既有混凝土独塔斜拉桥承载力评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
既有桥梁是我国经济现代化的基础和宝贵财富,由于自然环境作用和日益增长的交通量及载重量,大量既有桥梁功能退化,加固维修的任务十分艰巨。对既有桥梁承载力做出科学评判,保障桥梁结构的安全使用性能,科学合理地进行决策及加固维修,保证交通大动脉的畅通具有重大的社会意义和经济价值。
    本文基于如下桥梁动力评估步骤,对已运营四年多的福州市三县洲闽江大桥的承载力进行评估:
    1. 建立结构的初始有限元模型,进行自由振动分析得到桥梁大致的动力学特性。
    2. 进行实桥在环境激励下的动载试验,测量该桥的竖向、扭转、横向以及纵向的动力特性,所有拉索的索力及桥面线型。
    3. 用频域的峰值法(PP)、时域的随机子空间系统识别方法(SSI)对桥梁动力学参数进行识别,得到桥梁结构实际的动力特性。根据实测结果进行有限元模型的参数修正,得到反映桥梁现时真实工作状态的较精确的有限元模型。
    4. 以修正后的有限元模型为基础,采用数值加载的方法,进行“设计汽车荷载”下桥梁的承载力计算和分析,从而实现既有桥梁结构承载力的确定性评估。
    5. 改变有限元模型中影响桥梁承载力的主要参数(拉索面积、混凝土弹性模量、伸缩缝刚度及桥面活载)来模拟损伤,采用承载能力系数法对其承载力进行预测评估。
     得到的主要结论如下:
     (1)三县洲大桥动力特性的实测结果与有限元计算结果能够吻合,大桥的整体动力特性良好。
    (2)大跨径斜拉桥的动力特性受跨度、主塔及拉索布置方式、上部主梁类型、边界约束方式等的影响。对三县洲大桥而言:其横向基频(0.942Hz)要大于竖向基频(0.440Hz)。本桥由于塔梁墩固结,其纵桥向基频较高(2.452Hz)。
    (3)该桥在运营四年后,索力、挠度、应力与主塔偏位都在设计允许的范围内,大桥依然具备通行设计汽车荷载的能力。
    (4)对该桥承载力的预测分析表明:在所分析的可能损伤状态下,拉索具有足够的安全系数,损伤对控制截面的承载能力系数影响较大。
Existing bridges are the foundation and precious treasure of the economy modernization of our country. Due to the effect of environment and the increasing traffic and vehicle load, the functions of great amount of existing bridges degenerated, so the reinforcement and maintenance of the existing bridges are very hard. It has great social significance and economic values to evaluate the load-carrying capacity of existing bridges, and helps to ensure the security of existing bridge structures, decide the strategy of repairing and maintenance scientifically, and assure the traffic artery smoothly.
     In this thesis, the evaluation of the load-carrying capacity of Sanxianzhou Bridge, over the Minjiang River, Fuzhou, Fujian Province, was conducted, based on the following steps:
     1. The initial FE model was established based on the design drawings, and approximate dynamic characteristics of the bridge were obtained through the analysis of free vibration.
     2. The field ambient vibration tests induced by wind and normal traffic were carried to determine the real dynamic characteristics, including vertical, torsional, transversal and longitudinal frequencies and modal shapes, each cable tension force, as well as the figure of the bridge deck.
     3. The out-put only data modal parameter identification was conducted by using the peak picking(PP) method in frequency-domain and stochastic subspace identification(SSI) method in time-domain, the realistic dynamic characteristics of the bridge were obtained. After that, the FE model was calibrated in terms of ambient vibration test results, and more precise FE model was obtained, which could represent the current service condition of the bridge truly.
     4. Based on the calibrated model, the numerical testing on the bridge under the design vehicle loading was carried out and the load-carrying capacity of the bridge in service was analyzed. So the determinate evaluation of the bridge can be performed.
     5. The precise FE model was used to predict the factors of load-carrying capacity of the controlled sections of the box-girder, by selecting some important factors which can affect the load-carrying capacity, such as the area of cables, stiffness of expanding joints, elastic modulus of concrete, and the amount of living load, to simulate the several possible damages of the bridge in service in the future.
    
    
     Several conclusions are listed as follows:
     1. The dynamic characteristics of Sanxianzhou bridge under field-testing agreed well with that of the FE calculation. This indicated that the whole dynamic characteristics of the bridge is well.
