湿热环境下FRP加固RC构件耐久性实验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(FRP)加固钢筋混凝土(RC)结构的耐久性是土木建筑领域的前沿课题。本文以亚热带在役RC桥梁为应用背景,采用本课题组发明的新型FRP片材——碳纤维薄板(CFL),构建CFL加固RC构件,并以此为研究对象,考虑我国南方和沿海等地区的湿热大气环境、以及公路运营桥梁的实际车辆荷载,探讨了在湿热环境与车辆荷载的共同作用下采用CFL加固RC构件的耐久性实验方法问题,研制和集成了能够实现上述构件耐久性实验方法的实验系统,并对该实验方法的有效性和可行性进行了实验验证。本文的主要研究内容及结论如下:
     1、针对结构耐久性实验的瓶颈问题——环境与载荷的共同作用问题,提出了“湿热环境与实际车辆荷载共同作用下桥梁结构耐久性的加速实验方法”。该方法具有以下特点:a)解决了现有同类构件耐久性实验无法实现湿热环境与动载荷的共同作用问题;b)能实现温度、湿度与载荷的同步循环或不同步循环作用。其中,环境温度的变化范围为5℃~50℃;环境湿度的变化范围为65%~98%RH;c)能真实地再现亚热带运营桥梁的工作条件(温度、湿度和载荷条件);d)车辆载荷谱是分别对国道或高速公路的车流量经过数据采集、统计分析、数值模拟以及实验谱编制而成;e)环境与载荷的加速方式能再现它们对构件的作用效应。
     2、为了能实现湿热环境与实际车辆荷载共同作用下桥梁结构的耐久性实验,本研究研发和集成了相应的实验系统。该系统分为两部分:a)桥梁工作环境模拟实验系统;b)能够模拟车辆随机载荷的加载及测试系统。其中,环境模拟实验系统的功能及技术特点为:能实现本研究及后续研究所需要的湿热循环、温度-海水环境、冻融环境、干湿循环等实验环境的模拟;所有技术指标不低于现有同类产品;能满足较大尺寸的桥梁结构模型试件实验之需要;能与加载及测试系统相配套。加载及测试系统由原有的MTS810实验系统经改装而成。车辆随机载荷谱系采用自编的软件模拟后再输入到实验系统的控制器内。经过近1年时间的调试运行和市计量局的标定检验、以及2种湿热环境与实际车辆荷载共同作用下FRP加固RC梁的耐久性实验,证实了该系统的可行性、稳定性和可靠性。
     3、利用上述实验系统,实施了湿热环境下FRP加固RC梁的四种耐久性实验:a)恒定环境与常幅疲劳载荷的非共同作用实验,即将试件作环境处理后再施加常幅疲劳载荷(现行规定方法);b)恒定环境与常幅疲劳载荷共同作用下的实验;c)实际环境与常幅疲劳载荷共同作用下的实验;d)实际环境与车辆随机载荷共同作用下的实验。
     在相同的应力水平下,第a)与第b)种实验结果、第b)与第c)或第d)种实验结果的对比分析、以及构件耐久性破坏机理分析结果表明,实验方法对构件耐久性有显著的影响,而且共同作用下构件的耐久性较差。这表明按照现行规范规定的非共同作用的实验方法所推定的构件耐久性比实际工作条件下桥梁结构件的好,这将导致其耐久性设计偏于危险。同时,这也说明了桥梁结构耐久性实验采用环境与车辆载荷共同作用的实验方法的重要性,并证明了本文提出的耐久性实验方法是有效和可行的。
     4、对四种湿热环境下CFL加固RC梁的破坏模式、刚度衰减规律、挠度曲线和S~N曲线的分析结果表明:a)随着温度和湿度的升高,加固梁的界面破坏层也会变化,从低温低湿时的混凝土层逐渐向胶层与混凝土表层的交界处转移,高温高湿时在胶层发生破坏。与此相对应,加固梁的破坏模式也逐步变为单一模式,即碳纤维薄板的剥离破坏;b)在环境与疲劳荷载共同作用下加固梁的刚度衰减速率比相同湿热条件下非共同作用下的要快,而且,在实际湿热环境与常幅疲劳荷载共同作用下,加固梁的刚度曲线与输入的温度湿度曲线相关,并与输入曲线呈相同的变化趋势;c)对于本文所示的各种环境下的加固梁,建立了其挠度f与相对疲劳寿命ln n/lnNj的关系曲线方程;对于湿热循环与疲劳荷载共同作用下的加固梁,则建立了动态割线刚度的疲劳寿命方程。这为湿热环境条件下CFL加固RC梁的疲劳寿命分析奠定了良好基础;d)不同实验条件下得到的S~N曲线,再次表明了耐久性实验方法对试验梁环境疲劳寿命/耐久性的影响是显著的,而本文提出的耐久性实验方法是必需的、有效的和可行的。
Durability of reinforced concrete (RC) structures strengthened with fiber reinforcedpolymer (FRP) is the forefront topic in field of civil engineering. In this paper, existing RCbridges in subtropical environments were taken as the application background. Using CarbonFiber Laminates (CFL) developed by this project team, RC beams strengthened with CFLwere constructed and were taken as the research objects. Considering the hot and humidenvironment in South China and coastal areas and actual vehicle loads on highway bridges inoperation, durability experimental method of RC beams strengthened with CFL underhygrothermal environment and vehicle load coupling was discussed. Experimental systemwhich achieved the above durability experiment method was integrated and developed. Theeffectiveness and feasibility of the experiment method were later verified by differentexperiments.
