复杂预应力体系梁式结构有效预应力预测理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从二十世纪三十年代开始,预应力技术已广泛地应用于桥梁结构工程之中,世界桥梁中有70%以上都采用了预应力混凝土结构。然而,在预应力技术大量地应用于桥梁工程的实践过程中,尤其对于服役多年的大、中跨径预应力混凝土桥梁,有相当一部分结构产生了严重病害,主要表现在混凝土劣化和力筋缺损等方面。目前关于预应力筋典型缺损状况中关于有效预应力衰减程度的检评技术研究仅停留在简单结构体系的室内模型试验阶段,与实桥工程应用的目标还有很大距离。
     本文以西部交通建设科技项目—“大、中跨径混凝土桥梁预应力检测技术研究”(项目编号:2005 318 812 15)之专题五—“预应力筋有效预应力的检测方法、设备与评价技术研究”为依托,针对在役混凝土桥梁的有效预应力衰减状况进行了预测理论与方法的系统研究,得到以大跨径混凝土连续梁(刚构)桥为典型代表的具有复杂预应力体系桥梁的有效预应力标准化检测技术及其模拟预测方法,并建立起了完备的测评指标体系,以全面推动预应力有效值检测的实用化进程。文中方法同样适用于以中等跨径桥为代表的简单预应力体系桥梁的有效预应力检测及评价。
     本文完成的主要研究工作内容如下:
     (1)基于分项预应力损失算法的解构分析,通过有效预应力实际纵向沿程变化规律预测的反问题开展理论研究,建立起由钢束测值分析和有效预应力分布状况模拟两大模块构成的钢束有效预应力预测理论与方法。其中,核心研究成果主要体现在以下四方面:
     ①通过大量实桥中常见预应力钢束的布置类型及几何特征的归纳统计,将关键服役钢束分为表层测试钢束及间接预测钢束两大类并完成了与直接法检测技术(DD)相匹配的钢束标准化测试分类研究。在以弯曲半径、空间包角及投影长度作为特征参数进行影响因素分析的基础上,定义钢束应力沿程界限波动率(LSFR)—β作为判定指标,将表层测试钢束分为波动束及平缓束两类;
     ②通过同一截面内基准测试钢束有效预应力测试值与预测钢束有效预应力预测值之间的相关关系的建立,得到涵盖几何对称束与几何非对称束两种钢束类型的截面内有效预应力预测方法;
     ③将以波动束为代表的复杂类型钢束拆分为多个单一线型,通过对现行规范中预应力摩阻相关损失的简化计算方法改进,获得了具有通用性的组合线型钢束拟摩阻损失函数σlana(x)的算法并编制了配套的《预应力筋拟摩阻损失等效参数求解程序》(PresPS V1.0),进行了计算机软件著作权登记,实现了波动束有效预应力实际分布状况模拟;
     ④针对以平缓束为代表的简单类型预应力钢束,通过预应力分布从属的三种模式(等比、等差和混合模式)判别,建立起束筋有效预应力实际值与理论值偏差的相关关系,以此为依据得到了基于钢束当前张力测值的平缓束有效预应力纵向沿程分布规律的模拟。
     (2)基于截面分析的方法,开展了关键测试截面的有效预应力衰减程度整体化评价方法研究,建立了有效预应力整体衰减评价理论与方法,其中关键研究成果主要体现在以下三方面:
     ①通过考虑由钢筋及混凝土组成的复合材料截面间由于混凝土收缩、徐变、温差及预应力筋松弛等时变因素的影响,以预应力体系建立时刻与桥梁服役期内预应力检测时刻为关键时间点状态,结合由此引起的截面内应力重分布的特点,在截面静力平衡的基础上建立了由钢束当前应力测值向有效预应力值转化的解析方法;
     ②分别通过检测状态下截面边缘可测钢束的预应力当前测值及关键截面的释放应力测值两条技术途径,建立了基于预应力测值和截面释放应力测值的截面应力合效应分析模型;
     ③与现行设计规范中基于截面分析的方法相衔接,将理想设计状态下与服役状态下的桥梁控制截面内有效预应力储备度λ的偏差加以量化,建立起分级评价指标体系用于有效预应力衰减程度及影响分析;
     (3)基于静力学测试原理研发了针对混凝土桥梁预应力筋(钢绞线)预应力有效值的实时检测专项设备—预应力钢索张力测试仪(型号:LCZL-50),并申请了发明专利。该设备有针对性地攻克了在小范围局部扰动梁体混凝土及波纹管状态下钢束张力检测的各项技术难关,为预应力检测技术提供了硬件支撑。
     (4)规划设计了测量预应力钢绞线张力的基础性专项试验,并在预应力张拉试验台上完成了全过程试验实施,积累了丰富的数据资料。试验中首次以局部扰动混凝土范围及边界支撑方式作为重点模拟参数,进行了钢绞线静、动力指征数据的直接法量测。同时借助数学手段及试验回归分析方法消除了系统测试误差并获得了计入模拟边界工况下的推荐修正公式,分别形成了“静力参数静测法”(SPLM)及“模态参数动测法”(MPIM)两套实用检测技术。静力方法适用于以后张法施工工艺建立预应力体系的在役桥梁预应力检测,而动力方法对于采用先张法施工工艺的在建空心板、梁式桥及体外预应力桥梁的预应力检测更有优势。
     (5)参照公路混凝土梁桥预应力钢束的常见几何类型及布束方式,设计制作了室外大比例模型梁并开展了试验研究。在实际工程中预应力损失发生、发展机理及变化状态的真实模拟状况下,进一步标定了预应力钢索张力测试仪及配套的测试装置,整合和校正了组配的动力测试系统,验证了修正公式的工程精度,完成了检测方法的适应性研究;通过试验揭示出的实际钢束有效预应力纵向沿程分布规律,得到与瞬时损失相关的预应力损失推论验证。
     (6)以涵盖常见大中跨径预应力混凝土梁式桥梁结构的五座桥梁作为背景工程,进行了依托工程的实桥应用研究。在此基础上,对建立的有效预应力衰减预测方法重点进行了数值仿真及其影响的对比分析,促进了研究成果更好的推广应用于工程实践。
     综上所述,文中具有的创新点为:
     1、首次基于预应力束筋有限点上有效预应力的测值,建立了钢束有效预应力预测模型。该模型由钢束测值分析和有效预应力分布状况模拟两大模块构成,解决了关键服役钢束实际有效预应力量值的预测及沿程分布规律的模拟问题;
     2、首次提出了控制截面有效预应力衰减整体评价理论与方法。该方法分别依据直接法检测(DD)与应力释放法检测(RD)两条并行技术路线建立了截面应力合效应分析模型,并在此基础上以有效预应力储备度为指标完成了具有复杂预应力体系的梁式桥整体化分级评价;
     3、首次基于预应力钢绞线静动力指征参数的直接法量测,形成了两套局部扰动混凝土的拟边界状况下钢束张力的实用检测技术—“静力参数静测法”(SPLM)和“模态参数动测法”(MPIM);
     4、自主研发了预应力钢索张力测试仪(型号:LCZL-50)。通过该设备首次实现了在小范围局部扰动梁体混凝土状态下,针对预应力筋(钢绞线)索力值的抓、握、拔、测一体化实施。
