土工格栅加筋砂土的特性研究及加筋垫层的承载力计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种刚刚引进市场不久的新型土工格栅,三角形土工格栅有着更稳定的网格结构,可以在各个方向提供更均匀的约束。目前世界上各国对于该土工格栅的基础理论研究和应用技术刚刚起步,研究数据还非常有限。因此很有必要开展三角形土工格栅加筋地基的试验、理论及应用的研究,加快我国对新产品研究应用的步伐,缩短与国际间的差距,更好地为工程实践服务。利用美国堪萨斯大学、建筑与环境学院设计制造的直剪仪进行了三角形土工格栅加筋砂土的室内直剪试验,研究了三角形土工格栅与砂土的界面特性;通过室内载荷试验,研究了三角形土工格栅加筋砂土的承载力性状;采用FLAC数值模拟,分析了三角形土工格栅在不同方向拉力作用下的张拉性能,同时对施工损伤下的强度损失也作了一些探讨,为三角形土工格栅进一步在工程中推广应用提供了试验和理论研究基础。结合现场原位载荷试验结果,讨论了加筋地基承载力计算方法。本文获得主要结论如下:
     (1)采用室内直剪试验,首次对新型三角形士工格栅与砂土的界面特性进行了研究,探讨了影响土工格栅筋土界面特性的因素,引入摩擦系数比,对三角形土工格栅筋土界面特性进行评价。试验表明,三角形土工格栅和双向土工格栅加筋砂土的剪切应力与剪切位移的关系曲线变化规律基本相同,剪应力与垂直荷载间存在线性关系,可用莫尔库伦抗剪强度公式表示。峰值强度条件下,双向土工格栅和砂土界面摩擦角与砂土的内摩擦角基本相等,筋土界面抗剪强度较砂土抗剪强度的提高主要决定于格栅肋条上下表面与砂土颗粒的摩擦作用和格栅肋条对砂土颗粒的“嵌固”作用使颗粒间的“咬合力”提高引起的似粘聚力增加;三角形土工格栅和砂土的摩擦角大于砂土的内摩擦角,筋土界面抗剪强度的提高除考虑似粘聚力提高外,需适当考虑摩擦角增量的贡献。这是由于三角形格栅的形状优势,对砂土颗粒提供了更大的侧向约束和“嵌固”作用,不仅使筋土界面的似粘聚力提高,同时也引起摩擦角的明显增大。引入栅孔形状参数,分析了栅孔形状对筋土界面相互作用的影响,验证了三角形土工格栅三角形栅孔的优越性,同时从四个阶段简要分析了土工格栅与砂土界面破坏的机理。
     (2)首次采用模拟的方法,提出简化分析模型,分析了三角形土工格栅和双向土工格栅在不同方向拉力作用下的张拉性能,研究了抗拉强度和抗拉刚度的分布受栅格形状,肋条截面积,肋条弹性模量变化的影响规律。通过模拟分析发现,双向土工格栅的抗拉强度和抗拉刚度极大程度上与单向拉力的方向有关,而三角形土工格栅抗拉强度和抗拉刚度受拉力方向影响较小。肋条弹性模量和截面积的增加均会引起三角形土工格栅抗拉强度和抗拉刚度的增加。
     (3)将施工损伤的概念引入数值模拟模型中,模拟分析了土工格栅不同损伤程度下的抗拉强度变化。结果发现,随着损伤程度的增加,两种格栅的强度近似呈线性递减,30。方向抗拉强度变化较其它方向变化大。双向土工格栅极限抗拉强度受施工损伤的影响较三角形土工格栅敏感。建议三角形七工格栅的施工损伤折减系数以30。方向下25%-75%损伤范围内取值。
     (4)利用室内模型试验方法,首次对三角形土工格栅加筋砂土开展载荷试验研究。试验表明,三角形土工格栅或双向土工格栅加筋,均可提高砂土地基的极限承载力和刚度,同时可提高加筋地基的模量。三角形土工格栅首层加筋间距为1/3倍的基础宽度时,加筋效果最好。单层加筋时,在地基允许变形范围内,筋材抗拉强度接近的条件下,三角形土工格栅较双向土工格栅更能有效地发挥作用。引入承重比的概念,从经济方面研究了三角形土工格栅的优越性。选用土工格栅进行地基加筋时,需结合工程实际,选择合适的格栅类型、格栅型号和加筋参数。
     (5)比较和分析了改进的Terzaghi公式和Binquet公式这两种方法的不足之处,结合现场原位载荷试验结果,在筋材拉力计算中引入了筋材抗拉强度发挥系数,提出修正的加筋地基的实用计算方法,与工程实测数据吻合良好,为《建筑地基处理技术规范》的修订提供参考。
The new triangular geogrid products with a triangular aperture shape recently introduced into the market are expected to have a more stable grid structure, which can provide more uniform resistance in all directions. However, limited test data related to triangular geogrid-reinforced bases has been published so far. Therefore, tests are needed to evaluate their behavior and mechanisms when used in the reinforced bases. Laboratory direct shear and plate load tests were conducted in the apparatus designed and fabricated at Department of Civil, Environmental, and Architectural Engineering at the University of Kansas to investigate the behavior and mechanisms of triangular geogrid reinforced sand bases. The tensile behavior of the geogrids with triangular and rectangular apertures under different uniaxial tensions was modeled using the numerical software-FLAC2D. The effects of installation damage on the geogrid under uniaxial tensions were also investigated. A simplified method for calculating the bearing capacity of geosynthetic reinforced bases was proposed, which can provide the reference data for the revision of the Technical Code for Ground Treatment of Buildings. The main conclusions can be drawn out from this study as follows:
     (1) It was the first time using the direct shear test method to study the interface strengthbetween the new triangular geogrid and Kansas River sand. The ratio of frictional coefficients was introduced to evaluate the interface properties. As obtained from the test data, the relationships between shear stress versus shear displacement are nearly the same and the shear strength increased linearly with the increase of vertical stress. The friction angles between biaxial geogrid and the sand are nearly equal to the internal friction angle of the sand. The increment of interface shear strength between biaxial geogrid and sand was mainly due to interlocking between geogrid and sand. Indition to the interlocking between geogrid and sand, the contribution of aperture shape on the increase of the friction angle was considered for the triangular geogrid. The shape parameters of geogrid were introduced to analyze the effect of the aperture shape on the interface action between geogrid and sand. The interface failure mechanisms between geogrid and sand were investigated from four stages.
