratio, steel strength. With the same steel ratio, square CFT is compared with circle CFT in bearing resistence and load-deformation curves.
    Under axial compression, influence of interface is considered using jointed material model, and gap of interface is considered by removal of some elements. Moreover, the influence of different parameters, such as eccentricity, axial load ratio and slenderness ratio are studied under compression-bending. Also, analysis of the mechanism that ductility reduces and structure becomes brittle with increasing axial load ratio is performed.
    3. Method for enhancement of bearing resistence
    On the basis of the above analysis, a method is developed to improve the ultimate bearing resistance and ductility of CFT. That is to add transverse reinforcement steel bar to CFT. Computational results show that the method is efficient.
引文
[1] 韩林海.钢管混凝土结构[M].北京:科学出版社,200.1
    [2] 彭少明.混凝土结构(下册).武汉工业大学出版社,2002.2
    [3] 钢管混凝土高层建筑的经济比较.建筑技术,2003
    [4] 陈洪涛.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究(博士学位论文).哈尔滨工业大学,2001
    [5] 陶忠方钢管混凝土构件力学性能若干关键问题的研究(博士学位论文).哈尔滨工业大学,2001
    [6] M. Shams and M. A. Saadeghvaziri. Nonlinear Evaluation of Axial Loaded Concrete Filled Steel Tubular Columns. ACI Structural Journal. 1999, 96(6): 777~786
    [7] Schneider S. P. Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering. ASCE. 1998, 124(10): 1125-1138
    [8] 杨炳麟.钢管混凝土柱的弹塑性有限元分析.武汉水利电力学院学报.1990.8
    [9] 余勇,吕西林.方钢管混凝土柱的三维非线性分析.地震工程与工程振动,1999.3
    [10] 余勇,吕西林.三向受压混凝土的三维本构关系.同济大学学报,1998.12
    [11] 余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:Ⅰ试验.建筑结构,1999.10
    [12] 余勇,吕西林.轴心受压方钢管混凝土短柱的性能研究:Ⅱ分析.建筑结构,2000.2
    [13] 查晓雄,唐家祥.钢管混凝土结构非线性有限元分析中混凝土边界面模型的研究及应用.工程力学,1999.12
    [14] 吴逸民.钢管混凝土柱数值模拟之研究(硕士学位论文).国立成功大学,2001.6
    [15] 周明.方钢管混凝土构件力学性能研究(硕士学位论文).哈尔滨工业大学,2001.3
    [16] 叶再利.方形矩形高强钢管混凝土轴压短柱基本力学性能研究(硕士学位论文).哈尔滨工业大学,2001.7
    
    
    [17] 王来永.钢管混凝土梁柱受力性能分析(硕士学位论文).福州大学,2001.12
    [18] 王颖.钢管混凝土性能分析(硕士学位论文).沈阳工业大学,2001.3
    [19] 钟善桐,苗若愚.钢管混凝土轴心受压构件承载力计算的研究.建筑结构学报,1984(6)
    [20] Lubliner J., J. Oliver, S. Oiler, and E.. Ofiate. A Plastic-Damage Model for Concrete. International Journal of Solids and Structures, vol.25, no.3, pp. 229-326, 1989.
    [21] Lee J, and G. L. Fenves. Plastic-Damage Model for Cyclic Loading of Concrete Structures Journal of Engineering Mechanics, vol. 124, no.8, pp. 892-900, 1998.
    [22] ABAQUS, Inc. ABAQUS Theory Manual. 2003
    [23] Zienkiewicz O. C, and G. N. Pande. Time Dependent Multilaminate Model of Rocks. A Numerical Study of Deformation and Failure of Rock Masses. International Journal for Numerical and Analytical Methods in Geomechanics. vol. 1, pp. 219-247, 1977
    [24] Kupfer, H Hilsdorf, H.K, and Rusch, Behavior of concrete under biaxial stresses. ACI 2 66(8): 656-666, 1969
    [25] 陈琴,Marc软件在钢筋混凝土结构开裂分析中的应用于二次开发(硕士学位论文).武汉大学,2003.5
    [26] Knowle K, Park R Strength of concrete filled tubular [J]. ASCE 1969, 95(12): 1732-1738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700