Since the 1930s, prestressing technology has been widely used in bridge engineering and more than 70 percent of bridges are of the prestressed concrete structures at present. However, in the procession of its practical application, serious defect have been found out in a considerable number of PC (Prestressed Concrete) bridges, especially to those existing bridges via many years. Altogether the material disease is mainly shown in two aspects:one is concrete deterioration and the other is steel tendon defect. Current studies about inspection and evaluation on attenuation degree of effective prestress are confined to the experimental datum on simply-supported beams. Therefore it still has a long way to go.
     The research is sponsored by the science & technology program for west communication construction of MOC which is the project of NDE (Nondestructive Examination) on prestress tendon for mid-span or long-span PC bridges (Grant No.2005 318 812 15). This paper relies on the fifth sub-project of the programm focusing on the inspection study of effective prestress for prestressed reinforcement. Therefore, the research objectives of this paper are getting standard testing technology on effective prestress and setting up unified theoretical system of prediction on its attenuation, which may cover both long-span bridge with complicated prestressing systems like continuous rigid frame bridge and mid-span bridge with simple prestressing systems for practical application.
     Main research contents of this paper are as follows:
     (1) Based on comparatively sophisticated prestress loss method in current code, combined with study on the inverse problem to the principle of longitudinal distribution for effective prestress, model for predicting on attenuation of effective prestress was built up which included both analysis module and simulation module. Altogether there existed four key aspects as follows:
     a) According to the route of summing up characteristic types and geometry of prestressed reinforcement in a large number of highway bridges, for the sake of matching with the DD (Directly Detection) testing technique, standardization and classification on effective prestress inspection had accompolished. The prestressed reinforcement was divided into two categories, namely, the directly-measured prestressed reinforcement and indirectly-predicted ones. As far as the directly-measured prestressed reinforcement was concerned, its LSFR (Limited Stress Fluctuating Rate)βalong longitudinal direction used as index of testing classification was defined, which considered the influence of spatial geometry factors such as radius, angle and length of projection and so on to the prestress losses. This type of tendon was categorized as VT (Violent Tendon) and MT (Moderate Tendon). This academic route has greatly strengthened normalization of the inspection technology.
     b) Numerical method for effective prestress prediction between facial tendon and inner tendon in the same section was built up, through which effective prestress for each tendon could be deduced. This method was suitable not only for tendons with symmetric geometry types but also for asymmetric ones.
