用户名: 密码: 验证码:
强震作用下钢框架焊接节点损伤性能和计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高层和超高层建筑的大量兴建,钢框架结构因抗震性能好、施工简便等优点,得到了广泛的应用。震害调查表明,强震下高层钢框架结构的梁柱节点最易发生焊缝或热影响区断裂破坏,造成结构的倒塌或损坏。但目前工程界缺少系统的理论和计算方法分析钢框架梁柱节点的损伤,因此高层钢结构的抗震设计难以考虑节点损伤的影响。
     本文通过对钢框架焊接节点焊缝区域和节点整体的试验研究,分析了节点焊缝开裂和整体性能损伤的物理机理,研究了适用于焊接节点开裂和损伤分析的有限元方法及损伤演化方程,并提出了考虑损伤过程的焊接节点简化计算模型。主要内容包括:
     (1)完成了20个梁柱节点焊缝区域局部试件的单向拉伸和循环加载试验,研究了材料强度、几何参数和加载方式等因素对节点焊缝区域损伤性能的影响。
     (2)运用ABAQUS对节点焊缝区域进行了有限元计算,分析了梁柱焊缝断裂的力学机理,验证了基于塑性应变指标的损伤演化方程。
     (3)完成了9个栓-焊混接节点的循环加载试验,研究了不同加载历程、峰值强度等因素对节点损伤过程的影响,分析了节点损伤的特点,并采用目前主流的三种损伤演化方程对试验结果进行了比较分析。
     (4)基于金属延性断裂理论定义了可用于节点损伤过程分析的“有效塑性应变”指标,并推导了可用于计算节点在极低周循环荷载下开裂和损伤过程的损伤演化方程。
     (5)提出了分析循环荷载下节点裂缝发展和损伤全过程的有限元方法,并开发了相关程序,对节点试验结果进行了验证。
     (6)提出了用于节点损伤简化计算的宏观指标“有效塑性转角”,建立了考虑损伤的钢框架梁柱焊接节点骨架曲线及滞回曲线的简化计算模型,并通过其他研究者的试验数据进行了验证,结果证明此计算模型能够简洁、准确的计算钢框架梁柱焊接节点的损伤和性能退化滞回曲线。
     (7)提出了将考虑损伤的节点计算模型用于框架整体非线性动力时程分析的方法,并开发了相关程序。
The steel moment resisting frame is widely used in high-rise buildings asits higher strength, better aseismic performance and easier manufacturecompared to the concrete structure. However, in Northridge and Kobeearthquake a number of welded connections in steel frames were found crackingat welds, resulting in the frame damage or collapse. A majority of the researcheson steel welded connections focus on the materials and construction detailsrather than the damage theory and calculation method, so the influence of theconnection damage is hardly taken into account in the aseismic design ofhigh-rise steel buildings.
     In this paper, two tests focusing on welds and full-scale connectionsseparately are conducted. The damage mechanism and finite element analysismethodology are studied. Finally a simplified calculation model is proposed forthe damage process of the welded connections. The main contents aresummarized as follows:
     1.20specimens originating from the welding zone of the bottom beamflange are tested under monotonic and cyclic loads, studying the influences ofthe material strength, geometry parameters and loading procedures on theconnection damage behavior.
     2. The finite element analyses are used to investigate the crack mechanismof the connection welds and the damage evolution equation based on the plasticstrain is proved to be credible.
     3.9full-scale welded flange-bolted web connections are tested undercyclic loads to investigate the effects of different loading procedures and peakloads for connection damage. The damage characters are concluded and threetypes of damage models are used to analyze the test results.
     4. Based on the metal ductile tearing theory, the “effective plastic strain” isproposed to describe the connection damage behavior. The evolution equationfor connection damage under cyclic loads is derived.
     5. The finite element method analyzing the connection cracking anddamage process under cyclic loads is proposed and the subroutine used inABAQUS is developed. The finite element analyses are checked by the testresults.
     6. The indicator “effective plastic rotation” is proposed for the simplifiedmodel of welded connections based on the effective plastic strain. Thesimplified model for backbone and hysteretic curves of connections is derivedand verified with other experimental data. The comparison between thecalculation results and test data reveals that the damage model proposed in thispaper is favorable for predicting the damage behaviors of welded connectionsunder cyclic loads.
     7. A method for the non-linear dynamic analyses of steel frames usingdamage model of weled connections is explored and verified. The subrountie isdeveloped based on the damage model proposed in this paper.
