用户名: 密码: 验证码:
大庆长垣密井网开发区储层地震预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕大庆长垣密井网开发区地质需求,在不同测井资料环境校正、归一化校正、曲线重构及地震岩石物理分析的基础上,研究地震属性分析技术定性预测井间厚层砂体分布特征,研究密井网宽带约束地震反演技术预测井间薄层砂体的横向变化,提高了储层预测精度,为老油田精细油藏描述研究提供了新思路,研究成果在优化喇嘛甸油田喇5-平221井水平井轨迹设计中得到应用,使该井砂体钻遇率达到94.6%。
     1、研究了以双标准层趋势面为主的测井曲线校正方法,消除了测井环境和测井仪器引起的随机误差和系统误差,为岩石物理分析和井震匹配研究提供了保障。
     2、应用岩石物理分析Greenberg-Castagna横波预测模型建立了陆相中孔砂泥岩横波预测方法,实现了喇嘛甸油田横波预测,通过2口井验证实测横波与预测横波相关系数达0.93以上,为叠前地震属性分析及弹性地震反演工作奠定了基础。
     3、分别建立了油层、油层组及小层在不同岩性、孔隙度和含油饱和度条件下的地震岩石弹性参数变化函数关系,分析了波阻抗变化率与含油饱和度之间变化规律:在含油饱和度为0~50%时,波阻抗与泊松比交会图及纵波与横波交会图上波阻抗、泊松比、纵波的变化率增大明显,而当饱和度在50%~80%时,波阻抗、泊松比、纵波的变化率变化平缓。
     4、研究区在不同含油饱和度条件下,油层组之间合成记录相应发生比较明显的变化。萨Ⅱ及下部油层组,随着含油饱和度增大,振幅能量逐渐增强,相位略向下移;萨Ⅱ以上油层组,随着含油饱和度逐渐增大,振幅能量变化不明显。
     5、基于地震属性分析的模糊神经网络技术,预测厚层砂体的横向变化,完善了沉积微相带图,提高了对河道砂体类型的认识程度。
     6、在曲线重构、地震数据加密采样、空变子波体等技术研究基础上,采用序贯高斯配置协模拟和模拟退火宽带约束反演等方法,实现了密井网条件下高分辨率地震反演及井间小层砂体预测,20口后验井验证砂岩预测符合率达到90%。
     7、研究成果在喇嘛甸油田优化喇5-平221井水平井轨迹方案中发挥了重要作用,开发地震成为长垣油田水平井设计中的一项重要技术。
In this paper, focusing on geological requirements of dense wells of Daqing Changyuan Oilfield development area, on the bases of different log information correction, curve reconfiguration and seismic petrophysical analysis, research seismic attribute analysis technique to predict characteristics of thick bed sand body of crosswells, research the horizontal change of cross-well thin sands with dense wells broadband constrained seismic inversion. This technique improve reservoir forecast accuracy, and provide new thinking for maturing field in fine description of reservoir. The research effort has been applied to the optimization of La5-Ping221 horizontal well design in Lamadian Oilfield, in the case of wells drilled sandbody 94.6%.
     1 Studied by log correction give priority to double standard trend surface layer, removed the logging environment and logging device caused by random errors and system errors. It provided safegrard for petrophysical analysis seismic and make well match seismic.
     2 S-wave prediction means of continental facies mid-porosity sand/mudstone has been established by the application of petrophysical analysis of Greenberg-Castagna S-wave prediction model, achieving a S-wave prediction of Lamadian Oilfield. By the two wells to verify the measured S-wave and predicted S-wave correlation coefficient was more than 0.95, which laid the foundation for the pre-stack seismic attribute analysis and elastic inversion work.
     3 Seismic rock elastic parameters functional relationship which are in different lithology, porosity and oil saturation condition of oil layer, oil layer group and member, has established , respectively. And analysed the change between acoustic impedance and oil saturation.The results show that acoustic impedance, Poisson’s ratio and the rate of P-wave increased significantly, based on crossplot of the acoustic impedance vs Poisson’s ratio, crossplot of P-wave vs S-wave, when oil saturation increased from 0% to 50%, and when oil saturation between 50%~80%, acoustic impedance, Poisson’s ratio, and the rate of P-wave are in smooth.
     4 The study area in different oil saturation conditions, the synthetic seismogram of the oil layer group took place obvious changes. To SaⅡand the lower reservoir, the energy of amplitude gradually increased with the oil saturation increases, and phase slightly to the downward, above the oil layer group SaⅡ, with the increasing oil saturation, the energy of amplitude of did not change obviously.
