钢梁—型钢混凝土柱节点受力性能的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢混凝土结构将是今后高层建筑应用的主要结构形式之一,然而目前对于这种结构的研究还不完善。为了对型钢混凝土节点受力性能有更好的了解,有必要对其进行非线性有限元分析。本文应用有限元分析软件ANSYS对钢梁—型钢混凝土柱节点在低周反复荷载作用下进行模拟。
    本文采用分离式有限元模型,型钢和钢筋混凝土分别选用不同的单元,钢筋混凝土部分采用整体式模型,将钢筋弥散到混凝土中,忽略了型钢混凝土节点核心区各构件间的粘结滑移性能,用非线性有限元方法分析了节点的受力性能。根据有限元计算结果,对型钢和混凝土的应力应变进行分析,得到了节点的三种失效模式:梁铰型、混合型和节点核心区剪切型。然后分析了节点的滞回特性,并与纯钢结点作比较。通过计算结果表明:对于失效模式为梁铰型的节点,型钢和钢筋混凝土分别选用不同的单元,钢筋混凝土部分采用整体式模型,能够节省计算时间,同时又能满足计算精度要求;对于失效模式为节点核心区剪切型的节点,则计算结果产生一定的误差。
     在此基础上,对失效模式为核心区剪切型节点的影响参数做了的分析。分析表明:轴压比对节点的开裂荷载和极限荷载的提高是有利的,而且随之增大而提高,然而轴压比的增大不但增强了效应,而且导致了节点刚度的退化,因此轴压比应该受到限制;节点抗剪承载力随着型钢腹板厚度的增大而提高;混凝土强度对节点的开裂荷载和极限荷载的影响也比较明显,随着混凝土强度的提高而提高。最后探讨了节点抗剪承载力计算公式。
Steel reinforced concrete structure will be one of main structures used in high buildings in the future, But the research on properties of this structure isn't sophisticated. In order to develop a more thorough understanding of the behavior of SRC beam-column joints,the study on nonlinear finite element analysis is very necessary. In this paper, the SRC column and steel beam joints are analyzed by the ANSYS nonlinear finite element software under low reversed cyclic loading.
     Separate-finite element model is adopted in this letter. Different element types are used in the models. Integral-finite element model is adopted in reinforced concrete and steel bars are diffused in concrete. Bond-slip behavior is not taken into account between all components on the core of the SRC joints. The behavior of joints is analyzed by nonlinear finite element method. According to result of calculation, three failure types are obtained by analyzing the stress and strain of shaped steels, that is beam failure type, mixed failure type and shear failure type. After that the hysteresis loops are analyzed, which are compared with steel joints. The result showed the finite element models can economize time of calculation and satisfy request of calculation accuracy for the joints of beam failure type. However, it showed the models can produce a little error for the joints of shear failure type.
     On the basis of these, An analysis is developed for influence parameters that have some influence on joints' behavior. The results show that axial ratio has a good effect on crack loading and ultimate loading. That the higher axial ratio is, the higher crack loading and utmost loading is. However increment of axial ratio can enhance force-displacement effect and degenerate stiffness of joints, so axial ratio must be limited. The shear-resistant capacity of SRC column and steel beam joint is improved with increase of the thickness steel web of column. Concrete strength grade has a good and visible effect on crack loading and ultimate loading. That the higher Concrete strength grade is, the higher crack loading and ultimate loading is. Lastly, an equation to calculate ultimate shear-resistant capacity of SRC column
    
    
    and steel beam joint is discussed.