引文
[1]中国科学院地球物理研究所.地震学基础.北京:科学出版社,1977.
    [2]顾功叙.中国地震目录.北京:科学出版社,1983.
    [3]王根龙,张军慧,梁永朵.中国地震灾害现状及地震灾害系统工程研究.灾害学,1998,21(3):15-19.
    [4]许志琴,李海滨.“5·12”汶川地震专辑.地质学报,2008,82(12):1.
    [5] Duane K. Miller,Lessons Learned from the Northridge Earthquake. EngineeringStructures,1998, Vol.20. Nos.4-6:249-260.
    [6]国家自然科学基金委员会.学科发展战略研究报告-建筑、环境与土木工程Ⅱ,北京:科学出版社,2006.
    [7] Federal Emergency Management Agency. State of the Art Report on SystemPerformance of Steel Moment-frame Subject to Earthquake Ground Shaking. Rep. No.FEMA-355C, September2000.
    [8] Luis F. Ibarra and Helmut Krawinkler. Global Collapse of Frame Structures underSeismic Excitations. Report2005/06, Pacific Earthquake Engineering ResearchCenter, September2005.
    [9]黄炳生.日本神户地震中建筑钢结构的震害及启示.建筑结构,2000,30(9):24-25.
    [10]汪大绥,周建龙,王建,李青,李婷.建筑结构非线性时程分析进展.建筑结构,2006,第36卷增刊,84-87.
    [11]李志山,容柏生.高层建筑结构在罕遇地震影响下的弹塑性时程分析研究.建筑结构,2006,第36卷增刊,142-149.
    [12]汪梦甫,周锡元.高层建筑弹塑性分析方法及抗震性能评估的研究.土木工程学报,2003,36(1):44-49.
    [13]赵岩,林家浩,唐光武.复杂结构局部非线性地震反应精细时程分析.大连理工大学学报,2004,44(2):190-194.
    [14] Helmut Krawinkler and Farzin Zareian. Predication of Collapse-How Realistic andPractical Is It, and What Can We Learn from It? The Structural Design of Tall andSpecial Buildings,2007, Vol.16,633-653.
    [15] Victor I. Fernandez-Davila, Ernesto F. Cruz. Parametric Study of the Non-linearSeismic Response of Three-dimensional Building models. Engineering Structures,2006, Vol.28,756–770.
    [16] Kuo-Wei Liao, Yi-Kwei Wen and D. A. Foutch. Evaluation of3D Steel MomentFrames under Earthquake Excitations. I: Modeling, Journal of Structural Engineering,2007, Vol.133, No.3,462-470.
    [17] Sameh S. F. Mehanny and Gregory G. Deierlein. Seismic Damage and CollapseAssessment of Composite Moment Frames. Journal of Structural Engineering,2001,127(9):1045-1053.
    [18]沈祖炎,沈苏.高层钢结构考虑损伤累积及裂纹效应的抗震分析.同济大学学报,2002,30(4):393-398.
    [19]刘永明,陈以一,陈扬骥.考虑钢框架节点局部断裂的滞回模型.同济大学学报,2003,31(5):525-529.
    [20] Mettupalayam V. Sivaselvan and Andrei M. Reinhorn. Hysteretic Models forDeteriorating Inelastic Structures. Journal of Engineering Mechanics,2000,126(6):633-640.
    [21]张洪由,李怀英.1994年1月17日美国加州北岭地震概况综述.国际地震动态,1994,24(5):8-14.
    [22] Engelhardt M. D. and Sabot T. A. Seismic-resistant steel moment connections:development since the l994Northridge Earthquake. New York: ConstructionResearch Communications,1997.
    [23]刘洪波,谢礼立,邵永松.钢框架结构的震害及其原因.世界地震工程,2006,22(4):47-51.
    [24]周炳章.日本阪神地震的震害及教训.工程抗震,1996,19(1):39-45.
    [25]黄炳生.日本神户地震中建筑钢结构的震害及启示.建筑结构,2000,30(9):24-25.
    [26] Yoshihiro SAKINO, Hisaya KaMURA and Kohsuke HoRIKAWA. Experiment Studyof Brittle Fracture with Plastic Strain at Cruciform Butt Joints. Trans. JERI,2000,29(1):97-104.