     5 Owing to Fuzzy Neural Network technology of seismic attribute analysis, forecasted the horizontal change of thick bed sands, consummated deposition microfacies belt figure, having improved recognition of types of the channel sand body.
     6 Based on accoustic travel time curve reconstruction, infill resampling and the space variant wavelet, with sequence Gauss allocation common simulation and simulated annealing broadband constrained inversion means and so on, achieved a dense wells under the conditions of high resolution seismic inversion and layer sand body forecast among wells, verified coincidence rate sand layer of 20 posterior-wells had been reached 90%.
     7 Results of research in the field to optimize Lamadian Oilfield La 5-Ping 221 horizontal track arrangement, and Reservoir Geophysics becomes an important technique in the design of horizontal wells of Changyuan Oilfield.
引文
[1]陆基孟,地震勘探原理.中国石油大学出版社.2001.
    [2]孙家振等.地震地质综合解释教程.中国地质大学出版社.2002.
    [3] Gassmann, F., ,Uber di elastizitat poroser medien: Vier. der Natur Gesellschaft, 1951,96, 1-23.
    [4] Biot M.A. Theory of propagation of elastic waves in a fluid saturated porous solid.I.low frequency range. Journal of Acoustic Society of America, 1956, 28(2): 168-178.
    [5] Xu S, White R E. Pore-elasticity of elastic rock:A unified model,36th Annual Logging Symposium, Paris,France, 1995:1-14.
    [6] Xu S, White R E. A new velocity model for clay-sand mixtures.Geophysical Prospecting, 1995, 43(1): 687-717.
    [7] Mukerji T, Mavko G. Pore fluid effects on seismic velocity inanisotropic rock. Geophysics, 1994, 59(2): 233-244.
    [8] Hornby B E, Schwartz L M, Hudson J A. Anisotropiceffective-medium modeling of the elastic properties of shales.Geophysics, 1994, 59(10): 1570-1583.
    [9] Han D.H., Effects of porosity and clay content on a aousti properties of sandstones and unconsolidated sediments. Ph.D. thesis, 1986, Stanford University.
    [10] Mrion D., Acoustical, mechanical and transport properties of sediments and granular materials. Ph.D.thesis, 1990, Stanford University.
    [11] Yin H., Acoustic velocity and attenuation of rocks: Isotropy, intrinsic anisotropy, and stress-induced anisotropy. Ph.D. thesis, 1992, Stanford University.
    [12] Galmudi D., Pressure solution, porosity reduction, and transport in rocks. Ph.D. thesis, 1998, Stanford University.
    [13] Greenburg M. L., and Castagna J.P., Shear-wave velocity estimation in porous rocks, Theoretical formulation, preliminary verification and applications. Geophysics Prospect, 40:195-205.
    [14] Castagna J.P., Batzle M. L., and Eastwood R. L.. Relationships between compressional -wave and shear-wave velocities in clastic silicate rocks. Geophysics, 1985, 50: 71-581.
    [15] Liu Y.. Acoustic properties of reservoir fluids. Ph.D. thesis, 1998, Stanford University.
    [16] Per Avseth, Arild J?rstad, Aart-Jan van Wijngaarden, Gary Mavko. Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones. The Leading Edge, 2009, 28(1): 98-108.
    [17] Nader C. Dutta ,Jalal Khazanehdari, Estimation of formation fluid pressure using high-resolution velocity from inversion of seismic data and a rock physics model based on compaction and burial diagenesis of shales, The Leading Edge, 2006, 25(12):1528-1539.
    [18]史謌,杨东全,杨慧珠.岩石的孔隙弹性研究.北京大学学报(自然科学版),2000,36(2): 214-220.
    [19]史謌,杨东全.岩石波速和孔隙度、泥质含量之间的关系研究.北京大学学报(自然科学版), 2001,37(3): 379-384.
    [20]施行觉,吴永刚.储层条件下波速的变化规律及其影响因素的实验研究.地球物理学报, 1998,41(2): 234-241.
    [21] Colin Sayers,Satinder Chopra. Introduction to this special section—Rock physics, The Leading Edge, 2009, 28(1): 15-16.
    [22] Teng L., Seismic and rock-physics characterization of fractured reservoirs. Ph.D. thesis, 1998, Stanford University.
    [23] Diana Sava, Gary Mavko. Rock physics-based integration of geologic and geophysical data for fracture characterization. The Leading Edge, 2007, 26(9): 1140-1146.