     (2) It is the first time using the numerical software-FLAC2D to model the tensile behavior of the geogrid with triangular and rectangular apertures under different uniaxial tensions. In addition to the loading direction, this study studied the influence of the following factors on the tensile stiffness of the geogrids:aperture shape, elastic modulus, and cross-section area of geogrid ribs. The tensile strength and stiffness of the geogrid with rectangular apertures were highly dependent on the direction of the uniaxial tension relative to the orientation of ribs. The tensile strength and stiffness of the geogrid with triangular apertures were relatively uniform at all the loading directions relative to the orientation of ribs even though those at the 45°loading were slightly lower. An increase of the elastic modulus and/or cross-sectional area of ribs increased the tensile stiffness of the geogrid with triangular apertures.
     (3) As discovered from the numerical results, it was found that the tensile strength decreased linerly with the increase of the extent of damage. The extent of damage was referred to the tensile strength loss in the middle ribs at 0°direction. The reduction of the tensile strengths under 30°tension was significant than other directions. The ultimate tensile strengths of the biaxial geogrid are more sensitive to the installation damage than the triangular geogrid. An installation damage reduction factor of the triangular geogrid based on the tensile strength reduction under 30°tensions was given for reference.
     (4) The plate load tests were performed to study the behaviors of triangular geogrid reinforced sand. An unreinforced base and biaxial geogrid reinforced sand base were also tested for the comparasion purpose. The reinforced sections were found to perform better than the unreinforced sections when the geogrid was placed at 5 or 10cm. The triangular geogrid at the depth of 1/3 to the width of base performed the best. At the range of effective displacement of base, single layer reinforcement, with a similar tensile strength, the triaxial geogrids had a higher interface shear resistance than biaxial geogrids. The bearing capacity to weight ratio was introduced to investigate the advantages of triangular geogrid. According to the actual site conditions, the types, aperture shape, reinforcement parameters should be considered when geogrid is chosen for reinforcement. The bearing capacity rario was suggested for reference.
     (5) The modified Terzaghi method and Binquet method were compared first. Based on the site conditions of the reinforced projects, a coefficient of tensile strength of geosynthetic was introduced for calculation. A simplified method to calculate the bearing capacity of geosynthetics-reinforced base by forms of characteristics value method and modified Terzaghi method was given in this paper. The formulations were found to match the test data reseasonably well.
引文
[1]Dewar, S. The Old roads in Britain[J]. The Countryman,1962,59(3):547-555.
    [2]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册[M].北京:中国建筑出版社,2000:1-17.
    [3]周志刚,郑健龙.公路土工合成材料设计原理及工程应用[M].北京:人民交通出版社,2001.
    [4]中国大百科全书总编辑委员会《土木工程》编辑委员会.中国大百科全书-土术工程[M].北京:中国大百科全书出版社,1987(第一版):585-594.
    [5]中国建筑史编辑委员会.中国建筑史(第一册)[M].北京:中国建筑工业出版社,1962.
    [6]黄晓明,朱湘.公路土工合成材料应用原理[M].北京:人民交通出版社,2001.
    [7]黄广军.加筋士挡墙的性状及设计理论研究[D].北京:铁道部科学研究院,1999.
    [8]Vidal, H.. The Principle of reinforced earth [J]. Highway Researeh Record,1969,282,NCR-HRB, Washington DC:1-16.
    [9]何光春.加筋十工程设计与施工[M].北京:人民交通出版社,2000.
    [10]陈忠达.公路挡土墙设计[M].北京:人民交通出版社,1999(第一版):20-33.
    [11]景键,李燕辉.论加筋土挡墙技术[J].四川水利发电,2002,21(1):113-117.
    [12]时钟伦.回顾我国加筋土挡墙的发展概况[J].路基工程,1991,35(5):67-72.
    [13]陈吕林,姚明善.土工格栅技术概论[J].水运工程,1998.(2):51-59.
    [14]胡天国.铁路高路堤加筋土挡墙施工[J].铁道建筑,2001,(11):35-37.
    [15]周志刚,张起森,郑健龙.交通荷载作用下土工格栅防止沥青路面开裂的桥联效应[J].中国公路学报,1999,12(3):27-34.
    [16]潘大文.加筋土技术在变电站边坡防护中的应用[J].电力建设,2001,22(3):36-39.
    [17]魏丽敏,华祖焜,王永和.加筋十地基试验研究[J].长沙铁道学院学报,1999,17(3):59-64.
    [18]吴雄志.加筋十挡土墙的拉筋最大拉力的确定[J].岩土工程学报,1992,14(5):101-106.