     1. Against the environment and load coupling problem which is the bottlenecks ofstructure durability experiments, durability acceleration experiment method of bridgestructure under hygrothermal and actual vehicle load coupling was proposed, which has thefollowing innovations: a) the hygrothermal environment and dynamic load coupling problemsin durability experiment were solved; b) synchronous cycles or non-synchronized cycles oftemperature, humidity and load were achieved, where, environment temperature range was5℃~50℃and environment humidity range was65%~98%RH; c) working conditions(temperature, humidity and load conditions) of bridges in operation in subtropicalenvironments were faithfully reproduced; d) vehicle load spectrum was established fromnational highway or freeway traffic flow through data acquisition, statistical analysis,numerical simulation and experimental spectra calculation; e) the accelerated way ofenvironment and load coupling reproduced the effects on the components.
     2. In order to establish durability experiment of bridge structure under hygrothermalenvironment and actual vehicle load coupling, corresponding experimental system wasintegrated and developed, which composed of two parts: a) bridge working environmentsimulation experiment system; b) random vehicle loads simulation experiment system. Thefeatures of environment simulation experiment system were: experimental environmentsimulations of thermal and humidity cycle, temperature-marine environment, freeze-thawenvironment, wet and dry cycle were achieved; All technical indicators were not less than theexisting similar products; the needs of the larger size of the bridge structure model testexperiment were meet; environment system was matched with the load and test systems. Load and test system were upgraded from MTS810. Random vehicle loads were simulated bysoftware and then inputted to the controller of the experimental system. After debugging andrunning for nearly a year, this system passed the calibration test from the Municipal Bureau ofWeights and Measures. Two kinds of durability test of FRP strengthened RC beam underthermal and humid environment and the actual vehicle load coupling were carried out.Feasibility, stability and reliability of the system were confirmed.
     3. Using the above experimental system, four kinds of durability experiments of RCbeams strengthened with FRP were carried out; a) constant environment and constantamplitude fatigue loading non-coupling experiment, in which specimens were environmenttreated first and then imposed with constant amplitude fatigue load; b) constant environmentand constant amplitude fatigue loading coupling experiment; c) actual environment andconstant amplitude fatigue loading coupling experiment; d) actual environment and randomvehicle loading coupling experiment. In the same stress level, experiment results of a) and b),b) and c), b) and d) were compared and failure mechanism of components was analyzed.Results showed that the experiment method had a significant impact on the durability ofcomponents. Durability of components in coupling condition was worse and the worst inrandom vehicle load and environment coupling condition. This indicated that the durability ofbridge structure components determined by non-coupling experiment method in specificationswas less conservative than in actual conditions, which lead durability design to be somewhatdangerous. At the same time, it also showed the importance of using the experimental methodof random vehicle load and environment coupling in a bridge structure durability experimentsand proved the effectiveness and feasibility of durability experiment method proposed in thispaper.
     4. Analysis results of fatigue failure modes, stiffness degradation, deflection curves andS~N curves of RC beams strengthened with FRP in hygrothermal environment indicated that:a) Destruction layer in interface was moving from concrete layer to adhesive layer, with theincrease affect of temperature and humidity, destruction was eventually occurred in theadhesive layer. Fatigue failure mode types were reduced by influence of hygrothermalenvironment. As the hygrothermal environment continued affecting, fatigue failure modebecame singularity, which FRP debonding failure became the only failure mode. b) Stiffnessdegradation of strengthened beams in coupling condition was faster than that in non-couplingcondition. This showed hygrothermal environment had a great impact on the stiffnessdegradation of strengthened beams. In actual environment and constant amplitude fatigue loadcoupling, stiffness degradation of strengthened beams had the corresponding trend curve with temperature and humidity changes. c) Deflection f versus relative fatigue lifelnn/lnNjmodels of specimens were built in stable hygrothermal environment. Influence factors ofhygrothermal environments were proposed and determined by experiments. Dynamic secantstiffness versus fatigue life equations in cyclic hygrothermal environment and fatigue loadcoupling were built. This laid a good foundation for fatigue life study in hygrothermalenvironment. d) Results of comparisons of S~N curves in different experiment conditions alsoshowed experiment method had a significant impact on mechanical properties of thestrengthened beams and experiment method proposed in this paper is necessary, effective andfeasible.