     c) Through decomposition of geometric types and simplified analysis on prestress losses for VT, the algorithm for virtual frictional loss functionσlana(x) was put forward in a universal way. On this basis, software named Prestressing Parameter Solution to virtual frictional loss function (PresPS V1.0) was programmed and copyright of the software had been registered. Thus the analogy method for VT was got eventually. Numerical analysis showed that the method was more accurate and easier in use than the simplified method in current code.
     d) Aiming at the analogy method for MT, different cross section types, construction techniques and prestressing forms were concluded. Furthermore, three subordinated modes including GM (Geometric Mode), AM (Arithmetic Mode) and FM (Functional Mode) were put forward. After recognition on these modes, distribution regularity and effective prestress value for moderate tendon could be simulated.
     (2) Based on section analysis, studies of the integral methods for evaluation on attenuation of effective prestress were conducted. Altogether there existed three key aspects as follows:
     a) Researched on the influence of time-dependent effects such as shrinkage, creep and prestressing relaxation upon composite PC cross-section, a simplified analytical method of stress transformation analysis was presented according to the features of cross-section stress redistribution during the period between the end of construction and the start point of inspection.
     b) Two practical analysis models for resultant force were available through DD (Direct Detection) and RD (Relieve Detection) testing techniques separately. It made up for the deficiency in nonlinear analysis when applying finite element method for beam structures and possessed advantages of practicability.
     c) Quantitative analysis for the deviation of Prestress Reservation Degreeλin critical sections between ideal state and service state was executed based on cross-section analytical method. By means of grading index system for deficit of effective prestress, evaluation of PC bridge performance had accomplished and was verified by a synthesis example.
     (3) A special instrument named Stretching Force Tester for prestressing strand (model: LCZL-50) was invented, through which real-time acquisition of effective prestress force could be realized and the patent had been applied. It provided powerful support for the basic experiments on "static parameter" testing under the condition that bellows were locally split.
     (4) Special experiment for measuring the tension force of prestressed steel strand was implemented on static load anchoring platform. Both of the damage range and boundary condition were considered as the key index through which the directly-detected measurement on static and dynamic parameters was applied. Simultaneously, test errors were minimized by the aid of mathematic and regression method. Two of the practical techniques for prestressing force inspection which called SPLM (Static Parameter Loading Method) and MPIM (Modal Parameter Incentive Method) separately were got ultimately. Noticeably, SPLM was suitable for existed PC beam and MPIM was privileged in pre-tensioned voided slab respectively.
     (5) Consulting the common geometry type and disposal way of prestressing tendon in highway bridges, large-scale beam model was made and experimental study had been launched. By simulation of taking place, developing and changing state of prestress losses, the precision for empirical formula was tested and their adaptability study were accomplished. Meanwhile through experiment on actual distribution principle of inherent prestressed tendon along longitudinal direction, a significant deduction correlated with instantaneous prestress losses was demonstrated.
     (6) Taken five engineerings which composed of common types of PC beam bridges as the background project, the research results were put into practical use. On this basis, numerical simulation and comparative analysis on the key techniques for system of inspection and evaluation on effective prestress were applied to engineering practice successfully so as to fulfill the expected research target eventually.
     Generally speaking, four innovative points of this paper are summed up:
     (1) For the first time, model for predicting on attenuation of effective prestress was built up which included both analysis module and simulation module. It solved the problem of simulation on practical value and deviation regularities for effective prestress.
     (2) For the first time, the integral methods for evaluation on attenuation of effective prestress were put forward based on critical section analysis. In this method, double resultant force models were built up according to two of the parallel ways which are DD (Direct Detection) and RD (Relieve Detection) testing techniques. Furthermore, grading index system for deficit of effective prestress was set up and performance evaluation of beam structures with complicated prestressing systems had been accomplished.
     (3) For the first time, two of the practical techniques called SPLM and MPIM were got ultimately, which could execute prestressing force inspection on the condition of splitting the concrete and bellows locally.
     (4) A special instrument named Stretching Force Tester for prestressing strand (model: LCZL-50) was invented. For the first time, it integrated griping, holding, drawing and detecting on prestressing strand to realize real-time acquisition of effective prestress force.