    [19]吴雄志,赵乃茹.加筋土强度模型与应力-应变特性研究[J].岩土工程学报,1992(增刊):80-87.
    [20]赵冠卿.柔性筋材加筋士力学的滞后效应及筋材预拉对其强度的影响[J].甘肃水利水电技术,1993,(3):27-30.
    [21]汪沛,肖晓军.加筋路堤的设计及有限元分析[J].成都科技大学学报,1993(增刊):120-123.
    [22]李广信.加筋体应力变形计算的新途径[J].岩土工程学报,1994,57(6):55-63.
    [23]王钊.土工合成材料的蠕变试验[J].岩土工程学报,1994,16(6):96-102.
    [24]石名磊,姚代禄.加筋土支挡结构数值分析研究[J].重庆交通学院学报,1994,13(4):78-84.
    [25]熊正洪.也谈加筋土强度模型与应力-应变特性[J].工程力学,1994,11(1):60-69.
    [26]李广信,陈轮,蔡飞.加筋土体应力变形计算的新途径[J].岩土工程学报,1994,16(3):46-53.
    [27]陈国芳.挡土墙与填土间接触面的大型直剪实验[J].路基工程,1995,58(1):49-55.
    [28]梁波.加筋土模型试验中的拉力破坏研究[J].岩土工程学报,1995,17(2):83-87.
    [29]刘维宁.张师德.昔格达组场地上高大结构型挡土墙的离心加载试验研究[J].岩石力学与工程学报,1995,14(4):362-370.
    [30]李希宁.土工织物加筋土用于砌石坝岸的研究[J].大坝观测与土工测试,1996,20(2):4-7.
    [31]李艳春,蒋志仁.弹簧单元模型用于分析土工格栅受力特性[J].中国公路学报,1996,9(4):38-42.
    [32]徐少曼.提高土工织物加紧效果的新途径[J].岩土工程学报,1997,19(2):49-55.
    [33]孟松兔.加筋土结构(挡墙)有限元分析[J].浙江工业大学学报,1997,25(4):350-355.
    [34]胡再强,陈存礼.加筋十机理与加筋补强地基有限元分析[J1.水利学报,1998(增刊):129-132.
    [35]丁金华,包承纲.软基和吹填土上加筋堤的离心模型试验及有限元分析[J].土木工程学报,1999,32(1):21-25.
    [36]徐少曼,洪吕华.土工织物加筋堤坝软基的非线性分析[J].岩土工程学报,1999,21(4):439-443.
    [37]介玉新,李广信,郑继勤.纤维加筋土计算的新途径[J].工程力学,1999,16(3):81-89.
    [38]介玉新,李广信.加筋十数值计算的等效附加应力法[J].岩土工程学报,1999,21(5):614-616.
    [39]欧阳仲春.现代土工加筋技术[M].北京:大民交通出版社,1991.
    [40]吴梦军,赵明阶.CAT筋带加筋土工程特性试验研究[J].公路,2002,(12):102-105.
    [41]Giroud,J.P.. From geotextile to geosynthetics, a revolution in geotechnical engineering[C]. Proceedings of 3'd International Conference on the Geotextile,1986:1-18.
    [42]杨果林.现代加筋十技术应用研究进展[J].力学与实践,2002,24(1):9-17.
    [43]包承纲,主编.堤防工程土工合成材料应用技术[M].中国水利水电出版社,1999:1-70.
    [44]莫锦耀,俞仲泉.介绍一种新型的土工材料-玻璃纤维土工格栅[J].地基处理,1998,9(1):43.
    [45]Beckham, W.K., and Mills, W.H.. Cotton-fabric reinforced roads[J]. Engineering News-Record, 1935:453-455.
    [46]Barrett, R.J.. Use of Plastic filters in coastal structure[C].Proceedings of 10th International Conference on coastal Engineering, Tokyo,1996.
    [47]陶同康.土工合成材料与堤坝渗流控制[M].中国水利水电出版,1999.
    [48]Terzaghi, K.,Lacroix,Y. Mission dam:An earth and rock fill dam on a highly compressible foundation[J]. Geotechnique,1964,14(1):13-50.
    [49]Koerner, R.M.. Emerging and future development of geosynthetic applications[C]. Journal of Geoteehnical and Geoenvironmental Engineering ASCE,2000,126(4):293-306.
    [50]Rankilor, P.R.. Membranes in Ground Engineering [M], New York:Wiley,1981.
    [51]刘宗耀.土工合成材料在我国的应用[C].第二届全国土工合成材料学术讨论会,沈阳:中国土工合成材料工程协会,1989,157—161.
    [52]王正宏,包承纲,李广信.土工合成材料的加筋作用及其分析计算[C].第三届全国土工合成材料 学术讨论会论文集,江苏仪征:国际上工织物学会中国委员会,1992:254-257.
    [53]Giorud,J.P.,Perfetti,J. Classification of fabrics and measurement of their properties with a view to utilization ingeotechnic[C]. Proceeding of the 1st International Conference on Geotextiles, Paris. France, 1977.
    [54]王钊.国外土工合成材料的应用研究[M].香港:现代知识出版社,2002.
    [55]Fang,H.Y.. Foundation Engineering Handbook [M].2nd edition. U.S.:Engineering Division. Fritz Engineering Laboratory. Lehigh University,1990.
    [56]Giroud, J.P.. The IGS and the geopolymer discipline[C]. The 4th International Conference on the Geotextiles,Geomembranes and the related products,Balkema, Rotterdam:Den hoedt(eds).1992:893-896.