    [27] SAC, Interim Guidelines: Evaluation, Repair, Modification and Design of WeldedSteel Moment Frame Structures, SAC-95-02, Sacramento, California, September,1995.
    [28]日本建筑学会.阪神地震钢结构补强研讨会论文集.神户:日本筑建学会,1995.
    [29] Popo v E P, Yang T S, Chang S P. Design of steel MRF Connections before and after1994Northridge earthquake. New York: Construction Research Communications,1997.
    [30] Taranath B S. Steel concrete, composite design of tall buildings. Second edition,London: McGraw Hill,1997.
    [31]吴楠.北岭地震和阪神地震后美日坚钢框架节点设计的改进.黑龙江科技信息,2008,12(6):199.
    [32]闫丽梅,范子芳.日本阪神地震对钢框架节点设计的影响.沈阳工业大学学报,2005,27(1):107-110.
    [33] E. P. Popov, V. V. Bertero. Cyclic Loading of Steel Beams and Connections. J.Structut. Div. ASCE,1973,99(6):1189-1204.
    [34] E. P. Popov. Panel zone flexibility in seismic moment joints. Journal ofConstructional Steel Research,1987:91-188.
    [35] E. P. Popov, T. A. Balan, T. S. Yang. Post-Northridge earthquake seismic steelmoment connections. Earthquake Spectra,1998,14(4):659-677.
    [36] Judy Liu and Abolhassan Astaneh-Asl. Cyclic testing of simple connections includingeffects of slab. Journal of Structural Engineering,2000,126(1):32-39.
    [37] Bozidar Stojadinovic, Kyoung-Hyeog Lee, Subhash C. Goel and Jae-Hyng Choi.Parametric tests on unreinforced steel moment connections. Journal of StructuralEngineering,2000,126(1):40-49.
    [38] James M. Ricles, Changshi Mao, Le-Wu Lu and John W. Fisher. Inelastic CyclicTesting of Welded Unreinforced Moment Connections. Journal of StructuralEngineering,2002,128(4):429-440.
    [39] Chi, W. M., Deierlein, G. G., and Ingraffea, A. R. Finite Element Fracture MechanicsInvestigation of Welded Beam-Column Connections, Report No. SAC/BD-97/05,SAC Joint Venture,1997.
    [40] Chia-Ming Uang, Qi-Song ‘‘Kent’’ Yu, Shane Noel and John Gross. Cyclic testing ofsteel moment connections rehabilitated with rbs or welded haunch. Journal ofStructural Engineering,2000,126(1):57-67.
    [41] Chad S. Gilton1and Chia-Ming Uang. Cyclic Response and Design Recommendationsof Weak-Axis Reduced Beam Section Moment Connections. Journal of StructuralEngineering,2002,128(4):452-463.
    [42] Brandon Chi and Chia-Ming Uang. Cyclic Response and Design Recommendations ofReduced Beam Section Moment Connections with Deep Columns. Journal ofStructural Engineering,2002,128(4):464-473.
    [43] Scott L. Jones, Gary T. Fry and Michael D. Engelhardt. Experimental Evaluation ofCyclically Loaded Reduced Beam Section Moment Connections. Journal of StructuralEngineering,2002,128(4):442-450.
    [44] T. Kim, A. S. Whittaker, A. S. J. Gilani, V. V. Bertero and S. M. Takhirov.Experimental Evaluation of Plate-Reinforced Steel Moment-Resisting Connections.Journal of Structural Engineering,2002,128(4):483-491.
    [45] Lee K. H., Stojadinovic B., Goel S. C., Margarian A. G., Choi J., Wongkaew A.,Rayher B. P., Lee D. Y. Parametric Tests on Unreinforced Connections, ReportSAC/BD-00/01, SAC Joint Venture,2000.
    [46] Robert J. Dexter and Minerva I. Melendrez. Through-thickness properties of columnflanges in welded moment connections. Journal of Structural Engineering,2000,126(1):24-31.
    [47] Kaufmann, E. J., Pense, A. W., and Stout, R. D.‘An evaluation of factors significantto lamellar tearing. Welding J.,1981,60(3),43-s–49-s.
    [48] Kaufmann, E. J., and Stoud, R. D. The toughness and fatigue strength of welded jointswith buried lamellar tears. Welding J.,1983,(12),301-s–306-s.
    [49] Kaufmann, E. J., and Fisher, J. W. Fracture analysis of failed moment frame weldedjoints produced in full-scale laboratory tests and buildings damaged in the Northridgeearthquake. Tech. Rep. No. SAC95-08, Calif.,1995.