引文
[1] Meier U. Bridge repair with high performance composite materials [J]. Material andTechnique.1987,(4):16-19
    [2] Meier U. Strengthening of Structures Using Carbon Fiber/Epoxy Composites [J].Construction and Building Materials.1995,19(6):67-77
    [3] Mckenna J K, M A Erki. Strengthening of reinforced concrete flexural members usingexternally applied steel plates and fiber composite sheet-a survey [J]. Canadian Journalof Civil Engineering.1994,21:16-24
    [4] Nikolaos Plevris, Thanasis C, Triantafillou T C. Time-dependent behavior of RC memberstrengthened with FRP laminates [J]. Journal of Structural Engineering.1994,(3):1013-1041
    [5] Triantafillou T C, N Plevris. Strengthening of RC beams with-epoxy-bonded fibercomposite material [J]. Material of Structure.1990,25:201-211
    [6] Trinatafillou T C. Strengthening of structures with advanced FRPs [J]. Progress inStructural Engineering and Materials.1998,1(2):126-134.
    [7] Karbhari V M, Seible F, Burgueno R, et al. Structural Characterization ofFiber-Reinforced Composite Short-and Medium-Span BridgeSystems [J]. AppliedComposite Materials.2000,7:151-182.
    [8] Ritchie P A. External reinforcement of concrete beams using fiber reinforced plastics [J].ACI Structure Journal.1991,889(40):490-500
    [9] Rigoberto Burgueno, Voistasp M. Karbhari, Frieder Seible, Robert T. Kolozs.Experimental dynamic characterization of an FRP composite bridge superstructureassembly [J]. Jour. Comp. Struct.2001,54:427-444.
    [10] Teng JG, Chen JF, Smith ST, Lam L. FRP strengthened RC structures. New York: Wiley;2002.
    [11]岳清瑞.我国碳纤维增强塑料(CFRP)加固修复土木建筑结构技术研究应用现状与展望[J].中国首届纤维增强塑料混凝土结构学术会议.北京:2000
    [12]蔡光汀,邹越.碳纤维加固混凝土结构的性能及应用技术[J].混凝土,2001,7(10):32-35
    [13]冯鹏,叶列平.FRP结构和FRP组合结构在结构工程中的应用与发展.第二届全国土木工[14]程用纤维增强复合材料(FRP)应用技术,昆明,2002:51-63
    [15]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术.天津:天津大学出版社,2001.
    [16]李荣,岳清瑞.碳纤维片材(CFRP)加固修复混凝土特种结构.特种结构,2000,17(3):47-50.
    [17]岳清瑞.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集.北京:清华大学出版社,2002.
    [18]罗苓隆,毛星明.碳纤维布加固修复混凝土结构技术实际工程运用.建筑物鉴定与加固改造.第五届全国学术讨论会论文集(中册),汕头,2000:pp5O3-506.
    [19]王东,朱虹,顾伯禄,张继文.粘贴碳纤维布加固新技术的应用实例.建筑物鉴定与加固改造.第五届全国学术讨论会论文集(中册),汕头,2000:pp5O6-511.
    [20]陈洋,金伟江.碳纤维加固修补技术在梁板抗弯加固中的应用.建筑物鉴定与加固改造.第五届全国学术讨论会论文集(中册),汕头,2000:pp568-572.
    [21]吴刚, FRP加固钢筋混凝土结构的实验研究[D].南京:东南大学,2002
    [22]叶列平,赵树红,岳清瑞等.碳纤维布混凝土柱的斜截面受剪承载力计算.建筑结构学报,2000,(2):11-15.
    [23] Bakis C E, et al.(2002).“Fiber-reinforced polymer composites forconstruction-state-of-the-art review.” J. Compos. Constr.,6(2),73–87.
    [24] Yail J. Kim and Patrick J. Heffernan. Fatigue Behavior of Externally StrengthenedConcrete Beams with Fiber-Reinforced Polymers: State of the Art. JOURNAL OFCOMPOSITES FOR CONSTRUCTION, ASCE/MAY/JUNE2008:246-256
    [25] Ferrier, E., Nasseri, H., and Hamelin, P.(1999).“Fatigue behavior of compositereinforcement for concrete structures.” Fiber reinforced polymer reinforcement forreinforced concrete structures (SP-188), ACI,535–545.