     2. The dynamic characteristics of long-span cable-stayed bridge were affected by span, main tower, cable arrangement, main girder type, constraining manners of boundary, etc. For this bridge, the transversal fundamental frequency(0.942Hz) is higher than the vertical fundamental frequency(0.440Hz), and longitudinal fundamental frequency(2.452Hz) is quite high because the main girder, the main tower and the pier of the bridge are fixed together.
     3. After running four years, the cable forces, the main girder's deflection and stress, as well as the main tower's displacement of the bridge were in the range of design permission. The bridge still has the capacity to bear design traffic load.
     4. The prediction analysis showed that the cables have enough safety factor, but the factors of load-carrying capacity of controlled cross sections of main girder may vary a great deal under several possible damage conditions.
引文
[1] 刘士林,梁智涛,候金龙,等. 斜拉桥. 北京:人民交通出版社,2002.
    [2] 陈开利. 独塔斜拉桥的建设与展望.桥梁建设,1998,(3):33-36.
    [3] 顾安邦主编,范立础主审.桥梁工程(下册). 北京:人民交通出版社,2001.
    [4] 陈幼平,周宏业. 斜拉桥的动力分析模型. 中国铁道科学,1995,16(1):78-89.
    [5] 朱宏平,唐家祥. 斜拉桥动力分析的三维有限单元模型. 振动工程学报,1998,11(1):121-126.
    [6] A. J. S. Pippard and L. Chitty. Some problems presented by cable bracing. The ICE Div, papers 3, Strut. and Bldg Engng. Div. paper No.10,1944~1945.
    [7] H. J. Ernest. The modulas of elasticity of cable taking into account of catenary action. Der Bauingeneiur,1965,40(2).
    [8] W. J. podolny. Static analysis of cable-stay bridges. Ph. D thesis, University of Pittsburgh, 1971.
    [9] John. C. Wilson and Wangne Graveue. Modeling of a cable-stayed bridge for dynamic analysis. Earthquake engineering and structural dynamics,1991,Vol.20.
    [10] 项海帆,朱乐东. 考虑约束扭转刚度影响的斜拉桥动力分析模型. 全国桥梁结构学术大会论文集,1992.
    [11] 陈淮,郭向荣,曾庆元. 大跨度斜拉桥动力特性分析. 计算力学学报,1997,14(1):57-63.
    [12] 徐兴,凌道盛.实体退化单元系列. 固体力学学报,2001,22(专辑):41-43.
    [13] 刘巧玲,徐兴,叶贵如. 用实体退化板壳单元对立交桥进行空间分析.中国市政工程,2003,(3):34-36.
    [14] 王振阳,叶贵如,徐兴. 大跨独塔斜拉桥的自振特性测试与分析.公路交通科技,2003,(4):41-43.
    [15] 张晓壳,陈宁,王应良等编译.斜拉桥的数学建模. 国外桥梁,1998,(2):52-56.
    [16] C.C.Chang, T.Y.P.Chang, and Q.W.Zhang(2001). Ambient vibration of long-span cable-stayed bridge. Journal of bridge engineering,ASCE January/February 2001, 46-53.
    [17] A.Cunha, E.Caetano, and R.Delgado(2001). Dynamic tests on large cable-stayed bridge. Journal of bridge engineering,ASCE January/February 2001, 54-62.
    [18] 王振阳,叶贵如,徐兴. 基于实体退化单元的斜拉桥自振特性分析. 全国振动工程及应用学术会议论文集,2002年下册。
    [19] James.M.W.Brownjohn and Pin-Qi Xia. Dynamic assessment of curved cable-stayed bridge by model updating. JOURNAL OF STRUCTURAL ENGINEERING,2000,252-260.
    [20] 金马大桥主桥工程检测试验报告. 广东省交通建设工程质量检测中心,2002年8月.
    [21] 崖门大桥主桥斜拉桥工程检测试验报告. 广东省交通建设工程质量检测中心,2002年11月.
    [22] 兰海. 大跨斜拉桥结构综合监测与评估系统:[博士学位论文]. 上海:同济大学,2000.
    [23] By Parsons Brinckerhoff, Edited by Louis G. Silano, and Arnold C. Henderson. Bridge Inspection and Rehabilitation[M]. A Wiley-Interscience Publication, John Wiley & Sons , INC.,1993.
    [24] AASHTO----Manual for Condition Evaluation of Bridges, Published by the AASHTO Subcommittee on Bridge and Structuture,1994.
    [25] 宗周红,阮毅,任伟新. 既有桥梁承载力评估方法与展望. 第三届中国结构抗震控制年会论文集,2002.
    
    
    [26] 中华人民共和国交通部标准,“公路养护技术规范”(JTJ073-85),人民交通出版社,1986.