    [50] Kaufmann, E. J., Fisher, J. W., Di Julio, R. M., and Gross, J. L. Failure analysis ofwelded steel moment frames damaged in the Northridge earthquake. NISTIR5944,National Institute of Standards and Technology, Gaithersburg, Md,1997.
    [51] Kaufmann, E. J., Xue, M., Lu, L.-W., and Fisher, J. W. Achieving ductile behavior ofmoment connections. Modern Steel Construction,1996,36(1):30–39.
    [52] James C. Anderson, Jean Duan, Yan Xiao and Peter Maranian. Cyclic Testing ofMoment Connections Upgraded with Weld Overlays. Journal of StructuralEngineering,2002,128(4):509-516.
    [53] Kazuo Tateishi, Takeshi Hanji and Kuniaki Minami. A prediction model for extremelylow cycle fatigue strength of structural steel. International Journal of Fatigue,2007,29(5):887-896.
    [54] Ki-Weon Kang, Byeong-Choon Goo, Jae-Hoon Kim, Doo-Kie Kim and Jung-Kyu Kim.Experimental Investigation on Static and Fatigue Behavior of Welded SM490A Steelunder Low Temperature. Steel Structure,2009,9:85-91.
    [55] Kyoung-Nam Kim, Seong-Haeng Lee and Kyoung-Sup Jung. Evaluation of FactorsAffecting the Fatigue Behavior of Butt-Welded Joints using SM520C-TMC Steel.International Journal of Steel Structure,2009,9(3):185-193.
    [56] K.H. Nip, L. Gardner, C.M. Davies and A.Y. Elghazouli. Extremely low cycle fatiguetests on structural carbon steel and stainless steel. Journal of Constructional SteelResearch,2010,66(1):96-110.
    [57] Yoshihiro Sakino, Kobsuke Horikawa and Hisaya Kamura. Experimental Study ofBrittle Fracture with Plastic Strain at Cruciform Butt Joints (Report I). Trans. ofJWRI,1997,26(2):81-88.
    [58] Yoshihiro Sakino, Hisaya Kamura and Kobsuke Horikawa. Experimental Study of BrittleFracture with Plastic Strain at Cruciform Butt Joints (Report Ⅱ). Trans. of JWRI,1998,27(1):97-104.
    [59] Yoshihiro Sakino, Hisaya Kamura and Kobsuke Horikawa. Experimental Study of BrittleFracture with Plastic Strain at Cruciform Butt Joints (Report Ⅲ). Trans. of JWRI,2000,29(1):97-104.
    [60]范天佑.断裂力学基础.南京:江苏科学技术出版社,1978.
    [61] Nestor Perez. Fracture mechanics. London: Springer,2004.
    [62]孙志雄.焊接断裂力学.西北工业大学出版社,1990.
    [63] A. A. Wells. Applications of fracture mechanics at/and beyond general yielding.British Welding Journal,1963,10:563-570.
    [64] J. R. Rice. A path independent integral and the approximate analysis of strainconcentration by notches and cracks. Journal of Applied Mechanic,1968,35:379-386.
    [65] Paris, P. C. and Erdogan, F. A critical analysis of crack propagation laws. Journal ofBasic Engineering1963,85:528-534.
    [66] Dowling, N. E. and Begley, J. A. Fatigue crack growth during gross plasticity andJ-integral. ASTM STP590,1976:82-103.
    [67] Tanaka, K. Mechanics and micromechanics of fatigue crack propagation. ASTM STP1020,1989:151-183.
    [68] Gurson, A. L. Continuum theory of ductile rupture by void nucleation and growth:part l--yield criteria and flow rules for porous ductile media. Journal of EngineeringMaterials and Technology1977,99:2-15.
    [69] Tvergaard, V. Influence of voids on shear band instabilities under plane strainconditions. International Journal of Fracture,1981,17:389-407.
    [70] Tvergaard, V. On localization in ductile materials containing spherical voids.International Journal of Fracture1982,18:237-252.
    [71] Skallerud B. On the relationship between low cycle fatigue and crack growth rateproperties in welded steel components. Fatigue Fracture Engineering, Materials andStructures,1992,15:43-56.
    [72] Skallerud B. and Z. L. Zhang. A3D numerical study of ductile tearing and fatiguecrack growth under nominal cyclic plasticity. International Journal of SolidsStructures,1997,34(24):3141-3161.