    [26] Wight, R. G., and Erki, M. A.(2001).“Prestressed CFRP sheets for strengtheningconcrete slabs in fatigue.” Proc.,1st Int. Conf. on FRP Composites in Civil Engineering(CICE’01), Hong Kong,1093–1110.
    [27] Sim, J., and Oh, H.(2004).“Structural behavior of strengthened bridge deck specimensunder fatigue loading.” Eng. Struct.,26,2219–2230.
    [28] Kim, Y. J., Fam, A., Kong, A., and El-Hacha, R.(2005).“Flexural strengthening of RCbeams using steel reinforced polymer (SRP) composites.” Fiber-reinforced polymer(FRP) reinforcement for concrete structures (SP-230), ACI,1647–1664.
    [29] Meier, U.(1995).“Strengthening of structures using carbon fibre/epoxy composites.”Constr. Build. Mater.,9(6),341–351.
    [30] Oh, H., Sim, J., and Meyer, C.(2005).“Fatigue life of damaged bridge deck panelsstrengthened with carbon fiber sheets.” ACI Struct. J.,102(1),85–92.
    [31] El-Hacha, R., Wight, G. R., and Green, M. F.(2001).“Prestressed fibrereinforcedpolymer laminates for strengthening structures.” Prog. Struct. Eng. Mater.,3,111–121.
    [32] Brena, S. F., Benouaich, M. A., Kreger, M. E., and Wood, S.(2005).“Fatigue tests ofreinforced concrete beams strengthened using carbon fiber-reinforced polymercomposites.” ACI Struct. J.,102(2),305–313.
    [33] Schlafli, M., and Bruhwiler, E.(1998).“Fatigue of existing reinforced concrete bridgedeck slabs.” Eng. Struct.,20(11),991–998.
    [34] Heffernan, P. J., and Erki, M. A.(2004).“Fatigue behavior of reinforced concrete beamsstrengthened with carbon fiber reinforced plastic laminates.” J. Compos. Constr.,8(2),132–140.
    [35] Ellyin, F., and Kujawski, D.(1992).“Fatigue testing and life prediction offibreglass-reinforced composites.” Proc.,1st Int. Conf. on Advanced CompositeMaterials in Bridges and Structures, Sherbrooke, QC, Canada,111–118.
    [36] Curtis, P. T.(1989).“The fatigue behavior of fibrous composite materials.” J. StrainAnal. Eng. Des.,24(4),235–244.
    [37] Demers, C.(1998).“Fatigue strength degradation of E-glass FRP composites and carbonFRP composites.” Constr. Build. Mater.,12,311–318.
    [38] Shahawy, M., and Beitelman, T. E.(1999).“Static and fatigue performance of RC beamsstrengthened with CFRP laminates.” J. Struct. Eng.,125(6),613–621.
    [39] Papakonstantinou, C. G., Petrou, M. F., and Harries, K. A.(2001).“Fatigue behavior ofRC beams strengthened with GFRP sheets.” J. Compos. Constr.,5(4),246–253.
    [40] Aidoo, J., Harries, K. A., and Petrou, M. F.(2004a).“Behaviour of reinforced concretebridge girders retrofit with CFRP and subjected to monotonic and fatigue loading.” Proc.,4th Int. Conf. on Advanced Composite Materials in Bridges and Structures (ACMBS-IV)(CD-ROM), Calgary, AB, Canada.
    [41] Larson, K. H., Peterman, R. J., and Rashheed, H. A.(2005).“Strengthfatigue behavior offiber reinforced polymer strengthened prestressed concrete T-beams.” J. Compos.Constr.,9(4),313–326.
    [42] Rosenboom, O. A., and Rizkalla, S. M.(2005).“Fatigue behavior of prestressed concretebridge girders strengthened with various CFRP systems.” Fiber-reinforced polymer (FRP)reinforcement for concrete structures (SP-230), ACI,597–612.
    [43]牛鹏志. CFL增强RC梁抗弯疲劳性能研究[D].广州:华南理工大学,2006
    [44] Heffernan, P. J., Erki, M. A., and DuQuesnay, D.(2004).“Stress redistributions in acyclically loaded reinforced concrete beam.” ACI Struct. J.,101(2),261–268.
    [45] Gussenhoven, R., and Brena, S. F.(2005).“Fatigue behavior of reinforced concretebeams strengthened with different FRP laminate configurations.” Fiber-reinforcedpolymer (FRP) reinforcement for concrete structures (SP-230), ACI,613–630.
    [46] Quattlebaum, J. B., Harries, K. A., and Petrou, M. F.(2005).“Comparison of threeflexural retrofit systems under monotonic and fatigue loads.” J. Bridge Eng.,10(6),731–740.