    [24] J. E. Calderon, J. Castagna. Porosity and lithologic estimation using rock physics and multi-attribute transforms in Balcon Field, Colombia. The Leading Edge, 2007, 26(2): 142-150.
    [25]赵政璋,赵贤正,王英民等.储层地震预测理论与实践[M]。科学出版社, 2005.
    [26] Taner, M.T., Koehler, F., Sheriff, R. E. Complex seismic trace analysis,Geophysics, 1979, 44(1):1041-1063.
    [27] B. Russell, D. Hampson, J. Schuelke, and J. Quirein, Multiattribute seismicanalysis, The Leading Edge, 1997, Vol. 16, No. 10: 1439-1443.
    [28] Quincy Chen and Steve Sideney, Seismic attribute technology for reservoirforecasting and monitoring [J], The Leading Edge 1997, Vol. 16, No. 5: 445-456.
    [29] Hirsche, K., Porter- Hirsche, Mewhort, L. et al, The use and abuse of geostatistics[J], TheLeading Edge, 1997(16):253-258.
    [30] Kailomey, C.T., Potential risks when using seismic attributes as predictorsof reservoir properties [J], The Leading Edge, 1997,16(3):247-251.
    [31]何碧竹,利用多元地震属性预测储层信息[J].石油地球物理勘探,2003,38(3):
    [32]黄昌武,摘自:《国外石油动态》,2005,9-10,22-23.资料来源:《AAPG EXPLORER》, 2005, 1:22-23。
    [33]张建宁,于建国,地震属性应用中的不确定性分析[J].石油物探, 2006, 45(4): 373-379.
    [34]曹辉,关于地震属性应用的几点认识[J].勘探地球物理进展, 2002,25(5):18-22.
    [35] Basin, Kazakhstan, J. Thorseth, G. Riley , E.Atalik and E. Us : 3D seismic interpretation using the coherence cube: An example from the south EmbraPrecaspian[J]. The Leading Edge 1997, Vol. 16, No. 60: 907-909.
    [36] Wang Yong-gang, Zhang Jun-hua, Zhao Yong, A study on fault structure using coherence body technology, GEOTECTONICA et METALLOGENIA, 2000,24(1):49-55.
    [37]刘企英,利用地震信息进行油气预测[M].北京:石油工业出版社, 1994.
    [38] Juliana M. TEBO, Use of volume-based three-dimensional seismic attributeanalysis to characterize physical property distribution: A case study to delineatereservoir heterogeneity at the Appleton Field, SW Alabama [M]. March, 2003.
    [39] Rasheed Abdelkareem Jaradat, Prediction of reservoir properties of the N-sand, Vermilion Block 50, Gulf of Mexico, from multivariate seismic attributes [M]. March,2004.
    [40] Hart B.S., Balch R.S., Approaches to defining reservoir physical properties from 3-D seismic attributes with limited well control: An example from the Jurassic Smackover Formation, Alabama [J], Geophysics, 2000, 65(2):368-376.
    [41] Bruce Hart, Marc-Andre Chen, Understanding seismic attribute through forward modeling [J], The Leading Edge, 2004, 20(4):834-841.
    [42] Brown, R.A., Understanding seismic attributes [J], Geophysics, 2001,66(1):46-49.
    [43] Schuelke, J.S., Quirein, J.A., Validation: A technique for selecting seismic attributes and verifying results [J], 68th Ann. Internat. Mtg., Soc.Expl.Geophys., Expanded Abstracts, 1998, 36-939.
    [44]仝兆岐主编.储层地震技术新进展[M].山东东营市:石油大学出版社, 2004.
    [45]徐伯勋等.地震勘探信息技术提取、分析和预测.地质出版社.2001.
    [46]韩文功等.地震技术新进展.中国石油大学出版社.2006.
    [47] Knott C G, On the reflection and refraction of elastic wave with seismological application.Philosophical Magazine, 1899, 48: 64-97.
    [48]何樵登.地震波理论.北京:地质出版社.1988.
    [49] Muskat M and Merest M W; Reflection and transmission coefficients for plane waves in elastic media ;Geophysics; 1940.
    [50] Koefoed, 1955, A simplification of the Zoeppritz equations, Geophysics, 3: 381-387.
    [51] Bortfeld R; Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves, Geophysical Prospecting; 1961.
    [52] Tooley M.D. et.al., The pulmonary hypoperfusion syndrome. Preliminary Report.1965.
    [53] Hilterman, F. J., 1975, Amplitudes of seismic waves - A quick look: Geophysics, Soc. of Expl. Geophys., 40, 745-762.