引文
[1]杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1988
    [2]李国平.桥梁预应力混凝土技术及设计原理[M].北京:人民交通出版社,2004
    [3]Lin.T.Y., Ned H.Burns, Design of Prestressed Concrete Structures[J].Third Ddition,JohnWiley & Sons,New York,1981
    [4]吕志涛.新世纪我国土木工程活动与预应力技术的展望[J].东南大学学报,2002,32(3):457-459
    [5]2020年中国土木工程科学和技术发展研究[R].中国土木工程学会,2004
    [6]中国交通年鉴2006[M].北京:中国交通年鉴社,2006
    [7]楼庄鸿.国内外桥梁发展的现状和发展趋势[J].技术论坛.2001,2(2):1-18
    [8]史尔毅.预应力在公路桥梁工程中的应用[A].预应力工程实例应用手册——桥梁结构篇[C].北京:中国建筑工业出版社,1996
    [9]吕志涛等.现代预应力设计[M].北京:中国建筑工业出版社,1998
    [10]范立础.桥梁结构事故分析—展望设计理论进展[A].土建结构工程的安全性与耐久性[C].北京:机械工业出版社,2003
    [11]陈雄飞,王敬民,朱利明.江阴大桥引桥混凝土连续箱梁桥典型病害分析[J].桥梁建设,2005,增刊117-119
    [12]陈夏新,王振华,沈平.预应力混凝土梁预应力损失参数变化对梁体抗裂性能的影响[J].铁道标准设计,2003(10):8-12
    [13]王法武,石雪飞.大跨径预应力混凝土梁桥长期挠度控制研究[J].中外公路,2006,26(4A)107-110
    [14]朱利明,刘华.三腹板预应力混凝土连续箱梁底板纵向裂缝病害原因分析及对策[J].桥梁建设,2005,增刊114-116
    [15]张志耕,王荣辉.预应力混凝土连续刚构箱梁桥裂缝病害分析.自然灾害学报,2006,15(2A)137-142
    [16]崔宏涛,贺虹.预应力混凝土连续箱梁桥纵向裂缝仿真分析[J].中外公路,2006,26(4A)115-118
    [17]李海光,项新里,金群纲等.预应力混凝土连续箱梁维修加固技术措施[J].公路交通技术,2006,(4)78-81
    [18]方刚.影响预应力损失的因素及减少预应力损失的方法[J].建筑技术开发,2004,31(4A)15-16
    [19]刘瑞勋.体外预应力技术在连续刚构桥加固中的应用研究[D].长安大学硕士学位论文.2005
    [20]廖玉凤,王伟.既有混凝土桥梁病害特征及病因浅析[J].四川建筑科学研究,2006,32(5A)63-66
    [21]夏永明,向拥军.现浇砼PC连续箱梁病害分析和体外预应力加固的立论问题[J].现代交通技 术,2005,(3)31-35,57
    [22]廖旭.大跨度连续刚构典型病害及加固对策研究[D].成都:西南交通大学,2005
    [23]楼庄鸿.大跨径梁式桥的主要病害[J].公路交通科技,2006,23(4A):84-87
    [24]盛丽娟.T型刚构桥的体外预应力加固技术研究[D].东北林业大学硕士论文.2006
    [25]王首绪,詹建辉.特大跨度连续刚构主梁下挠及箱梁裂缝的体外预应力处治[J].中外公路,2007,27(6):146-148
    [26]Daniels D J. Introduction to subsurface radar[J]. IEE proceeding,1998,133(4).
    [27]Shyu H, Pai Y. A new tool for impact-echo measurements wavelet transform[J]. Insight,1997,39(5).
    [28]蔡慧悦,刘永翔.钢筋定位仪的工作原理及其在旧桥检测中的应用[J].广东交通职业技术学院学报,2005,(4):50一56
    [29]徐美庚,殷宁骏,杨梦蛟,等.一种新的混凝土桥梁无损检测技术[J].中国铁道科学,1999,20(3):61-68
    [30]赵永辉,吴健生,万明浩.钢筋混凝土地层透视雷达无损检测技术[J].工程勘察,2002,(1):64-66
    [31]江阿兰,褚瑞峰.超声法检测预应力混凝土预留孔道灌浆质量的研究[J].森林工程,2003,19(1):43-45
    [32]张治泰,李乃平.超声法检测混凝土预留孔道灌浆质量[J].施工技术,1993,(4):16-18
    [33]傅翔,宋人心,王五平,等.冲击回波法检测预应力预留孔灌浆质量[J].施工技术,2003,32(11):37-38
    [34]Paul Teng T.Materials and methods for corrosion control of reinforced and prestressed concrete structures in new construction, research, development and technology[R].X, Turner-Fairbank highway research center,2000
    [35]常保全,孙百林,白常举.混凝土中钢筋锈蚀的检测技术[J].建筑技术开发,2001,28(3):44-48
    [36]张伟平,张誉,刘亚芹.混凝土中钢筋锈蚀的电化学检测方法[J].工业建筑,1998,28(12):21-32
    [37]罗刚,施养抗.钢筋混凝土构件中钢筋锈蚀量的无损检测方法[J].福建建筑,2002,(4):55-57
    [38]Lopes SMR., Simoes LML. Influence of corrosion on prestress strands. Canadian journal of civil engineering[J].1999,26(6):782-788
    [39]Zhang X, Han J H. The infrared thermal image characteristic and injured degree evaluation of free-thaw injured concrete, Proceedings of the international RILEM workshop "Frost Resistance of concrete", Essen, Germany,1997.