    [47] Toutanji, H., Zhao, L., Deng, Y., Zhang, Y., and Balaguru, P.(2006).“Cyclic behaviorof RC beams strengthened with carbon fiber sheets bonded by inorganic matrix.” J.Mater. Civ. Eng.,18(1),28–35.
    [48]周绪平. CFL加固RC梁弯曲疲劳裂纹扩展规律研究[D].广州:华南理工大学,2007
    [49] Aidoo, J., Harries, K. A., and Petrou, M. F.(2004b).“Fatigue behavior of carbon fiberreinforced polymer strengthened reinforced concrete bridge girders.” J. Compos. Constr.,8(6),501–509.
    [50] Masoud, S., Soudki, K., and Topper, T.(2005).“Postrepair fatigue performance ofFRP-repaired corroded RC beams: Experimental and analytical investigation.” J.Compos. Constr.,9(5),441–449.
    [51] Barnes, R. A., and Mays, G. C.(1999).“Fatigue performance of concrete beamsstrengthened with CFRP plates.” J. Compos. Constr.,3(2),63–72.
    [52] Masoud, S., Soudki, K., and Topper, T.(2001).“CFRP-strengthened and corroded RCbeams under monotonic and fatigue loads.” J. Compos. Constr.,5(4),228–236.
    [53] El-Hacha, R., Wight, R. G., Heffernan, P. J., and Erki, M. A.(2003).“Prestressed CFRPsheets for strengthening reinforced concrete structures in fatigue.” Proc.,6th Int. Symp.on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-6),Vol.1, Singapore,895–904.
    [54] Huang Pei-yan, Zhou Xu-ping, Yang Yi, Niu Peng-zhi, Zheng Shun-chao.(2007)“Fatigue lives of RC beams strengthened with carbon fiber laminates under bendingloads” J. Journal of South China University of Technology (Natural Science Edition),35(10)
    [55] Gheorghiu, C., Labossiere, P., and Proulx, J.(2004a).“Effect of high level fatigueloading on RC-beams externally reinforced with CFRPs.” Proc.,4th Int. Conf. onAdvanced Composite Materials in Bridges and Structures (ACMBS-IV)(CD-ROM),Calgary, AB, Canada.
    [56] Gheorghiu, C., Labossiere, P., and Raihe, A.(2004b).“Environmental fatigue and staticbehavior of RC beams strengthened with carbon fiber-reinforced polymer.” J. Compos.Constr.,8(3),211–218.
    [57] Quattlebaum, J. B., Harries, K. A., and Petrou, M. F.(2004).“Comparison of threeCFRP flexural retrofit systems under monotonic and fatigue loads.” Proc.,4th Int. Conf.on Advanced Composite Materials in Bridges and Structures (ACMBS-IV)(CD-ROM),Calgary, AB,Canada.
    [58] Ekenel, M., Rizzo, A., Myers, J. J., and Nanni, A.(2005).“Effect of fatigue loading onflexural performance of reinforced concrete beams strengthened with FRP fabrics andpre-cured laminate systems.” Proc.,3rd Int. Conf. on Composites in Construction, Lyon,France.
    [59] DuQuesnay, D. L., Chlistovsky, R. M., and Heffernan, P. J.(2003).“Corrosion-fatiguebehaviour of an HSLA steel subjected to periodic overloads.” Proc., Fatigue Damage ofMaterials2003, Toronto,263–271.
    [60] AASHTO.(2004). AASHTO LRFD bridge design specifications (SIunits),3rd Ed.,American Association of State Highway and TransportationOfficials, Wahingston, D.C.
    [61] ACI Committee.(1997).“Considerations for design of concrete structures subjected tofatigue loading.” ACI215R-74reapproved1997,ACI, Farmington Hills, Mich.
    [62] ISIS Canada.(2001). Strengthening reinforced concrete structures withexternally-bonded fibre reinforced polymers: Design manual No.4., Canadian Networkof Centres of Excellence on Intelligent Sensing for Innovative Structures, Winnipeg,Manitoba, Canada.
    [63] fib Task Group9.3.(2001). Externally bonded FRP reinforcement for RC structures,International Federation for Structural Concrete, Lausanne, Switzerland.
    [64] ACI Committee.(2002).“Guide for the design and construction of externally bondedFRP systems for strengthening concrete structures.” ACI440.2R-02, ACI, FarmingtonHills, Mich.
    [65] CSA.(2000).“Canadian highway bridge design code (CHBDC).” CSA S6-00, CSAInternational, Toronto.
    [66] CNR-D.(2004).“Guide for the design and construction of externally bonded frp systemsfor strengthening existing structures.” CNR-D T200, National Research Council, Rome.
