建筑垃圾在水泥生产中的再利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑垃圾是在建筑物的建设、维修、拆除过程中产生的固体废弃物。主要包括:废弃混凝土、废弃砖瓦、废弃沥青混凝土以及施工中散落的砂浆和混凝土等。随着建筑业的快速发展,建筑垃圾的总量迅速增加,由于建筑垃圾中的物质再利用耗能大等方面的原因,使得建筑垃圾的应用受到了局限。目前,大部分建筑垃圾的再利用途径为一般性回填和作为建筑物或道路的基础,一方面造成了资源浪费,另一方面还可能造成二次污染。为保护环境、节约资源、发展低碳经济,本文进行了建筑垃圾在水泥生产中的再利用研究。
     利用热处理与机械粉碎相结合的方法,将废弃混凝土中的骨料与基质胶凝组分分离,将不同温度热处理下所得的基质胶凝组分按照不同的比例分别作为混合材,应用于水泥中,并进行了对比。结果表明,热处理与机械粉碎相结合,可以实现废弃混凝土中骨料和基质胶凝组分的有效分离,在加热500℃的范围内,随着加热温度的提高,分离效率提高。通过低温煅烧处理,可用由废弃混凝土中分离出来的基质胶凝组分制备具有水化活性的再生胶凝材料,其水化活性与煅烧温度有关。经500℃热处理的基质胶凝组分掺入量为20%时水泥的3d、28d强度与对比试样的强度相差不大,将经适当处理的建筑垃圾分别以10%、15%、20%、25%的比例与常规原料配制成生料,在1450℃下煅烧0.5h烧成熟料,并与用常规生料烧成的熟料进行了性能对比。XRD和SEM观测结果表明,在普通硅酸盐水泥熟料的常规煅烧温度下,以建筑垃圾作原料组分煅烧的水泥熟料,水泥熟料与对比试样的矿物组成相同,熟料中的主要矿物形貌清晰、晶体发育完善;试样3d、28d水化产物的微观结构也与对比试样基本相同。各组配料方案所得熟料的f-CaO含量均在1.5%左右,说明以建筑垃圾为原料组分配制的生料具有较好的易烧性,且水泥熟料的标准稠度需水量与凝结时间正常,安定性良好。当建筑垃圾掺入量为20%时,熟料的28d抗压强度达68.4MPa。
     由于建筑垃圾中的SiO_2存有一定的惰性,选择几种碱性激发剂,通过每种激发剂的用量及激发剂效果的不同,找出能提高SiO_2的活性的最优方案。结果表明,各种试样熟料中的f-CaO的含量较低,易烧性较好;熟料的f-CaO的含量随着加入的激发剂量的增多呈减少趋势;随着激发剂的碱性的降低呈增多的趋势。烧成的水泥熟料中矿物清晰,矿物形成质量及力学性能与的激发剂的掺入量及激发剂的碱性强度呈正比。掺入2%NaOH时,试样的矿物形成情况最佳,力学强度最高。
Construction waste was generated in the process of building construction、maintenance、demolition, most of that was the solid waste. It included concrete、abandoned brick、asphalt concrete and construction waste scattered mortar and concrete and so on. With the rapid development of the construction industry, the total amount of construction waste increased rapidly, As in recycling construction consuming large energy, it has been limited tin he application of construction waste. Most of the re-used construction waste for general backfill, as the basis for building or road. It occupies land and may cause secondary pollution. In this paper, using concrete, construction waste burning cement clinker as raw materials for the applications reuse construction waste.
     Separating the waste concrete aggregate from matrix bonding used the methods of heat treatment and mechanical. Obtained substrate heated treatment under different temperature as mixed materials according to different ratio of bonding component, and used in cement. The results show that, The combination of heat and mechanical force can be separated the waste concrete aggregate and matrix bonding component effectively. In the context of 500℃, the higher the heating temperature, the separation efficiency. Waste concrete was separated from the matrix composition can prepare the binding materials with hydration activity. The hydration activity related the burning temperature. When heated to 500℃, The results show that, substrate bonding component was 20 percents, the intensity of the samples’3d、28d near the comparison sample. Hydrated minerals formed well observed by XRD and SEM.
     Burning cement clinker used construction waste as raw materials, prepared raw materials with construction waste that will be properly handled in the proportion of 10%, 15%, 20%, 25% , fired clinker at 1450℃. In the conventional burning temperature, cement clinker was burned with the components of construction waste as raw materials. The mineral composition of cement clinker the same as ordinary Portland cement observed under XRD and SEM. the appearance of major minerals in the clinker is clear and develop well. The product was observed hydration 3 and 28 days under XRD and SEM. Mineral’s formation and morphology was basically the same with ordinary Portland cement. The content of f-CaO each group clinker was less than 1.5%. The raw material prepared construction waste as raw material components has good burnability. The grade of strength can reach the standards of ordinary Portland cement. When the incorporation of construction waste was 20%, the compressive strength of hydration 28 days was 68.4Mpa.