    [73] Manson, S. S. Behavior of materials under conditions of thermal stress. Proc., HeatTransfer Symp., University of Michigan Engineering Research Institute, Ann Arbor,Mich.,1953,9–75.
    [74] Coffin, L. F., Jr. A study of the effects of cyclic thermal stresses on a ductile metal.Trans. ASME,1954,76:931–950.
    [75] Palmgren, A. Die levensdauer von kugellagern. VDI-Z,1924,68(14):339–341.
    [76] Miner, M. A. Cumulative damage in fatigue. Trans. ASME, J. Appl. Mech.,1954,67:A159–A164.
    [77] Ballio, G., and Castiglioni, C. A. Seismic behavior of steel sections. J. Constr. SteelRes.,1994,29(1–3):21–54.
    [78] Krawinkler, H., and Zhorei, M. Cumulative damage in steel structures subjected toearthquake ground motions. Comput. Struct.,1983,14(1–4):531–541.
    [79] Kasai, K., and Xu, Y.2003.“Cyclic behavior and low-cycle fatigue of semi-rigid connectionsPart I: Bolted angle connections&Part Ⅱ: Bolted T-stub connections. Proc., STESSANaples, Italy,2003:313–319.
    [80] Rice, J. R., and Tracey, D. M. On the ductile enlargement of voids in triaxial stressfields. J. Mech. Phys. Solids,1969,17:201–217.
    [81] Chi W. M., Kanvinde, A. M., and Deierlein, G. G. Prediction of ductile fracture insteel connections using SMCS criterion. J. Struct. Eng.,2006,132(2):171–181.
    [82] Kanvinde, A. M., and Deierlein, G. G. Micromechanical simulation of earthquakeinduced fracture in steel structures.” Rep. No.45, Blume Earthquake EngineeringCenter, Tokyo, Japan,2004.
    [83] Kanvinde, A. M., and Deierlein, G. G. Void growth model and stress modified criticalstrain model to predict ductile fracture in structural steels. J. Struct. Eng.,2006,132(12):1907–1918.
    [84] Kanvinde, A. M., and Deierlein, G. G.. Finite-element simulation of ductile fracture inreduced section pull-plates using micromechanics-based fracture models. J. Struct.Eng.,2007,13(5),656–664.
    [85] Kachanov L M. On the time to failure under creep condition. Izv. Akad. Nauk. USSR.Otd. Tekhn. Nauk.1958,8,26-31.
    [86] Kachanov L M. Introduction to Continuum Damage Mechanics. Martinus NijhoffPublishers, Dordrecht, The Netherlands,1986.
    [87] Rabotnov Y N. On the equations of state for creep. In: Progress in Applied Mechanics.1963,307-315.
    [88] Lemaitre J. Evaluation of dissipation and damage in metals submitted to dynamicloading. In: Proceeding of ICM-1, Kyoto,1971.
    [89] G. Z. Voyiadjis, Peter Issa Kattan. Damage mechanics. London: Taylor&Francis,2005.
    [90] Lemaitre J and Chaboche J L. Mechanics of Solid Material. Cambridge UniversityPress, Cambridge,1990.
    [91] Lemaitre J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater.And Tech.,1985,107:83-89.
    [92]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997.
    [93] Kachanov L M. Fundamentals of Fracture Mechanics. Moscow,1974.
    [94] Yu Shouwen. The near tip fields and temperature distribution around a crack in a bodyof hardening material containing small damage. Acta Mechanica sinica.1989.5(4),344-352.
    [95] Krawinkler H. and Zhorei M.“Cumulative Damge in Steel Structures Subjected toEarthquake Ground Motions”, Computers and Structures,198316(1-4):531-541.
    [96] Krawinkler H. and Nassar A. A Seismic Design Based on Ductility and CumulativeDamage Demands and Capacities, Nonlinear Seismic Analysis and Design ofReinforced Concrete Buildings, Fajfar P. and Krawinkler H., Elsevier,1992.
    [97] Kato B. and Akiyama H. Aseismic Limit Design of Steel Rigid Frames, Proceeding ofArchitectural Institute of Japan, No.237, Nov.,1975.
    [98] Cosenza E. and Manfredi C. Seismic Analysis of Degrading Models by means ofDamage Functions Concepts, Nonlinear Seismic Analysis and Design of ReinforcedConcrete Buildings, Fajfar P. and Krawinkler H., Elsevier,1992.