    [57]刘宗耀.30年来土工合成材料在我国的发展[J].海河水利,1998,(1):1-3.
    [58]GB50290-98,土工合成材料应用技术规范[S].北京:中国建筑工业出版社,1998.
    [59]朱诗鳌.土工合成材料的应用[M].北京:北京科学技术出版社,1994.
    [60]Koerner, R.M., and Welsh, J.P.. Construction and Geotechnical Engineering Using Synthetic fabrics[M]. New York:Wiley,1980.
    [61]Rankilor, P.R.. Membranes in Ground Engineering[M]. New York:Wiley,1981.
    [62]周志刚,张起森,郑健龙.土工加筋材料性能研究综述[J].长沙交通学院学报.2001,17(2):16-19.
    [63]李能.土工格栅的力学性能及应用范围[J].云南建材,2000,(1):7-8.
    [64]信春玲,郭奕崇,贾宗杰.塑料土工格栅的主要性能指标及其测试方法[J].塑料,200 1,30(3):56-58.
    [65]熊有言.土工格栅在道路工程中的应用[J].国外公路.1995,15(1):48-51.
    [66]叶书麟,韩杰,叶观宝.地基处理与托换技术[M].北京:中国建筑工业版社,1994,447-476.
    [67]张圣城,张晓冰.土工格栅的特性及其应用实例[J].国外公路,1991,14(1):32-41.
    [68]Wrigley,N.E. Durability and long-term perfbrmance of Tensar polymer grids for soil reinforcement[J]. Materials Science and Technology,1987,3(1):162-169.
    [69]Koerner, R.M.. Design with geosynthetics[M]. New Jersy:Person Education, Inc.,2005.
    [70]Dong, Y.L., Han,J., and Bai, X.H.. A numerical study on stress-strain responses of biaxial geogrids under tension at different directions. In:Proceedings of ASCE Geo-Institute GeoFlorida 2010, Advances in Analysis, Modeling & Design,West Palm Beach, Florida,2010,(199):2551-2560.
    [71]Dong, Y.L., Han, J., and Bai, X.H.. Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures[J]. Geotextiles and Geomembranes,2010,29:83-91.
    [72]Dong, Y.L., Han, J.,and Bai, X.H.. Bearing capacities of geogrid-reinforced sand bases under static loading[C]. Proceedings of the GeoShanghai International Conference,Ground Improvement and Geosynthetics, Shanghai, China:Puppala, A.J., Huang, J., Han, J., Hoyos, L.R. (eds.),2010,(207):275-281.
    [73]中国国土工合成材料工程协会.第五届全国土工合成材料学术会议论文集[C].宜昌2000.11
    [74]陈晔,张起森. Netlon土工网材料有关工程性能试验报告[J].交通科技信息,1994.21(4).
    [75]张嘎,张建民.大,型土与结构接触面循环加载剪切仪的研制及应用[J].岩土工程学报,2003,25(2):149-153.
    [76]周志刚,张起森,郑健龙.土工加筋材料性能研究综述[J].长沙交通学院学报.2001,17(2):38-42.
    [77]Wilson-Fahmy, R. F., Koerner, R. M., and Sansone, L. J.. Experimental behavior of polymeric geogrids in pullout [J]. Journal of Geotechnical Engineering,1994,120(4):661-677.
    [78]Sugimoto, M., Alagiyawanna, A.M.N.,and Kadoguchi, K.. Influence of rigid and flexible face on geogrid pullout tests [J]. Geotextiles and Geomembranes,2001,19:257-277.
    [79]Liu, C.N., Ho, Y.H., and Huang, J.W.. Large scale direct shear tests of soil/PET-yarn geogrid interfaces[J]. Geotextiles and Geomembranes,2009,27:19-30.
    [80]Liu.C.N., Zornberg, J.G., Chen, T.C., et al. Behavior of Geogrid-Sand Interface in Direct Shear Mode[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1863-1871.
    [82]Nakamura, T., Mitachi, T., and Ikeura, I.. Direct sheat testing method as a means for estimating geogrid-sand interface shear-displacement behavior [J]. Soils and Foundations,1999,39(4).
    [82]Nakamura, T., Mitachi, T., and Ikeura, I.. Estimating method for the in-soils deformation behavior of geogrid based on the results of direct shear box test[J]. Soils and Foundtions,2003,43(1):47-57.
    [83]吴景海,陈环,王玲娟等.土工合成材料与十界面作用特性的研究[J].岩土工程学报,2001,23(1):89-93.
    [84]吴景海,下德群,王玲娟等.土工合成材料加筋的试验研究[J].土木工程学报,2002,35(6):93-99.
    [85]马学宁,杨有海.土工格栅与土界面特性的试验研究[J].兰州铁道学院学报(自然科学版),2003,22(4):88-91.
    [86]施有志,马时冬.土工格栅的界面特性试验[J].岩十力学,2003,24(2):296-299.
    [87]杨广庆,李广信,张保俭.土工格栅界面摩擦特性试验研究[J].岩土工程学报,2006,28(8):948-952.
    [88]刘文白,周健.土工格栅与土界面作用特性试验研究[J].岩土力学,2009,30(4):965-970.
    [89]杨广庆和隋传毅.土工格栅与十体界面摩擦特性试验研究[J].石家庄铁道学院学报(自然科学版),2010,23(2):46-52.