    [67] CSA.(2002).“Design and construction of building components with fibre-reinforcedpolymers.” CSA S806-02, Canadian Standards Association, Toronto.
    [68]黄培彦,曾竞成.纤维薄板及其应用[P].中国发明专利号: ZL200410026742.8,2006
    [69]黄培彦,赵琛,郭馨艳. FRP加固钢筋混凝土构件的疲劳性能[M].北京:科学出版社,2009.(Huang Peiyan, Zhao Chen, Guo Xinyan. Fatigue performance of RC membersstrengthened with FRP [M]. Beijing: Science Press,2009.(in Chinese))
    [70]岳清瑞,杨勇新,郭春红,等.浸渍树脂快速与自然老化实验对应关系[J].工业建筑,2006,36(8):1-5.(Yue Qingrui, Yang Yongxin, Guo Chunhong, et al. Relationshipbetween the rapid and natural ageing tests of the impregnated resin [J]. IndustrialConstruction,2006,36(8):1-5.(in Chinese))
    [71]谷木谦介.关于混凝土结构修复补强工程中碳纤维片材的耐久性能[R].特希达碳纤维修复补强技术报告,2000
    [72] Toutanji Houssam A, Gomez William. Durability characteristics of concrete beamsexternally bonded with FRP composite sheets [J]. Cement and Concrete Composites,1997(19):351-358.
    [73]岳清瑞,杨勇新.不同环境条件下CFRP自然老化性能实验研究.工业建筑,2008,38(2):1-3.
    [74]Tarek H. Almusallam. Load–deflection behavior of RC beams strengthened with GFRPsheets subjected to different environmental conditions. Cement&Concrete Composites,28(2006):879–889
    [75] Mukherjee A., Arwikar S.J. Performance of externally bonded GFRP sheets on concretein tropical environments. Part I: Structural scale tests.[J]. Composite Structures81(2007)pp21-32
    [76] Piyush K D. Low-temperature and freeze-thaw durability of thick composites [J].Composites: Part B,1996,27B:371-379.
    [77] Hutchinson A R, Hollaway L C. Environmental durability strengthening concretestructures with bonding fiber reinforced composites [M]. Cambridge, UK: WoodhedPublishing Limited,1999.
    [78] Homam S M. Fiber reinforced polymers (FRP) and FRP-concrete composites subjectedto various loads and environmental exposures:(PH.D.dissertation). Canada: Universityof Toronto,2005.
    [79] Li Y, Cordovez M, Karbhari V M. Dielectric and mechanical characterization ofprocessing and moisture uptake effects in E-glass/epoxy composites. Composites Part B,2006,34(4):383-390.
    [80] Steckel G L, Hawkins G F, Bauer J L. Environmental durability of composites forseismic retrofit of bridge columns [C]//Proceeding of NIST Workshop on StandardsDevelopment for the Use of Fiber Reinforced Polymers for the Rehabilitation ofConcrete and Masonry Structures. Tucson, Arizona, USA: Sp ringer Netherlands,1998:83-96.
    [81]任慧韬,胡安妮,姚谦峰.湿热环境对FRP加固混凝土结构耐久性能的影响[J].哈尔滨工业大学学报,2006,38(11):1996-1999.(Ren Huitao, Hu Anni, Yao Qianfeng.Effects on durability of concrete structure strengthened with FRP in hot-wet environment[J]. Journal of Haerbin Industrial University,2006,38(11):1996-1999.(in Chinese))
    [82]郭春红.纤维增强复合材料加固混凝土结构力学性能和耐久性评价技术研究[D].北京:中冶集团建筑研究总院,2006.(GUO Chunhong. Evaluation of mechanicalbehavior of FRP and durability of FRP and its strengthened concrete structures [D].Beijing: Beijing Central Research Institute of Building and Construction, MCC Group,2006.(in Chinese))
    [83]杨勇新,杨萌,赵颜,等.玄武岩纤维布的耐久性实验研究[J].工业建筑,2007,36(6):10-13.(YangYongxin, YangMeng, Zhao Yan, et al. Experimental study ondurability of basaltic fiber reinforced polymer [J]. Industrial Construction,2007,36(6):10-13.(in Chinese))
    [84] Francesco Micelli. Antonio Nanni Durability of FRP rods for concrete structures [J].Construction and Building Materials,2004,18(7):491-503.
    [85]日本铁道综合技术研究所.粘贴碳纤维布进行铁道高架桥柱抗震补强加固工法的设计与施工指南[R].东京:日本铁道综合技术研究所,1996.(The Institute ofRailiway in Japan. Guide of design and constructuction for seismic retrofitting of railwayviaduct columns with CFRP viaduct columns with CFRP [R]. Tokyo: The Institute ofRailway in Japan,1996.(in Chinese))
    [86] Wellington Chu, Lixin Wu, Vistasp M Karbhari. Durability evaluation of moderatetemperature cured E-glass/vinylester systems [J]. Composite Structures,2004,66(4):367-376.