引文
[1] 韩林海.钢管混凝土结构.科学出版社,2000:3~8
    [2] 日本建築學會.鐵骨鐵筋コンクリ-ト構造計算規准,同解說.第4版,1987
    [3] Architectural Institute of Japan. AIJ Standards for Structural Calculation of Steel Reinforced Concrete Structures(1987).1991
    [4] British Standard Institution Steel, Concrete and Composite Bridges, Parts 5. Code of Practice for Design of Complete Bridges.1979
    [5] Johnson R P. Composite Structures of Steel and Concrete Vol.1-Breams, Columns, Frames and Applications in Building. New York: Halsted Press,1975
    [6] Johnson R P. Eurocode No. 4, Composite Steel and Concrete Structures International Symposium On Composite Steel Concrete Structure, 1987, Vol.2
    [7] 天津大学,同济大学,南京工学院.钢筋混凝土结构(上册).北京:中国建筑工业出版社,1980
    [8] 周起敬,等.钢与混凝土组合结构设计施工手册.北京:中国建筑工业出版社,1991
    [9] Johnson R.P. ,Composite Structures of Steel and Concrete, Volume,1982
    [10] Johnson P. Cook, P.E., Composite Construction Methods,1977
    [11] Johnson R P and Buckby R J. Composite Structures of Steel and Concrete. Volume 2-Bridge,with a Commentary on BS5400 Part 5. Published by Granada Publishing Limited in Crosby Lockwood Staples,1979
    [12] 中华人民共和国行业标准.钢骨混凝土结构设计规程.中国冶金工业部,1997
    [13] 横尾义贯,若林实,末永保美.“H 型钢さぃたコンヮリド研究”日本建筑学会报告集第137号,昭和42年7月
    [14] 田守瑞.圆形截面钢骨混凝土柱—钢梁节点抗震性能的试验研究:[学位论文].北京:北京工业大学,2001
    [15] 若林实,南宏一,西村泰志.十字形骨て构成铁骨铁筋コンヮリド试验研究.京都大学防灾研究所年报,第24号,1981(4)
    [16] Koichi Minami, Beam to Column Stress Transfer in Composite Structures, Architectural Institute of Japan, 3rnd Edition.Nov,1975
    [17] 上海环球金融中心结构实验报告.清水建设株式会社,1996
    [18] 赵鸿铁,等.劲性配筋混凝土梁柱节点.西安冶金建筑工程学报,1988(2):31~39
    [19] 中国建筑科学研究院.混凝土结构研究报告选集3.第一版.中国建筑工业出版社,1994.6
    
    [20] 孙慧中,等.劲性钢筋砼梁柱节点受剪承载力和延性研究.中国建筑科学研究院,1990
    [21] 唐九如,陈雪红.劲性砼梁柱节点与抗剪强度.建筑结构学报,1990(4)
    [22] 中国建筑科学研究院.混凝土结构研究报告选集3.第一版.中国建筑工业出版社,1994(6)
    [23] Prof. H. Noguchi. Prof. G. Deierlein. Report of the Working Group on Reinforced Concrete Column and Steel Beam Systems .RCS Technical Sub-Committee,TSC-2
    [24] 赵红梅.钢梁—钢骨混凝土柱节点的非线性有限元分析:[学位论文]北京:北京工业大学,2001
    [25] Prof. H. Noguchi. Prof.G. Deierlein. Report of the Working Group on Reinforced Concrete Column and Steel Beam Systems .RCS Technical Sub-Committee,TSC-2
    [26] 赵鸿铁著. 钢与混凝土组合结构. 北京:科学出版社,2001.184~211
    [27] 王力,扬大光,孙世均.钢—混凝土组合梁滑移及掀起的理论分析方法.哈尔滨建筑大学学报,1998.37~42
    [28] 刘涛,杨凤鹏.精通ANSYS[M ].北京:清华大学出版社,2002
    [29] 叶先磊,史亚杰ANSYS工程分析软件应用实例[M]北京:清华大学出版社2003
    [30] 吕西林,金国芳,吴晓涵编著.钢筋混凝土结构非线性有限元理论与应用,上海:同济大学出版社,1997:28~32
    [31] 沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993:102~103 ,171~197
    [32] 《混凝土结构设计规范》(GB 50010—2002)北京:中国建筑工业出版社2002.255~256
    [33] William KJ. Warnke EP. Constructive models for the triaxial behavior of concrete. IABSE Proceeding, 1975(19):1~30.
    [34] 张耀庭,邱继生.ANSYS在预应力钢筋混凝土结构非线性分析中的应用.华中科技大学学报(城市科学版),2003,20(4):20~23
    [35] 陈伟恩.钢—混凝土组合结构节点抗震性能研究:[学位论文].福建:福州大学,2002
    [36] 薛建阳,赵鸿铁,杨勇.型钢混凝土节点抗震性能及构造方法.世界地震工程.2002,18(2):61~64
    [37] 型钢混凝土组合结构技术规程JGJ 138-2001.中华人民共和国行业标准.北京:2002:29~31
    [38] 白国良,秦福华著.型钢钢筋混凝土原理与设计.上海:上海科学技术出版社,2000.162~163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700