    [99] Park A. J. and Ang H. S. Mechanistic Seismic Damage Model for Reinforced Concrete,J. Struct. Eng. ASCE,1985,111(4):722-739.
    [100] Kumar S. and Usami T., A Note on Evaluation of Damage in Steel Structures underCyclic Loading, J. Struct. Eng. JSCE,1994,40A:177-178.
    [101]董宝,沈祖炎.空间钢构件考虑损伤累积效应的恢复力模型及试验验证.上海力学,1999,20(4):341-347.
    [102]沈祖炎,沈苏.高层钢结构考虑损伤累积及裂纹效应的抗震分析.同济大学学报,2002,30(4):393-398.
    [103]李洪泉,贲庆国,于之绰,张跃强,吕西林.钢框架结构在地震作用下累积损伤分析及试验研究.建筑结构学报,2004,25(3):69-74.
    [104]夏坚.刚性钢框架焊接梁柱连接的损伤累积破坏机理.工程抗震与加固改造.2007,29(6):56-60.
    [105]陈宏,李兆凡,石永久,王元清.钢框架梁柱节点恢复力模型的研究.工业建筑,2002,32(6):64-65.
    [106] Luis F. Ibarra, Ricardo A. Medina, Helmut Krawinkler. Hysteretic models thatincorporate strength and stiffness deterioration. Earthquake engineering andstructural dynamics.2005;34:1489–1511.
    [107] Dimitrios G. Lignos and Helmut Krawinkler. A database in support of modeling ofcomponent deterioration for collapse prediction of steel frame structures. StructuralEngineering Research Frontiers, Proceedings of Sessions of the2007StructuresCongress.
    [108]石永久,苏迪,王元清.考虑组合效应的钢框架梁柱节点恢复力模型研究.世界地震工程,2008,24(2):15-20.
    [109] Toshikazu Takeda, Mete A. Sozen and N. Norby Nielsen. Reinforced ConcreteResponse to Simulated Earthquakes. Journal of the Structural Division,1970,96(12):2557-2573.
    [110] CEN: ENV1993-1-8Eurocode3: Design of steel structures: part1.8: design of joint.2005.
    [111] Ramberg W, Osgood WR. Description of stress-strain curves by three parameters.NACA, Technical Note902,1943.
    [112] AMDE M. AMDE, AMIR MIRMIRAN. A new hysteresis model for steel members.International journal for numerical methods in engineering.45,1007~1023(1999).
    [113] Azizinamini A., Bradburn J. H. and Radziminski J. B. Initial semi-rigid steelbeam-to-column connections. J. Construct. Steel Research,1987,(8):823-929.
    [114] A. Colson and J. M. Louveau. Connections incidence on the inelastic behavior ofsteel structures. Proceedings of the Euromech Colloquium, October,1983.
    [115]李国强,沈祖炎.考虑节点剪切变形的钢框架弹塑性地震反应分析.同济大学学报,1990,18(1):1-9.
    [116] Naser Mostaghel and Ryan A. Byrd. Analytical description of multidegree bilinearhysteretic system. Journal of Engineering Mechanics,2000,126(6):588-598.
    [117] Sivaselvan MV, Reinhorn AM. Hysteretic models for deteriorating inelasticstructures. Journal of Engineering Mechanics2000;126:633–640.
    [118] Song J, Pincheira J. Spectral displacement demands of stiffness and strengthdegrading systems. Earthquake Spectra,2000.
    [119] G. Della Corte, G. De Matteis, R. Landolfo and F.M. Mazzolani. Seismic analysis ofMR steel frames based on refined hysteretic models of connections. Journal ofConstructional Steel Research,2002,58(10):1331–1345.
    [120] Luis F. Ibarra, Ricardo A. Medina and Helmut Krawinkler. Hysteretic models thatincorporate strength and stirness deterioration. Earthquake engineering and structuraldynamics.2005,34:1489–1511.
    [121]董宝,沈祖炎,孙飞飞.考虑损伤累积影响的钢柱空间滞回过程的仿真.同济大学学报,1999,27(1):11-15.
    [122] SHEN Zu-yan, DONG Bao, CAO Wen-xian. A hysteresis model for plane steelmembers with damage cumulation effects. Journal of Constructional Steel Research,1998,48(2/3):79-87.