     The application of activator in the process of burning cement clinker used construction waste as raw material. Because there was some inert of SiO_2 in construction waste. Choose some of the activating agent, find the optimal solution that can increase the activity of SiO_2, by the amount of each activator and the effect of different activators. The results show that, the levels of f-CaO was lower in Clinker, the burnabilitywas well. The content of f-CaO showed a decreasing trend as the dose of activator increased, and showed a growing trend with the alkaline of activator was lower. The minerals were clear in cement clinker. The quality of mineral and mechanical properties was proportional to the amount of activator and the alkaline intensity of activator. The compressive strength is highest when the activator was NaOH and the adding ratio is 2%. And the formation of mineral was best when observed By SEM、XRD、EDS.
引文
[1].梁修勇.建筑垃圾的回收利用.安徽科技[J]. 2007(4):49
    [2].杜婷,李惠强,覃亚伟.再生混凝土未来发展的探讨[J].混凝土. 2002,12(4):49
    [3].毋雪梅.粉粒建筑垃圾在水泥混凝土中的应用研究[C].郑州大学硕士学位论文. 2004,5:1-59
    [4].王远发.建筑垃圾的处置与利用[J].工程建筑. 2009,(7):41-42
    [5].王莉莉.建筑废料再生混凝土的试验研究[C].西北工业大学硕士学位论文,2004,3:1-65
    [6].赵鸣,吴广芬.不同建筑垃圾作水泥混合材的试验研究[J].烟台大学学报(自然科学与工程版). 2008,21(2):153-156
    [7].陶珍东.废弃混凝土再利用的研究进展[J].中国粉体技术,2005,(1):23-27
    [8].邢峰,冯乃谦,丁建彤.再生骨料混凝土[J].混凝土与水泥制品,1999, (2):10-13
    [9].高小建,杨英姿,邓红卫.掺大量混合材水泥组分优化与性能研究[J].青岛理工大学学报,2009,30(4):65-69
    [10].王秀琴,吴嘎,刘世红.旧水泥混凝土再生集料配制的稳定粒料的承重比[J].工程技术,2006,(27):102
    [11].Nik.D.Oikonomou. Recycled concrete aggregates[J]. Cement & Concrete & Composites, 2005,(27):315-318
    [12].Rendek E ,Ducom G, Germain P1 Carbon dioxide sequestration in municipal solid waste incinerator (MSWI)bottom ash. Journal of Hazardous Materials,2006,128(1):73-79.
    [13].肖开涛.再生混凝土的性能及其改性研究[C].武汉理工大学硕士学位论文.2004,5:1-71
    [14].张亚梅,秦鸿根,孙伟.再生混凝土配合比设计初探[J].混凝土与水泥制品. 2002,2(1):7-9
    [15].Thomas G, Goonan. Recycled Aggregates-Profitable Resource Conservation[J].Science for a changing world,2002,(2)
    [16].Rohi M, Salem, Edwin G, Burdette N. Mike Jackson, Inter relationship of Physical Properties of Concrete Made with Recycled Aggregates[J].Submission Date.July,2001,25.
    [17].曹文聪,杨树森.普通硅酸盐工艺学[M].武汉:武汉工业大学出版社. 1996,8:1-76
    [18].Guntran Zanker. Recycled materials in concrete construction fields of application, development tendencies and quality assurance[J].Betonwerk.Fertigteil Fechnik, 1999,(4):50-55
    [19].T.D.Hansen, H.Narud. Strength of recycled concrete made from crushed concrete coarse aggregate[J]. ACI Coner, 1983,(5):79-83
    [20].Simon. National research projects on recycling in highway construction[J]. Public Roads, 2000,64(1):90-96
    [21].Holtz, Katherine. Use of recycled material in highway construction[J]. Public Roads, 2000,64(1):57-64
    [22].李清海,孙蓓.国内外建筑垃圾再生利用的研究动态及发展趋势[J].经验交流,2009,(4):119-122
    [23].罗蓉,冯光乐.再生水泥混凝土研究综述[J].中外公路,2003,23(2):83-86
    [24].阿部道彦.建筑副产品的有效利用[J].土木施工(日),1995,36(13):20-23
    [25].C S Poon, Ann T W, Yu L N. Ng. On-site of construction and demolition waste in Hong Kong[J].Conservation and Recycling.2001(32),157-172.