    [40]朱尔玉,何立,张洪伟,等.预应力混凝土桥梁腐蚀后的受力性能分析[J].中国安全科学学报,2006,16(2):136-140
    [41]王敏.从预应力损失角度对混凝土桥梁病害成因的研究[D].武汉理工大学硕士学位论文,2005
    [42]刘鹏.预应力混凝土桥梁损伤检测及评价方法[D].西安:长安大学,2007
    [43]公路桥涵养护规范[s].JTG H11-2004,北京:人民交通出版社,2004
    [44]Jones CJFP. New British Assessment Code for Old Bridges (The OECD Report),[R].2nd Bridge Engineering Conference,1984
    [45]许汉铮.大跨径悬索桥施工控制系统研究[D].长安大学博士论文.2005
    [46]张劲泉等.公路旧桥承载力评定方法及工程实例[M].人民交通出版社.2007
    [47]梁磊,姜德生,周雪芳等.光纤Bragg光栅传感技术在桥梁预应力监测中的应用研究[J].北京工商大学学报(自然科学版),2003,21(2A)50-52,55
    [48]Hariri K., Hoist A., Wichmann H. Assessment of the State of Condition of Prestressed Concrete Structures with Innovative Measurement Techniques and First Applications[R], the 1st European Workshop on Structural Health Monitoring 2002,1278-1285
    [49]Budelmann H., Hariri K., Hoist A. Realistic Full Scale Laboratory Tests for the Improvement of Long Term Monitoring Systems[C], the 4th International Workshop on Structural Health Monitoring,2003, 15-17
    [50]Kergourlay G., Balmes E., Legal G. A characterization of frequency-temperature-prestress effects in viscoelastic films[J], Journal of Sound & Vibration,2006,297(10):391-406
    [51]Wichmann H., Hariri K., Hoist A. Detection and Localization of Fractures in Tendons by Means of Electromagnetic Resonance Measurement[C], the International Symposium on Non-Destructive Testing in Civil Engineering,2003,16-19
    [52]西安公路交通大学.广州市海珠大桥(钢桥)加固维修研究报告[R].西安,1996.6
    [53]长安大学.广州市增埗步桥检测评估报告[R].西安,2002.5
    [54]翁冠群.桥梁预应力损失检测技术及安全评估[C].2001年全国公路桥梁维修与加固技术研讨会论文集
    [55]Chen Hongliang, He Yidong, Gangarao H. V. Measurement of Prestress Force in the Rods of Stressed Timber Bridges using Stress Waves[J].Materials Evaluation,1998,56(8):977-981
    [56]Ciolko A.T., Tabatabai H. Nondestructive Methods for ConditionEvaluation of Prestressing Steel Strands in Concrete Bridges[R], Final Report, Phase Ⅰ:TechnologyReview, NCHRP Project,1999, 10-53
    [57]Roger H.L., Komwut W. An Ultrasonic Method for Measuring Tensile Forces in a Sever2Wire Prestressing Strand. Review of Quantitative Nondestructive Evaluation,2002,21:1295-1301
    [58]Tension Measuring Guage-Tensmeg Instruction Manual[M]. RST Instruments Ltd,2005
    [59]Chase S.B., Washer G. Nondestructive evaluation for bridge management in the next century[J], Public Roads,1997,61(1),16-25
    [60]刘承斌,王柏生,曲昌春.用振动法进行PRC梁的预应力损失检测[J].振动与冲击,2003,22(3):95-97
    [61]Law S S, Lu Z R, Time Domain Responses of a Prestressed Beam and Prestress Identification[J]. Journal of Sound & Vibration,2005,288(1):1011-1024
    [62]B.Hillemeier, H.Scheel, Non-Destructive Location of Prestressed Steel Fracturesin Post-Tensioned and Prestressed Concrete[J], Transportation research board Committee,2002, A2C03
    [63]刘春城,石磊.基于压弯耦合效应下预应力梁的竖向自由振动研究[J].工程力学,2007,24(10):119-123
    [64]张耀庭,汪霞利,李瑞鸽.全预应力梁振动频率的理论分析与试验研究[J].工程力学,2007,24(8):116-120
    [65]Saiidi M., Douglas B. and Feng S. Prestress force effect on vibration frequency of concrete bridges. ASCE Journal of Structure Engineering,1994,120(7):2233-2241
    [66]Saiidi M., Shields J., O'Connor D. Variation of Prestress Force in a Prestressed Concrete Bridge During the First 30 Months[J].PCI Journal,1996,41(5):66-72
    [67]Dallasta A.,Dezi L. Prestress force effect on vibration frequency of concrete bridges-discussion.ASCE Journal of Structural Engineering,1996,122(4):458-458
    [68]Jain S.K., Goel S.C. Prestress force effect on vibration frequency of concrete bridges—discussion. ASCE Journal of Structural Engineering,1996,122(4):459-460
    [69]谢功元.在役混凝土梁永存预应力试验研究[D].长安大学硕士学位论文,2004
    [70]楼梦麟,洪婷婷.预应力梁横向振动分析的模态摄动方法[J].工程力学,2006,23(1):36-39
    [71]Jorg F.Unger, Anne teughels, Guido De Roeck. System Identification and Damage Detection of a Prestressed Concrete Beam, Journal of Structure Engineering,2006,132(11),1691-1698.