    [27] 中华人民共和国城建部标准,“城市道理养护技术规范”(CJJ36-90),1991.
    [28] 史敏. 中小桥梁承载能力评定方法研究:[硕士学位论文]. 上海:同济大学,2001.
    [29] 中华人民共和国交通部,“公路旧桥承载能力鉴定方法(试行)”,人民交通出版社,1988.
    [30] 李亚东. 基于设计规范的桥梁承载能力评定. 桥梁建设,1996.
    [31] 沈大元,强士中. 既有桥梁承载能力的评定方法. 全国桥梁结构学术会议论文集,1992.
    [32] 孙九春. 大型桥梁综合评估系统研究:[硕士学位论文]. 上海:同济大学,2002.
    [33] 季云峰. 桥梁管理系统的研究:[硕士学位论文]. 上海:同济大学,2003.
    [34] 蒋泽汉,湛刚. 用动态法快速测定桥梁的承载能力. 全国桥梁结构学术会议论文集,1992.
    [35] Olusegun S. Salawu, Clive Williams. Bridge assessment using forced-vibrition testing. Journal of Bridge Engineering, Vol. 120, No. 3, 1992.
    [36] S. S. Law, H. S. Ward, G. B. Shi, et al. Dynamic assessment of bridge load-carrying capacities. Journal of Bridge Engineering, Vol. 121, No. 3, 1992.
    [37] Mahmod M. Samman, Mrinmay Biswas. Vibration testing for nondestructive evaluation of bridges. Ⅰ:Theory. Journal of Bridge Engineering, Vol. 120, No. 1, 1994.
    [38] Mahmod M. Samman, Mrinmay Biswas. Vibration testing for nondestructive evaluation of bridges. Ⅱ:Result. Journal of Bridge Engineering, Vol. 120, No. 1, 1994.
    [39] Michael P. Enright, Dan M. Frangopol. Reliability-based condition assessment of deteriorating concrete bridges considering load redistribution. Journal of Bridge Engineering, Vol. 120, No. 1, 1994.
    [40] J. Ghaboussi, J. H. Garrett Jr., X. Wu. Knowledge-based modeling of material behavior with neural networks. Journal of Bridge Engineering, Vol. 117, No. 1, 1991.
    [41] 钱冬生,郑凯锋. 专家系统及其在桥梁工程中的应用. 西南交通大学.
    [42] 王五平,罗瑞华. 基于系统可靠度分析的使用期桥梁维修方案. 国外桥梁,2000.
    [43] 孙宝俊. 损伤混凝土桥的使用寿命预测. 国外桥梁,2000.
    [44] Baidar Bakht, Leslie G. Jaeger. Ultimate Load Test of lab-on-Girder Bridge. Journal of Structure Engineering, Vol. 118, No. 6, 1992.
    [45] M. A. Saadeghvaziri. Finite Element Analysis of Highway Bridges Subjected to Moving Loads. Computers & Structures, Vol. 49,No. 5, pp.837-842,1993.
    [46] Masaki YAMADA, Daisuke MITA and Chitoshi MIKI, Evaluation of the Real Loading Capacity Carried on Existing Plate Girder Bridges with R.C.slab. Fifth Pacific Structural Steel Conference, Seoul, Korea, October 13-16, 1998.
    [47] Laura N. Lowes and Jack P. Moehle. Evaluation and Retrofit of Beam-Column T-Joints in Older Reinforced Concrete bridge Structures. ACI Structural Journal/July-August 1999.
    [48] Tony R. Schmitt and Fellow. Effect of Material Properties on Cracking in Bridge Decks. Journal of Bridge Engineering, Vol. 4, No. 1, 1999.
    [49] 唐继舜、强士中、郑凯锋. 桥梁工程设计数据库管理系统的研究. 桥梁建设,1996,(2):72-76.
    [50] J.D. Brito. F.A.Branco,. P.Theft一Christensen and J.D.Srensen. An expert system for concrete bridge management.Engineering Structures,vol.19,No.7,1997.
    [51] Harris,C.M. and Crede,C.E.(1996). Shock and Vibration Handbook (4th Edition) [M], McGraw-Hill, 1996.
    
    
    [52] 傅志方,华宏星. 模态分析理论与应用[M]. 上海交通大学出版社,2000。
    [53] Ewins, D.J.(1995). Modal testing: Theory and Practice [M]. Research Studies Press Ltd., 1995.