    [26].李湘洲.建筑垃圾的资源化再利用商榷[J].建筑技术,2003,34(1):52-53
    [27].王超群.水泥回转窑处理工业(生活)垃圾技术研究[J].中国水泥,2002,(7):42-44
    [28].尹健.再生骨料混凝土高强高性能化途径及其性能研究[C].中南大学硕士学位论文,2007,5:1-73
    [29].俞淑芳.建筑垃圾的综合利用[J].国外建材科技,2005,26(2):37-39转49
    [30].马保国,郝先成,蹇守卫.建筑垃圾中细粉料的活性研究[J].新型建材与施工技术,2006,(4):9-12
    [31].李寿德.建筑垃圾生产烧结建材制品的可行性[J].砖瓦,2005,(12):36-38
    [32].常钧.无机非金属材料工艺与性能测试[M].北京:化学化工出版社,2007,7:22-76
    [33].马彦飞,徐晓勇.配合比设计对再生混凝土劈裂抗拉强度的影响[J].江苏建材,2009,(1):21-23转34
    [34].王娟.再生混凝土力学性能和抗冻耐久性试验研究[C].郑州大学硕士学位论文,2005,5:1-50
    [35].王江,薛燕飞,周辉.再生混凝土抗压强度研究[J].混凝土,2006(7):47-49
    [36].彭小芹,黄滔,王开宇.再生混凝土配合比设计优化_嵌挤骨架密实法[J].土木建筑与工程,2009,31(3):124-129
    [37].谢丹.生态水泥生产的关键技术、设备及其系统研究[C].武汉理工大学硕士学位论文,2004,3:1-73
    [38].黄宗益,李兴华.日本对建筑工程副产物和建筑垃圾的处理.2002(4):24-25.
    [39].卢星明,唐圣钧,郭平.深圳市建筑垃圾处置对策研究[J].四川建材,2006(4):81-82..
    [40].唐家富,张志强.上海市建筑垃圾处置与管理的现状与发展[J].东方科技论坛,2006 (12):25-29.
    [41].王玉庆.都市环境与可持续发展.环境保护.2001(6):4-5.
    [42].邯郸市建筑垃圾管理处.全国地级市城市建筑垃圾管理研讨会论文汇编[C]. 2007:10-18.
    [43].王罗春,李新学,赵由才.旧建筑物拆除垃圾资源化研究现状[J].环境卫生工程,2008(3):26-31.
    [44].陈宏缝.建筑垃圾的资源化管理[J].建材与装饰,2008(2):176-178.
    [45].孟姗姗,陶有忠,陶珍东.废弃混凝土中骨料和胶凝组分的分离研究[J].建材技术与应用,2005(6):1-2,6-7.
    [46].Amnon Katz. Properties of concrete made with recycled aggregate from partically hydrated old concrete[J].Cement and Concrete Research,2003,33(5): 703-711.
    [47] . J.zh.Xiao and Gert Konig. Study on concrete at high temperature in China-an overview[J].Fire Safety Journal,2004, 89-103
    [48].水中和,玄东兴,曹蓓蓓.热-机械力分离制备高品质再生骨料的研究[J].混凝土,2006(12):206.
    [49].AMNON Katz. Properties of concrete made with recycled aggregate from partially hydrated old concrete [J]. Cem Concr Res,2003,33(5):703-711.
    [50].俞淑芳.建筑垃圾的综合利用[J].国外建材科技,2005.(2)
    [51].何永佳.水泥基固体废弃物的再生资源化研究[D].武汉:武汉理工大学. 2006.
    [52].KURD O WSKI W, DUSZAK S,TRYBALSKA B. Belite produced by means of low-temperature synthesis[J].Cem Concr Res,1997,27(1):51-62.
    [53].李俊峰,时丽.我国城市垃圾管理基本思路.宏观经济研究,2000(4):39-40.
    [54].万惠文,水中和等.再生混凝土的环境评价[J],武汉理工大学学报,2003,25(4):17-25.
    [55].唐明述.关于混凝土发展方向的几点认识[J].中国工程科学,2002(1).
    [56].杨子江.建筑垃圾对城市环境的影响及解决途径.城市问题,2003(4):60-63.
    [57].陶有生.建筑垃圾及其利用的探讨.新型建筑材料,2006(8):68-69.
    [58].周笑绿.循环经济与中国建筑垃圾管理.建筑经济,2005,6.
    [59].李巨文,常洪信.建筑垃圾的循环再生利用[J].建筑技术,2002.
    [60].安居,李健,刘小明.交通瓶颈对区域土地利用的制约研究[J].山西建筑,2007,33(14):15-16
    [61].杨德志,张雄.建筑固体废弃物资源化战略研究.中国建材,2006,1
    [62].孟姗姗,陶珍东,吴波.废弃混凝土中基质胶凝组分做原料煅烧水泥熟料的研究[J].水泥工程,2005(1):1-5.
    [63].陈明芳,任祥泰.晶种对水泥生料易烧性影响的研究[J ] .中国建材科技,1995,4 (6):13-15.
    [64].胡曙光,何永佳.利用废弃混凝土制备再生胶凝材料[J].硅酸盐学报,2007(5)35:593-599.
    [65].黎锦清,朱教群.采用低品位石灰石煅烧水泥熟料的研究[J].国外建材科技,2008(6)29:60-62.
    [66].刘宝举,梁慧,杨元霞.碱对水泥-粉煤灰体系中粉煤灰活性的激发[J].铁道科学与工程学报,2009,10(5)6:51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700