    [72]王焕新(译),黄又清(校).预应力对混凝土桥梁振动频率的影响[J].国外桥梁,1995,(4):295-299
    [73]王勋文,刘建亮(译).关于“预应力对混凝土桥梁振动频率的影响”一文的讨论[J].国外桥梁,998,(3):32-34
    [74]缪伟.预应力简支T梁永存预应力评估研究[D].长安大学硕士学位论文,2005
    [75]刘龄嘉,贺拴海,赵小星.在役混凝土简支梁永存预应力计算[J].交通运输工程学报,2005,5(3):47-51
    [76]陈振富,綦春明.预应力钢筋张拉力检测新方法[J].建筑技术开发,1998,25(1):28-29
    [77]智菲,叶知满.预应力梁有效预应力的确定[J].工程力学,2001,(增刊):96-100
    [78]黄侨,吴红林,王宗林.基于时效分析理论的预应力混凝土结构分析.同济大学学报,2003,31(7):813-818
    [79]李亮亮.基于有限检测点的在役预应力混凝土桥梁有效预应力评估及程序开发[D].长安大学硕士学位论文,2004
    [80]公路钢筋混凝土及预应力混凝土桥涵设计规范[S] JTG D62-2004北京:人民交通出版社.2004
    [81]铁路桥涵钢筋混凝土及预应力混凝土结构设计规范[S].TB10002.3-99.北京:中国铁道出版社,2000
    [82]混凝土结构设计规范[S].GB 50010-2002,.北京:中华人民共和国建设部,2004
    [83]美国各州公路和运输工作者协会(AASHTO)美国公路桥梁设计规范—荷载与抗力系数设计法[S].2004
    [84]潘立.后张法预应力混凝土结构中预应力约束损失的计算分析[J].建筑科学.2004,20(6A)22-25,35
    [85]潘立本,陈蓓.用分段逼近法计算混凝土收缩与徐变引起的构件预应力损失[J],工程力学,1998,15(4):123-126
    [86]周燕勤,吕志涛.预应力长期损失计算建议[J].东南大学学报,1997,27(增刊):76-80
    [87]于德湖,郑文忠,杜晓鸣.预应力混凝土结构长期损失若干计算方法的分析比较[J].哈尔滨建筑大学学报,2000,33(2):29-32
    [88]李铮.考虑非预应力钢筋影响的长期预应力损失实用计算公式.公路,1999,(9):7-11
    [89]文永奎,陈政清.考虑预应力损失的混凝土梁徐变计算方法.中国铁道科学,2005,26(3):36-41
    [90]Timothy J.F., Luis Q.Y., Charles A.B. Acoustic Emission Monitoring of Reinforced and Prestressed Concrete Structures. ASCE,SPIE,2004:281-298
    [91]Kim T.J., Sun R.Y., Yun C.B. Vibration Based Method to Detect Prestress Loss in Beam Type Bridges[J]. ASCE, SPIE,2003,5057-5059
    [92]Christopher J., Waldron. Investigation of Long-term Prestress Losses in Pretensioned High Performance Concrete Girders[D].American:The Virginia Polytechnic Institute and State University,2004,1-206
    [93]Tadros M.K., Al-Omaishi N., Seguirant S.J. Prestress Losses in Pretensioned High-Strength Concrete Bridge Girders[R]. National Cooperative Highway Research Program Report 496,Transportation Research Board,National Research Council,2003
    [94]M.Saiidi,E.Hutchens,D.Gardella.Bridge Prestress Losses in Dry Climate[J]. Journal of Bridge Engineering,1998,3(3):111-116
    [95]郭全全.预应力数字化张拉技术及预应力结构中环境温度效应的研究[D].太原理工大学博士学位论文,2003
    [96]齐东春,张永水,李强.大跨径连续刚构桥跨中下挠的成因及对策[J].重庆交通大学学报(自然科学版),2007,26(6):46-49
    [97]方志,汪剑.预应力混凝土箱梁桥竖向预应力损失的实测与分析[J].土木工程学报,2006,39(5):78-84
    [98]丁南宏,钱永久,林丽霞.分批张拉预应力损失的空间简化计算方法[J].公路交通科技,2006,23(6):66-68
    [99]张元海,刘世忠.后张法预应力混凝土粱钢束预应力损失研究[J].中国公路学报,2002,15(2),76-78
    [100]沈成武,闻骥骏,黄志刚.大跨度桥梁预应力损失的遗传算法识别[J].武汉理工大学学报,2002,24(1):62-65
    [101]赵勇,黄鼎业,李云贵.平板中预应力筋的瞬时预应力损失分析.工业建筑,.2003,33(3):39-41