    [123] SAC, Interim Guidelines: Evaluation, Repair, Modification and Design of WeldedSteel Moment Frame Structures, SAC-95-02, Sacramento, California, September,1995.
    [124]中华人民共和国住房与城乡建设部. GB50017—2003,钢结构设计规范.北京:中国标准出版社,2003.
    [125] American Institude of Steel Constrcution: Load and Resistance Factor DesignSpecification for Structural Steel Buildings, Chicago, IL,1999.
    [126] F. J. Rosien and C. P. Ostertag. Low cycle fatigue behavior of constraintconnections Part I: influence of constraint severity. Materials and Structures,2009,42(2):161-170.
    [127] F. J. Rosien and C. P. Ostertag. Low cycle fatigue behavior of constraint connections Part Ⅱ:Influence of material parameters. Materials and Structures,2009,42(2):171-182.
    [128]张莉.钢结构刚性梁柱节点抗震性能的研究[博士学位论文].天津:天津大学,2004.
    [129] T. D. Righiniotis, E. Omer, A. Y. Elghazouli. A simplified crack model for weldfracture in steel moment connections. Engineering Structures,2002,24:1133-1140.
    [130] T. D. Righiniotis, B. Imam. Fracture reliability of a typical Northridge steel momentresisting connection. Engineering Structures,2004,26:381-390.
    [131]陈绍蕃.钢结构设计原理.北京:科学出版社,2005.
    [132]陈绍蕃. T形截面压杆的腹板局部屈曲,钢结构,2001,2:52-53.
    [133]中华人民共和国建设部. JGJ101—96.建筑抗震试验方法规程.北京:中国标准出版社,1997.
    [134]韩林海.钢管混凝土结构-理论与实践.北京:科学出版社,2004.
    [135]廖芳芳,王伟. Q345钢基于微观机制断裂预测模型的参数校准.中国科技论文在线, http://www.paper.edu.cn/index.php/default/releasepaper/content/201007-457.
    [136]袁锋,施刚,霍达,石永久,王元清.钢框架梁柱节点转角测量方法及力学模型比较研究.建筑结构学报,2010, S1:79-83.
    [137]石永久,杨文,王元清.梁柱刚接节点负载下加固的有限元研究.四川建筑科学研究,2008,34(4):79-82.
    [138] Solomon, H. D. Low cycle fatigue crack propagation in1018steel. J. Mater.1972,7(3):299–306.
    [139] Rice J. R. and Tracey D. M. On the ductile enlargement of voids in traxial stressfields. J. Mech. Phys. Solids,1969,35:201-217.
    [140] Jun Iyama and James M. Ricles. Predition of Fatigue Life of WeldedBeam-to-Column Connections under Earthquake Loading. Journal of StructuralEngineering,2009,135(12):1472-1480.
    [141]中华人民共和国住房与城乡建设部.钢结构焊接规范(送审稿),北京,2009.
    [142]中华人民共和国国家质量监督检验检疫总局. GB/T3325-2005.金属熔化焊焊接接头射线照相.北京:中国标准出版社,2006.
    [143] Bannantine J. A., Comer J. J. and Handrock J. L. Fundamentals of metal fatigueanalysis, Prentice-Hall, Englewood Cliffs, N. J.,1990.
    [144] Dassault Systèmes. Abaqus Analysis User's Manual. Dassault Systèmes SimuliaCorporation, Providence, RI, U.S.A,2010.
    [145] American Institude of Steel Constrcution: Allowable Stress Design Specification forStructural Steel Buildings, Chicago, IL,1989.
    [146]奥晓磊.中高强度钢框架梁柱组合节点抗震性能研究[硕士学位论文].北京:清华大学,2008.
    [147] SAC. Protocol for Fabrication, Inspection, Testing, and Documentation ofBeam-Column Connection Tests and Other Experimental Specimens, Report No.SAC/BD-97/02, Michigan,1997.
    [148] SAC. Protocol for Fabrication, Inspection, Testing, and Documentation ofBeam-Column Connection Tests and Other Experimental Specimens, Report No.SAC/BD-97/02, Lehigh University,2000.
    [149] Hibbitt, Karlsson andSorensen. Writing UMATs, VUMATs and UELs. Hibbitt,Karlsson&Sorensen, Inc, U.S.A,1996.
    [150]中华人民共和国住房与城乡建设部. GB50011—2001,建筑抗震设计规范.北京:中国标准出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700