    [90]史口达,刘文白.水伟厚等.单,双向塑料土工格栅与不同填料界面作用特性对比试验研究[J].岩土力学,2009.30(8):2237-2244.
    [91]陈榕,栾茂田.赵维等.土工格栅拉拔试验及筋材摩擦受力特性研究[J].岩十力学,2009,30(4):960-964.
    [92]周健,王家全,孔祥利等.砂土颗粒与士工合成材料接触界面细观研究[J].岩土工程学报,2010,32(1):61-67.
    [93]Binquet, J. and Lee, K.L. Bearing capacity tests on reinforced earth slabs [J]. Journal of the Geotechnical Engineering Division,1975,101:1241-1255.
    [94]Binquet, J. and Lee, K.L. Bearing capacity analysis of reinforced earth slabs [J]. Journal of the Geotechnical Engineering Division,1975,101:1257-1276.
    [95]Fragaszy, R.J.,and Lawton, F.. Bearing capacity of reinforced sand subgrade[J]. Journal of Geotechnical Engineering,1983,110(10):1500-1507.
    [96]Omar, M.T., Das, B.M., Yen, S.C., et al.. Ultimate bearing capacity of rectangular foundations on geogrid-reinforced sand [J]. Geotechnical Testing Journal. GTJODJ,1993,16(2):246-252.
    [97]Omar, M.R., Das, B.M., Puri, V.K., et al. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement [J]. Canadian Geotechnical Journal.1993,30:545-549.
    [98]Yetimoglu, T., Wu,J.T.H., and Saglamer,A.. Bearing capacity of rectangular footings on geogrid-reinforced sand[J]. Journal of Geotechnical Engineering,1994,120(12):2083-2099.
    [99]Mandal, J.N., and Manjunath,V.R.. Bearing capacity of strip footing resting on reinforced sand subgrades[J]. Construction and Building Materials,1995,9(1):35-38.
    [100]Shin, E. C. Das, B. M., Lee, E. S. et al. Bearing capacity of strip foundation on geogrid-reinforced sand[J]. Geotechnical and Geological Engineering,2002,20:169-180.
    [101]Patra, C.R., Das, B.M.,and Atalar,C.. Bearing capacity of embedded strip foundation on geogrid-reinforced sand[J]. Geotextiles and Geomembranes,2005,23:454-462.
    [102]Dong, Y.L., Han, J., and Bai, X.H.. Behavior of triaxial geogrid-reinforced bases under static loading[C]. Proceedings of the 9th International Conference on Geosynthetics,Brazil,Geosynthetics for A Challenging World. In:Palmeira, E.M., Vidal, D.M., Sayao, A.S.J.F., Ehrlich, M. (eds.),2010:1547-1550.
    [103]苏谦,蔡英.土工格栅、格室加筋砂垫层大模型试验及抗变形能力分析[J].西南交通大学学报,2001,36(2):176-180.
    [104]Bush, D. I.. Evaluation of the effects of construction activities on the physical properties of polymeric soil reinforcing elements[C]. Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, Fukuoka, Japan,1988:63-68.
    [105]Troost. G. H. and Ploeg, N. A.. Influence of weaving structure and coating on the degree of mechanical damage of reinforcing mats and woven geogrids, caused by different fills, during installation[C]. Proceedings of the 4th International Conference Geotextiles, Geomembranes and Related Products,The Hague, The Netherlands,1990:609-614.
    [106]Rainey, T., and Barksdale. B.. Construction induced reduction in tensile strength of polymer geogrids[C]. Proceedings of the Geosynthetics'93 Conference, Vancouver. Canada,1993:729-742.
    [107]Sandri, D., Martin, J. S., Vann, C. W.,et al.. Installation damage testing of four polyester geogrids in three soil types[C]. Proceedings of the Geosynthetics'93 Conference, Vancouver, Canada,1993:743-755.
    [108]Watts, G. R. A. and Brady, K. C. Geosynthetics:installation damage and the measurement of tensile strength[C]. Proceedings of the 5th International Conference on Geotextiles and Related Products,Singapore,1994:1159-1164.
    [109]Hsieh, C. W., and Wu, J.H. Installation survivability of flexible geogrids in various subgrade materials[J]. Transportation Research Record, No.1772, Washington, DC., Transportation Research Board,2001:190-196.
    [110]Pinho-Lopes, M., Recker, C., Muller-Rochholz, J., et al.. Installation damage and creep of geosynthetics and their combined effect:experimental analysis[C]. Proceedings of the 2nd European Geosynthetics Conference, Bologna, Italy,2000:895-897.
    [111]Pinho-Lopes, M., Recker, C., Lopes, M. L., et al.. Experimental analysis of the combined effect of installation damage and creep of geosynthetics:new results[C]. Proceedings of the 7th International Conference on Geosynthetics, Nice, France,2002:1539-1544.
    [112]Muller-Rochholz, J. and Mannsbart, G.. Installation stress testing:results and interpretation [C]. Proceedings of the 3rd European Geosynthetics Conference, Munich, Germany,2004:593-596.
    [113]Paula, A. M., Pinho-Lopes. M. and Lopes, M. L.. Damage during installation laboratory test: influence of the type of granular material[C]. Proceedings of the 3rd European Geosynthetics Conference. 2004:603-606.
    [114]Hufenus, R., Ruegger, R., Flum, D. et al.. Strength reduction factors due to installation damage of reinforcing geosynthetics [J]. Geotextiles and Geomembranes,2005,23(5):401-424.
    [115]Huang, C.C. and Chiou, S.L.. Investigation of installation damage of some geogrids using laboratory tests [J]. Geosynthetics International,2006,13(1):23-35.