    [102]Cole.H.A, Direct solution for elastic prestress loss in pretensioned concrete girders[J]. ASCE Practice Periodical on Structural Design & Construction,2000,5(2):27-30
    [103]Mwanza P., Scanlon A. Bayesian Prediction of Prestress Loss in Presstress Concrete Bridge Girders [C].8th ASCE Conference on Probabilistic Mechanical and Structural Reliability,2000
    [104]Harry A.C. Direct Solution for Elastic Prestress Loss in Pretensioned Concrete Girders[J].Practice Periodical on Structural Design and Construction,2000,5(1):27-31
    [105]Kwak H.G., Kim J.H., Kim S.H. Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons[C].Computers and Concrete,2006,3(1):43-64
    [106]胡狄,陈政清.考虑反向摩阻的后张法PC构件锚固损失的计算[J].中国公路学报,2004,17(1):34-38
    [107]郭琦,贺拴海,白云.基于改进BP神经网络的简支梁桥预应力衰减评估模型[J].长安大学学报(自然科学版),2007,27(6):53-62
    [108]董荣杰,傅曼丽.预应力张拉测试中的摩阻系数比值法[J].四川建筑科学研究,1997,3:29-30.
    [109]蔡江勇.后张预应力混凝土结构分析及施工检测评定方法研究[D].武汉理工大学博士学位论文,2004
    [110]GUO Qi, HE Shuan-hai. Simulation method for pre-stressing tendon in post-tensioned PC bridge: Longitudinal distribution mode[C]. International Conference on Health Monitoring of Structure, Material and Environment(HMSME2007),2007,VOL2:1041-1045
    [111]袁伦一.考虑管道反摩擦的预应力钢筋预应力回缩损失的简化计算[J].公路,2002(5A)6-8
    [112]陈月顺,刘莉.大曲率预应力筋孔道摩阻损失研究[J].建筑结构,2007,7:121-122
    [113]蔡江勇.预应力混凝土摩擦损失计算方法的改进建议[J].工业建筑,2004,34(4):94-96
    [114]张秀丽等.桥梁集成CAD系统中的有限元后处理子系统[J].计算机辅助工程,1998,(1):23-28
    [115]周宗泽等.可视化桥梁结构设计软件——桥梁博士系统[J].同济大学学报,1999,27(2):243-248
    [116]肖汝诚.桥梁结构分析及程序系统[M]一北京:人民交通出版社,2002
    [117]吕建鸣.32位Windows环境下桥梁结构分析软件开发[J].公路交通科技,1998,15(1):35-38
    [118]张晋西Visual Basic与AutoCAD二次开发[M]一北京:清华大学出版社,2002
    [119]吕志涛,孟少平.预应力混凝土在建筑工程结构应用中的若干问题[J].建筑结构学报,1997,18(3):73-77.
    [120]周履,陈永春.收缩徐变[M].中国铁道出版社.1994
    [121]许世展.大跨径PC连续体系箱梁桥时变效应仿真分析与试验研究[D].长安大学博士学位论文,2007
    [122]周敉,贺拴海,宋一凡.基于竖向位移试验的梁式结构评估[J].长安大学学报(自然科学版),2004,24(5):40-42,47
    [123]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003
    [124]公路桥涵设计通用规范[S]. JTG D60-2004北京:人民交通出版社.2004
    [125]范立础,桥梁工程[M].人民交通出版社,2001
    [126]Nilson A.H(美).预应力混凝土设计[M].北京:人民交通出版社,1984
    [127]吴光宇.大跨PC桥梁非线性行为的分析理论及其极限承载力计算研究[D].浙江大学博士学位论文,2006
    [128]张宝华.预应力钢筋混凝土梁钢筋有效应力分析[J].水道港口,2007,28(6):430-433
    [129]张开银,邹晓军.预应力混凝土梁桥应力测试技术[J].武汉理工大学学报(交通科学与工程版),2003,27(2)
    [130]杨勇,王灿,朱新实.既有桥梁结构混凝土现存应力测量与分析[J].同济大学学报(自然科学版),1999,27(2A):198-202
    [131]刘伯明,王邦楣.桥梁工程检测手册[M].北京:人民交通出版社,2002
    [132]陈惠玲.高效预应力结构“预应力度法”的应用实践15年[J].工业建筑,1998,28(12):1-4.