    [87]任慧韬.纤维增强复合材料加固混凝土结构基本力学性能和长期受力性能研究[D].大连:大连理工大学,2003.(Ren Huitao. Study on basic and long-term mechanicalperformance of concrete structure strengthened with FRP [D]. Dalian: Dalian Universityof Technology,2003.(in Chinese))
    [88]岳清瑞,彭福明,杨勇新,等.碳纤维片材耐久性初步研究[J].工业建筑,2004,34(增刊):8-11.(Yue Qingrui, Peng Fuming, Yang Yongxin, et al. Primary research ondurability of carbon fiber sheets [J].Industrial Construction,2004,34(supp l.):8-11.(in Chinese))
    [89] Chajes M J, Thomson J T A, Farschman C A. Durability of concrete beams externallyreinforced with composite fabrics. Construction and Building Materials,1995,9(3):141-148.
    [90] P. Mukhopadhyaya, R.N. Swamy, C. J. Lynsdale. Influence of aggressive exposureconditions on the behavior of adhesive bonded concrete-GFRP joints. Construction andBuilding Materials,1998(12):427-446.
    [91] Mukhopadhyaya P, Swamy R.N., Lynsdale C.J. Durability of adhesive bondedconcrete-GFRP joints. Durability of fiber reinforced polymer(FRP) composites forconstruction, Canada: University of Sherbrook,1998:373-389.
    [92]李趁趁. FRP加固混凝土结构耐久性实验研究[D].大连理工大学博士学位论文,2006.(LI Chen Chen. Experimental investigation on durability of FRP strengthenedconcrete structure [D]. Dalian: Dalian University of Technology,2006.(in Chinese))
    [93] Manuel A.G. Silva, Hugo Biscaia. Degradation of bond between FRP and RC beams.Composite Structures,2008,(85):164–174
    [94] Woods J, Saadatmanesh H. Evaluation of bond strength between FRP and concrete insevere environments.ASCE.2003.
    [95]郭春红,杨勇新,岳清瑞,等.浸渍树脂干湿交变实验[J].工业建筑,2006,36(8):16-17.(Guo Chunhong,Yang Yongxin, Yue Qingrui, et al. Wet-dry cycling testofsaturating resin [J]. Industrial Construction,2006,36(8):16-17.(in Chinese))
    [96]高纪业,杨勇新,胡海涛. FRP及FRP增强构件在海水环境中耐久性研究.山西建筑,2007,33(26):1-2
    [97] Kajorncheappunngam S, Rakesh K G, Hota V S. Effect of aging environmentdegradation of glass-reinforced epoxy [J]. Journal of Composites For Construction,2002,6(l):61-69.
    [98] Wellington Chu, Lixin Wu, Vistasp M Karbhari. Durability evaluation of moderatetemperature cured E-glass/vinylester systems [J]. Composite Structures,2004,66(4):367-376.
    [99] Francesco Micelli. Antonio Nanni Durability of FRP rods for concrete structures [J].Construction and Building Materials,2004,18(7):491-503.
    [100] Abanilla M A, Li Y, Karbhari V M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening. Composites Part B,2006,37(2-3):200-212.
    [101] Homam S M. Fiber reinforced polymers (FRP) and FRP-concrete composites subjectedto various loads and environmental exposures:(PH.D.dissertation). Canada: Universityof Toronto,2005.
    [102]任慧韬,王阿萍,胡安妮.纤维增强塑料(FRP)用于混凝土构件的耐久性能[A].见:岳清瑞.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].北京:清华大学出版社,2002:338-342.
    [103]肖建庄,于海生.纤维布与混凝土间的粘结耐久性实验研究.同济大学学报(自然科学版),2005,33(3):291-296
    [104]胡安妮.荷载和恶劣环境下FRP增强结构耐久性研究(博士学位论文).大连理工大学,2007.
    [105] Kolluru V. Subramaniam, Mohamad Ali-Ahmad, Michel Ghosn.Freeze–thawdegradation of FRP–concrete interface: Impact on cohesive fracture response.Engineering Fracture Mechanics75(2008):3924–3940.
    [106] Verghese K N E, Haramis J, Patel S, Senne J et al. Enviro-Mechanical Durability ofPolymer Composites, Long Term Durability of Structural Materials. New York: ElsevierScience Ltd,2001:159-170.
    [107] Rivera J, Karbhari V M. Cold-temperature and simultaneous aqueous environmentrelated degradation of carbon/vinylester composite [J]. Composite Part B,2002,33(1):17-24.