    [116]Huang, C.C.. Laboratory simulation of installation damage of a geogrid[J]. Geosynthetics International,2006,13(3):120-132.
    [117]Huang, C.C. and Wang, Z.H.. Installation damage of geogrids:influence of load intensity [J]. Geosynthetics International,2007,14(2):65-75.
    [118]Koerner, G.R, Koerner, R.M. and Elias V.. Geosynthetics installation damage under two different backfill conditions [J]. Geosynthetics Soil Reinforcement Testing Procedures, ASTM STP 1190, edited by S.J. Cheng.ASTM,1993:163-183.
    [119]Sprague, C.J. and Allen, S.R. Testing installation damage of geosynthetics[J]. GFR,21 (6):24-27.
    [120]Jeon, H.Y., Bouazza, A., Cho, S.D., et al.. Interpretation of installation damage of geogrids by considering environmental conditions[C]. Proceedings of the 4th Asian Regional Conference on Geosynthctics,Shanghai, China,2008:508-512.
    [121]蒋文凯,阮志新,邓卫东等.土工格栅强度损伤特性的试验研究[J].武汉理工大学学报(交通与科学版),2006,30(3):421-424.
    [122]黄博,赵宁,李明逵.经编土工格栅施工损伤现场试验研究[J].岩土工程学报,2008,30(2):284-287.
    [123]白晓红,黄仙枝,张苇.加筋技术在土木工程中的应用[J].太原理工大学学报,2003,34(5):532-534.
    [1]李广信.有关土的相互作用问题[J].岩土工程学报,1996,18(6):111-114.
    [2]龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242.
    [3]Sehlosser,F., and Buhan,P.. Theory and design related to the Performance of reinforced soil walls[C]. Reinforced Soil Conference, Glasgow,1990:1-14.
    [4]徐林荣.筋十界面参数测试方法合理选择研究[J].岩土力学2003,24(3):458-462.
    [5]徐超,叶观宝,董大林.土与土工合成材料界面特性试验方法分析[J1.地基处理,2003,14(3):8-14.
    [6]杨和平,万亮,谭波.土工格栅拉拔试验研究的现状与发展[J].长沙交通学院学报,2006,22(1):36-41.
    [7]Tan, S.A., Chew, S.H.,and Wong, W.K.. Sand-geotextile interface shear strength by torsional ring shear tests [J]. Geotextiles and Geomembranes,1998,16:161-174.
    [8]Giroud, J.P., Swan, R.H., Rieher, P.J., et al..竺慧玲译.使用土工合成材料作填理物顶盖的室内外试验、设计及施工[J].华东水电技术.1991.(1):73-81.
    [9]Izgin,M.. Wasti, Y.. Geomembrane-geotextile interface shear properties as determined by inelined board and direet shear box tests[J]. Geotextiles andGeombrannes,1998,16:.207-219.
    [10]徐光黎,刘丰收,唐辉明.现代加筋十技术理论与工程应用[M].武汉:中国地质大学出版社,2004:39-57.
    [11]Terzaghi, K.. Theoretical soil mechanics[M]. New York:John Wiley and Sons,INC.,1943:7-25.
    [12]黄晓明,朱湘.公路土工合成材料应用原理[M].北京:人民交通出版社,2001.
    [13]Guilloux, A., Schlosser, F., and Long,N.T.. Laboratory study of friction between soil and reinforcements[C] International Conference on Soil Reinforcement, Paris, France,1979:35-40.
    [14]Farrag,K., Griffin, P.. Pull-out testing of geogrids in cohesive soils, geosynthetic soil reinforcement testing procedures[M]. West Conshohocken.1993:76-89.
    [15]Aafarom, M.C., Miura, N., Bergado, D.T.. Soil-geogrid reinforcement interaction by pullout and direct shear tests [J]. Geotechnical Testing Journal,1995,18(2):157-167.
    [16]Alfaro, M.C., Hayashi, S., Miura, N., et al.. Pullout interaction mechanism of geogrid strip reinforcement [J]. Geosynthetics International,1995,2(4):679-698.
    [17]Juran,I., Knochenmus, G., Aear, Y.B., et al. Pullout responseof geotextiles and geogrid[J]. Geosynthetics for Soil Improvement, Geotechnical Special Publication,1998, New York, (18):92-111.
    [18]Shigenori, H., Shahu, J.T., Keiji, W.. Changes in interface stresses during pullout tests on geogrid strip reinforcement [J]. Geotechnical Testing Journal,1999(22):32-38.
    [19]李咸亨,陈舜田,谢宗荣,等.柔性加劲材拉出行为之完全非线性有限元分析[J].岩土工程学报,1999,18(6):10-17.
    [20]Gurng, N.. A theoretical model for anchored geosynthetics in pull-out tests[J]. Geosynthetics International,2000,7(3):269-284.
    [21]Sugimoto, M., Alagiyawanna, A.M.N., Kadoguchi, K.. Influence of rigid and flexible face on geogrid pullout tests[J].Geotextiles and Geomembranes,2001,19:257-277.
    [22]雷胜友,胡定.土与加筋之间摩阻系数问题的新认识[J].石家庄铁道学院学报,1998,11(1):70-74.
    [23]罗书学.填料中的细粒含量对加筋土挡墙的影响[J].勘察科学技术,2000,(6):20-24.
    [24]魏红卫,喻泽红,邹银生.土工合成材料加筋土抗剪作用的试验研究[J].水利学报,2005,36(5):555-562.