    [133]陈惠玲.按预应力度进行预应力混凝土结构的设计计算(下)[J].工业建筑,1984(3):11-14.
    [134]陈惠玲.按预应力度进行预应力混凝土结构的设计计算(上)[J].工业建筑,1984(2):5-8.
    [135]方德平,林雨生.超静定结构的综合内力预应力度设计法[J].华侨大学学报(自然科学版),2006,27(1):102-104
    [136]陈惠玲.部分预应力结构设计的应力比“预应力度法”[J].建筑结构,1993,(1):3-9
    [137]刘冬梅,唐永菁.基于预应力度概念的预应力混凝土结构性能的研究[J].盐城工学院学报(自然科学版),2007,20(4):70-73
    [138]单炜.预应力度控制部分预应力混凝土桥梁设计的研究[J].东北林业大学学报,1998,26(3):79-81
    [139]卢树圣.预应力度及部分预应力混凝土A、B类构件分类限值[J].长沙铁道学院学报,1991,9(3):101-110.
    [140]赵冲久,王小明,徐满意.预应力混凝土梁实际刚度的测试与分析[J].水道港口,2007,28(1):44-47
    [141]Oh B.H., Yang I.H. Realistic long-term prediction of prestress forces in PSC box girder bridges[J]. ASCE Journal of Structural Engineering,2001,127(9):1109-1115
    [142]贺拴海,郭琦,宋一凡,等.RC桥梁健康状况及承载能力的动力评估试验[J].长安大学学报(自然科学版),2003,23(6):36-39
    [143]Wilby C B.后张法预应力混凝土.徐晓初,译.北京:中国铁道出版社,1985
    [144]公路钢筋混凝土及预应力混凝土桥涵设计规范[S].JTJ 024-85.北京:人民交通出版社.1985
    [145]陶学康.后张预应力混凝土设计手册[M].北京:中国建筑工业出版社,1996.
    [146]郭琦,贺拴海.多肋式梁桥模态参数分解识别与试验研究[J].振动与冲击,2007,26(9):67-70.
    [147]黄侨,林阳子,任远.基于关联度的预应力混凝土梁桥综合评估方法[J].2007,29(7):13-17
    [148]吕颖钊.在役混凝土桥梁可靠性评估与寿命预测研究[D].长安大学博士学位论文,2005
    [149]苏成,徐郁峰,韩大建.频率法测量索力中的参数分析与索抗弯刚度的识别[J].公路交通科技,2005,22(5):75-78
    [150]林志宏,徐郁峰.频率法测量斜拉桥索力的关键技术[J].中外公路,2005,23(5):1-4
    [151]谭继文.钢丝绳损伤与张力在线定量检测及安全性评价的研究[D].华中理工大学博士论文,2000
    [152]姚文斌,程赫明.用“三点弯曲法”原理测定钢丝绳张力[J].实验力学.1998,13(1):79-84
    [153]陈鲁,张其林,吴明儿.索结构中拉索张力测量的原理与方法[J].工业建筑,2006,36增刊:368-371
    [154]朱新实,刘效尧.预应力技术及材料设备(第二版)[M].北京:人民交通出版社,2005
    [155]孙训方,方孝淑,关来泰.材料力学[M].高等教育出版社.1993
    [156]宋一凡,贺拴海.公路桥梁荷载试验与结构评定[M].人民交通出版社.2002
    [157]胡大琳.桥梁工程试验检测技术[M].人民交通出版社.2000
    [158]陈刚.振动法测索力与实用公式[D].福州大学,2004
    [159]李德寅等.结构模型实验[M].科学出版社.1996
    [160]黄侨,杨大伟,李忠龙.预应力混凝土梁桥的NURBS预应力束模型研究[J].公路交通科技.2007,24(1):51-59
    [161]公路桥涵施工技术规范[S].JTJ041-2000.北京:人民交通出版社.2000
    [162]赵煜.空间预应力摩阻损失及参数研究[D].长安大学硕士论文.2003
    [163]叶见曙,结构设计原理[M],人民交通出版社,2004
    [164]谢靖中.变截面梁预应力计算的积分算子法[J].工程力学增刊I,2006,23(6):46-51
    [165]Pavao M, Zeljana N, Mirela G. Some aspects of 2D and/or 3D numerical modelling of reinforced and prestressed concrete structures [J]. Journal:Engineering Computations,2005,22(10):684-710
    [166]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究[D].湖南大学博士学位论文,2003
    [167]Pessiki S., Kaczinski M.,Wescott H.H.Evaluation of Effective Prestress Force in 28-year old Prestressed Concrete Bridge Beams[J].PCI Journal,1996,41(5):78-89
    [168]徐文平.既有预应力混凝土梁桥承载能力实桥试验及分析研究[D].东南大学博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700