    [108] An Yan. Durability of glass fiber vinyl ester composites as bridge deck subject toweathering conditions:(PH.D.dissertation). Michigan, Detroit: Wayne State University,2005.
    [109] Karbhari V M, Abanilla M A. Design factors reliability and durability prediction of wetcarbon epoxy used in external strengthening. Composites Part B,2007,38(1):10-23.
    [110]任慧韬,胡安妮,姚谦峰.纤维聚合物加固混凝土结构耐久性研究[J].大连理工大学学报,2005,45(6):847-852
    [111]任慧韬,李杉,黄承奎.冻融循环和荷载共同作用下CFRP片材的耐久性实验研究[J].工程力学,2010,27(4):202-207.
    [112]胡建强.高强复合玻璃纤维布与混凝土的粘结性能的实验研究[D].南京:南京航空航天大学,2006.
    [113] Karthik Ramani, Jonathan Verhoff, Ganesan Kumar. Environmental durability ofmoisture-cured urethane adhesive joints[J].International Journal of Adhesion andAdhesives,2000,20(5):377-385.
    [114] Hulatt J, Hollaway L, Thorne A. Preliminary investigations on the environmentaleffects on new heavyweight fabrics for use in civil engineering[J]. Composites: Part B,2002,33:407-414.
    [115]杨勇新,郭春红,才鹏,赵颜,岳清瑞.紫外线对CFRP与混凝土粘结性能的影响[J].工业建筑,2006,36(8):18-20
    [116] Li Shan, Ren Huitao,Huang Chengkui, Cui Yunfei. Durability of concrete beamsreinforced with CFRP sheet under wet-dry cycles and loading [J]. Journal of SoutheastUniversity (English Edition) Vol25, No.3, pp376-380.
    [117] HUTCH INSON A R, HOLLAWAY L C. Environmental Durability for StrengtheningConcrete Structures with Bonding Fiber-re inforced Com posites [M]. Cambridge:Woodhead Publishing Limited,1999:157-182.
    [118] Selzer R, Friedrieh K. Mechanical properties and failure behavior of carbon Fibre-reinforced Polymer composites under the influence of moisture. Composites PartA,1997,28A:595-604.
    [119] Quan Yang, Guijun Xian, Vistap M. Karbhari. Hygrothermal Ageing of an EpoxyAdhesive Used in FRP Strengthening of Concrete. Journal of Applied Polymer Science,2008(107)2607–2617.
    [120]黃培彦,周昊,郑小红,郭馨艳.湿热环境下FRP加固RC构件耐久性实验方法研究[J].实验力学,2011,26(5)(待出版)
    [121]贡金鑫.《工程结构可靠性计算方法》[M].大连理工大学出版社。2003。
    [122]交通部.公路工程技术标准(JTGB01-2003).北京:人民交通出版社,2004
    [123]田铮,秦超英等编著.随机过程与应用[M].北京.科学出版社,2007.4:11-12.
    [124]张德丰编著. MATLAB数字信号处理与应用.清华大学出版社,2010.1.258-259
    [125] Linnie Ludeman[美]著邱天爽,李婷,毕英伟等译.随机过程——滤波、估计与检测。电子工业出版社,2005.02.133
    [126]钟安,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000.5
    [127] Yamazaki F, Shinozuka M Digital generation of non-Gaussian stochastic fields.Stochastic Mechanics,1986,(1):211
    [128]金畅.蒙特卡洛方法中随机数发生器和随机抽样方法研究[D].大连理工大学.2005.12.
    [129]黎志成.管理系统模拟[w].清华大学出版社,1989.6
    [130]何宜柱等.扭矩的随机模拟方法及雨流计数算法.华东冶金学院学报,1995,12(7):268~271
    [131]高惠旋编著.统计计算.北京大学出版社,1995.7
    [132] Shinozuka M, Simulation of multivariate and multidimensional random process [J].Acou. Soc. Ame.1971,49(1):357-368
    [133] Bao, L. R.; Yee, A. F.; Lee, C. Y. C. Polymer,2001,42,7327.
    [134] Bao, L. R.; Yee, A. F. Polymer,2002,43,3987.
    [135]翟洪军,姚卫星.纤维增强树脂基复合材料的疲劳剩余刚度研究进展[J].力学进展,2002,32(1):69-80
    [136] Chen J.F., Teng J.G. Anchorage Srength Models for FRP and Steel Plates Bonded toConcrete, Journal of Structural Engineering,2001,127(7):784-791
    [137] Wu Z.S. Islam S.M. Said Hemdan. A Three-Parameter Bond Strength Model forFRP-Concrete Interface

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700