    [25]Xu, L.R., Li, L., Fang, L.G.. Analysis on the affection factors of interface friction coefficient between expansive soil and geogrids by pullout tests [C]. Proceedings of the 7th International Conference on Geosynthetics.NiceFrench:Balkema,2002,12(4):1357-1360.
    [26]马学宁,杨有海.土工格栅与土界面特性的试验研究[J].兰州铁道学院学报,2003,22(4):88-90.
    [27]徐林荣,吕大伟,顾绍付等.筋土界面参数的拉拔试验过程划分研究[J].岩土力学,2004,25(5):709-714.
    [28]高正中.土工合成材料的摩擦特性[J].四川水利.199011(4):15-18.
    [29]张茹,何昌荣,谢嘉琼等.土工合成材料加筋土拉拔试验研究[J].四川水力发电,2002,21(1):87-90.
    [30]吴景海,陈环,王玲娟等.土工合成材料与土界面作用特性的研究[J].岩土工程学报,2001,23(1):89-93.
    [31]关秀光,刘文白.土工格栅与土的摩擦特性试验[J].上海地质.2004,(2):13-17.
    [32]Ochiai, H., Otani, J., Hayashic, S., et al.. The pullout Resistance of Geogrids in reinforced soil [J]. Geotextiles and Geombranes,1996,14:19-42.
    [33]Palmeira, E.M., and Milligan, G.M.E.. Scale and other factors affecting the results of pullout tests of grids buried in sand[J]. Geotechnique, London,1989,39(3):511-524.
    [34]杨广庆,杨春玲.土工格栅拉拔试验影响因素分析[J].地下空间,2004,24(3):31-32.
    [35]Ochiai, H. and Sakai, A.. Analytical method for geogrid-reinforced soils structures[C]. Proceedings of the 8th Asian Egional Conference on ASME, Kyoto, Japan,1987:483-486.
    [36]Ochiai, H., Hayashi, S., Otani, J., et al.. Field pullout test of polymer grid in embankmlent[C]. International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, Fukuoka, Japan. 1988:147-151.
    [37]Ochiai,H., Hayashi, S., Ogisako,E., et al.. Analysis of polymer grid-reinforced soils retaining wall[C]. Proceedings of the 6th International Conference on Numerieal Methods in Geomeehanics. Innsbruck, Austria,1988,2:1449-1454.
    [38]Sridharan, A., and Singh, H.R.. Effect of soils parameters on the friction coefficient in reinforced earth [J]. Indian Geotechnical Journal,1988,18(1):323-339.
    [39]Lin, S.S., Chen, M.C., and Cheng, M.Y.. Pullout tests on geogrids buried in lateritic soils[C]. Proceedings of the International Symposium an earth reinforcement. Kyushu University Fukuoka Japan Balkema, Rotterdam,1996:83-87.
    [40]Ochiai. H., Otani, J., Hayashic,S., et al.. The pullout resistance of geogrids in reinforced soils [J]. Geotextiles and Geomembranes,1996,14:19-42.
    [41]Frost, J.D.. and Han, J.. Behavior of Interfaces between fiber-reinforced polymers and sands [J]. Journal of geotechnical and geoenvironmental engineering, ASCE,1999,125(8):633-640.
    [42]Alagiyawanna, A.M.N., Sugimoto, M., Sato, S., et al.. Influence of longitudinal and transverse members on geogrid pullout behavior during deformation [J]. Geotextiles and Geomembranes,2001, 19:483-507.
    [43]Palmera, E.M., Lima Junior. N.R., and Melo, L.G.R.. Interaction between soils and geosynthetic layers in large scale ramp tests [J]. Geosynthetics International,2002,9(2):149-187.
    [44]Palmeira.E.M.. Bearing force mobilization in pullout tests on geogrids[J]. Geotextiles and geomembranes,2004,22(6):481-509.
    [45]ASTM 5321-08, Standard Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method[S]. West Conshohocken, United States: ASTM International,2008.
    [46]GB/T 17635.1-1998,土工布及其有关产品摩擦特性的测定,第一部分:直接剪切试验[S].
    [47]Sarsby, R.W.. The influence of aperture size/particle size on the efficiency of grid reinforcement[C]. Proceedings of the 2nd Candian Symposium on Geotextiles and Geomembranes, Edmonton, Canada, Geotechnical Society of Edmonton,1985:7-12.
    [48]Tensar International Corporation. Product specification of Tensar biaxial geogrid[EB/OL]. http://www.tensarcorp.com/uploadedFiles/SPECTRA_MPDS_BX_10.07.pdf,2007-06-01.
    [49]Tensar International Corporation. Interim product specification Tensar TriAxTM geogrid [EB/OL]. http://www.sitefabric.com/pdf/TX_MPDS_1.09.pdf,2009-01-01.
    [50]Koerner, R.M.. Design with geosynthetics[M]. New Jersy:Person Education, Inc.,2005.
    [1]Han, J., and Gabr, M.A.. Numerical analysis of geosynthetic-reinforced and pile supported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002,128 (1):44-53.
    [2]Huang, J., Han, J., and Oztoprak, S.. Coupled mechanical and hydraulic modeling of geosynthetic-reinforced column-supported embankments [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2009,135 (8):1011-1021.
    [3]ASTM D6637-01, Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method[S]. West Conshohocken, United States:ASTM International,2001.