    [54] 福州三县洲闽江大桥动载试验报告. 铁道部大桥工程局桥梁科学研究院,1999年8月。
    [55] A.Cunha, E.Caetano, and R.Delgado(2001). Dynamic tests on large cable-stayed bridge. Journal of bridge engineering, ASCE, January/February 2001, 54-62。
    [56] Ewins, D.J. (1995). Modal Testing: Theory and Practice. Research Studies Press Ltd., England.
    [57] Harik, I.E., Allen, D.L., Street, R.L., et al. (1997). Free and ambient vibration of Brent-Spence Bridge. J. of Struct. Engrg., ASCE, Vol.123(9), 1262-1268.
    [58] Maia, N.M.M. and Silva, J.M.M. Edited. (1997). Theoretical and Experimental Modal Analysis. Research Studies Press Ltd., England.
    [59] McConnel, K.G..(1995), "Vibration Testing---Theory and Practice", JohnWilly & Sons, Inc. NewYork, NY, 1995.
    [60] 宗周红,Bijaya Jaishi,林友勤等. 西宁北川河钢管混凝土拱桥的理论和实验模态分析,铁道学报,25(4):89-96.
    [61] 刘涛,杨凤鹏. 精通ANSYS. 北京:清华大学出版社,2002.
    [62] ANSYS,Inc. ANSYS User's Manual-Elements (Volume Ⅲ),1995.
    [63] 谭建国. 使用ANSYS6.0进行有限元分析. 北京:北京大学出版社,2002.
    [64] 郭金琼. 箱形梁设计理论. 北京:人民交通出版社,1991.
    [65] 鲁斯著,吴德心等译. 结构力学的有限元法. 北京:人民交通出版社,1991.
    [66] 王勖成. 有限元法. 北京:清华大学出版社,2003.
    [67] 阮毅,宗周红,任伟新. 混凝土独塔斜拉桥的动力特性分析. 全国结构计算理论与工程应用学术会议论文集,2003,418-421.
    [68] 林元培. 斜拉桥. 北京:人民交通出版社,1994.
    [69] 陈刚,任伟新. 基于环境振动的斜拉桥拉索基频识别. 地震工程与工程振动,2003,23(3):101-106.
    [70] 福州市三县洲大桥索力监测报告. 铁道部大桥工程局桥梁科学研究院,1999.
    [71] Juang, J.N.(1994). Applied System Identification[M]. Englewood Cliffs: Prentice -Hall Inc, 1994.
    [72] Bendat, J.S., Piersol, A.G..Engineering applications of correlation and spectral analysis[M]. 2nd edition, New York: John Wiley & Sons, 1993.
    [73] 任伟新. 环境振动系统识别方法的比较分析. 福州大学学报(自然科学版),2001, l29(6): pp80-86。
    [74] Van Overschee P, De Moor B. Subspace identification for linear system theory, implementation and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [75] 夏品奇,James M W Brownjohn. 斜拉桥有限元建模与模型修正. 振动工程学报,2003,16(2):219-223.
    [76] Friswell, M.I. and Mottershead, J.E.(1995), Finite element model updating in structural dynamics, Kluwer Academic Publishers, The Netherlands, 1995.
    [77] Allemang R J,Brown D L. A correlation coefficient for modal vector analysis In: Proceedings of the 1st International Modal Analysis Conference,SEM,Orlando,1982:110-116.
    [78] Chen,H. L.,Spyrakos, C.,and Venkatesh,G. (1995). Evaluating structural deterioration by dynamic response[J]. Journal of Structural Engineering,ASCE,121(8):pp1197-1204.
    
    
    [79] Chen, G.,Yang,X. B.,etc.(1999). Condition assessment of concrete structures by dynamic signature tests[M]. Proc., 13th Engineering Mechanics Specialty Conference, ASCE, Baltimore, MD, N Jones and R Ghanem, Editors, June 13-16, 1999.
    [80] Ren, W.X., Harik, I. E. and Blandford, G.E.(2001). Structural evaluation of the John A. Roebling suspension bridge over the Ohio River[A], Research Report, Kentucky Transportation Center, College of Engineering, University of Kentucky.
    [81] 广东省交通厅科研所、香港理工学院、广东省公路局,“动态法测定桥梁承载力研究报告”,1990.12
    [82] 交通部部颁“公路旧桥承载力鉴定方法”(1988),人民交通出版社.
    [83] 交通部公路科研所等 "大跨径混凝土桥梁的试验方法"(1982).
    [84] 福州市三县洲闽江大桥斜拉桥汽车荷载试验报告. 福州大学结构工程研究所,1999年4月.
    [85] 崔飞. 桥梁参数识别与承载能力评定:[博士学位论文]. 上海:同济大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700