    [4]Dong, Y.L., Han, J., and Bai, X.H.. A numerical study on stress-strain responses of biaxial geogrids under tension at different directions[C]. Proceedings of ASCE Geo-Institute GeoFlorida 2010, West Palm Beach, Florida, Advances in Analysis, Modeling & Design. Geotechnical Special Publication,2010, (199): 2551-2560.
    [5]Dong, Y.L., Han, J., and Bai, X.H.. Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures[J]. Geotextiles and Geomembranes,2010,29:83-91.
    [6]SGI Testing Services. Laboratory Test Results for Tensar TriAx Geogrids. Report to Tensar International Corporation,2010.
    [7]Koerner, R.M..Design with geosynthetics[M]. New Jersy:Person Education, Inc.,2005.
    [1]Guido, V.A., Knueppel, J.D., and Sweeny, M.A. Plate loading tests on geogrid-reinforced earth slabs [J]. Geosynthetics 87 Conference,1987, New Orleans:216-225.
    [2]Gabr, M.A., Dodson, R., and Collin, J.G. A study of stress distribution in geogrid-reinforced sand [J]. Proceedings of geosynthetics in foundation reinforcement and erosion control systems. ASCE Geotechnical Special Publication,1998, Vol.76:62-76.
    [3]DeMerchant, M.R., Valsangkar, A.J., and Schriver, A.B. Plate load tests on geogrid-reinforced expanded shale lightweight aggregate [J]. Geotextiles and Geomembranes,2002, Vol.20:173-190.
    [4]Gabr, M.A. and Hart, J.H. Elastic modulus of geogrid-reinforced sand using plate load tests [J]. Geotechnical Testing Journal,2000, Vol.23 (2):245-250.
    [5]Alawaji, H.A. Creep and rate of loading effects on geogrid-reinforced sand [J]. Geotechnical and Geological Engineering,2005, Vol.23 (5):583-600.
    [6]Giroud, J.P. and Han, J. Design method for geogrid-reinforced unpaved roads:I. Development of design method [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004, Vol.130 (8):775-786.
    [7]Giroud, J.P. and Han, J. Design method for geogrid-reinforced unpaved roads:II.Calibration and applications [J]. Journal of Geotechnical and Geoenvironmental Engineering,2004, Vol.130 (8):pp.787-797.
    [8]Dong, Y.L., Han, J., and Bai, X.H.. A numerical study on stress-strain responses of biaxial geogrids under tension at different directions [C]. Proceedings of ASCE Geo-Institute GeoFlorida 2010, West Palm Beach, Florida, Advances in Analysis, Modeling & Design. Geotechnical Special Publication,2010, (199): 2551-2560.
    [9]Binquet,J. and Lee, K.L. Bearing capacity tests on reinforced earth slabs [J]. Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers,1975, Vol.101: 1241-1255.
    [10]Guido,V.A.,Chang,D.K., and Sweeney, M.A.. Bearing capacity of shallow foundations reinforced with geogrids and geotextiles [C]. Proceedings of the 2nd Canadian Symposium on Geotextiles and Geomembranes, Edmonton, Alberta,1985:71-77.
    [11]Miyazaki,K., and Hirokawa,E.. Fundamental study of reinforcement of sand layer in model test[C]. Proceedings of International Symposium on Earth Reinforvement, Fukuoka,1992:647-652.
    [12]Omar, M. T., Das, B.M., Puri. V.K., and etc. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement [J]. Canadian Geotechnical Journal,1993, Vol.30:545-549.
    [13]Binquet, J. and Lee, K.L. Bearing capacity analysis of reinforced earth slabs [J]. Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers,1975, Vol.101: 1257-1276.
    [14]Guido, V.A., Chang, D.K., and Sweeney, M.A. Comparison of geogrid and geotextile reinforced slabs [J]. Canadian Geotechnical Journal,1986, Vol.23,435-440.
    [15]Alawaji,H.A.. Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil [J]. Geotextiles and Geomenmbranes,2001,19(2):75-88.
    [16]Harr, M.E. Foundations of Theoretical Soil Mechanics [M]. New York:McGraw-Hill.1966.
    [17]Wayne, M.H., Han, J., and Akins, K.. The design of geosynthetic reinforced foundations[C]. Proceedings of ASCE's 1998 Annual Convention and Exposition, Boston, Massachusetts, ASCE Geotechnical Special Publication,1998, (76):1-18.
    [1]白晓红,黄仙枝,张苇.加筋技术在土木工程中的应用[J].太原理工大学学报,2003,34(5):532-534.
    [2]黄仙枝,岂连生,白晓红.软土地基土工带加筋碎石垫层的应力扩散研究[J].岩石力学与工程学报,2004,23(17):2992-2997.
    [3]雷胜友.现代加筋土理论与技术[M].北京:人民交通出版社,2006.
    [4]Yamanouch T,Gotoh K. A proposed practical formula of bearing capacity for earth work method on soft clay ground using a resinous mesh [R]. Technology Report of Kyushu University,1979,52 (3):201-207.
    [5]Binquet J,Lee K. L. Bearing capacity analysis of reinforced earth slabs [J]. Journal of Geotechnical Engineering, Div ASCE,1975, GT12 (101):1257-1276.
    [6]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [7]王钊,王协群.土工合成材料加筋地基的设计[J].岩土工程学报,2000,22(6):731-733.
    [8]黄仙枝.土工带加筋碎石地基垫层的试验、应用及理论研究[D].太原:太原理工大学,2005.
    [9]董彦莉,白晓红.土工合成材料加筋垫层承载力计算[J].岩土工程学报,2010,32(11):171-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700