    [54] Richards P G and Frasier C W; Scattering of elastic waves from depth-dependent inhomogeneities;Geophysics; 1976.
    [55] Aki K,Richards P G. Quantitative seismology theory and methods.W H Freeman and Company. America,1980.
    [56] Ostrander W J.Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence .Geophysics, 1982
    [57] Ostrander W. J., Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, 1984, 49(10): 1637~1648.
    [58] SHUEY R T, A simplification of the zoeppritz equations. Geophysics, 1985, 3.
    [59] Fred J. Hilterman著,孙夕平译.地震振幅解释.北京:石油工业出版社.2006.
    [60]郑晓东.Zoeppritz方程的近似及其应用.石油地球物理勘探,1991,26(2):129-144.
    [61]杨绍国,周熙襄.Zoeppritz方程的级数表达式及近似〔J〕.石油地球物理勘探,1994,29(4):399~412
    [62] Ursin and Dahl, 1992. B. Ursin and T. Dahl, Seismic reflection amplitudes. Geophys. Prospect. 40 (1992), pp. 483–512.
    [63] Verm R and Hilterman F; Lithology color - coded seismic sections: The calibration of AVO crossplot ting to rock properties [M];The Leading Edge; 1995
    [64] Goodway B,Chen T,Downton J.Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters, Geophysics, 1997,62(6):1683-1695.
    [65] Xu Y,Bancroft J C. Joint AVO analysis of PP and PS data.Crewes Research Reports,1997:1-44.
    [66]Gray.True-amplitude seismic migration:A comparison of three approaches [J]. Geophysics, 1997, 62:629-38.
    [67] Jin, S., 1999, Characterizing reservoir by using jointly P- and S-wave AVO analysis: 69th Ann.Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 687-690.
    [68] Jin, S., Cambois G., Vuillermoz, C., 2000, Shear wave velocity and density estimations fromPS-wave AVO analysis: Application to an OBS dataset from the North Sea: Geophysics, 65, 1446-1454.
    [69] Larsen, J.A., Margrave, G.F., and Lu, H., 1999, AVO analysis by simultaneous P-P and P-Sweighted stacking applied to 3C-3D seismic data: 69th Ann. Internat. Mtg.,Soc. Expl.Geophys., Expanded Abstracts, 721-723.
    [70] Kelly, M.C. and Ford, D., 2000a, The interpretation of P-P AVO cross-plot: 69th Ann. Internat.Mtg., Soc. Expl. Geophys., Expanded Abstracts, 214-217.
    [71] Kelly, M.C. and Ford, D., 2000b, P-S AVO attributes and cross-plotting: 69th Ann. Internat.Mtg., Soc. Expl. Geophys., Expanded Abstracts, 218-221.
    [72] Kelly, M.C., Skidmore, C.M., and Cotton, R., 2000c, P-P and P-S angle stack inversion: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 222-223.
    [73]杨绍国,周熙襄. AVO属性叠加剖面的正演模型及应用.石油地球物理勘探, 1995, 30(6): 772-774.
    [74]杨慧珠,殷可.用切变模量近似P-SV波反射系数及在多波AVO反演中的意义.石油地球物理勘探, 1996, 31(3):374-381.
    [75]唐建明, AVO纵、横波反演.物探化探计算技术. 2002, 24(1):27-30.
    [76]孙鹏远,孙建国,卢秀丽.P-SV波AVO方法研究进展.《地球物理学进展》. 2003a , 18(4):602-607.
    [77]孙鹏远,孙建国,卢秀丽.P-SV波AVO截距-梯度理论.《CPS/SEG北京2003b国际地球物理年会》.
    [78]孙鹏远,孙建国,卢秀丽. PP波AVO多属性交会图分析.《天然气工业》.2004, 24(2):44-47.
    [79] Smith, G. C., and Gidlow, P. M., Weighted stacking for rock property estimation and detection of gas: Geophys. Prosp., 1987,35, 993-1014.
    [80] Ferguson, R.J., P-S Seismic Inversion: Modeling, Processing, and Field Examples. 1996, M.Sc.Thesis.
    [81] Goodway, B., Chen, T., and Downton, J., Improved AVO fluid detection and lithologydiscrimination using Lame petrophysical parameters,“λ”,“μ”and“λfluid stack”, from P andS inversions. CSEG Expanded Abstracts, 1997, 148-151.
    [82] Ursin, B. and Ekren, B. O., Robust AVO analysis: Geophysics, Soc. of Expl. Geophys., 1995, 60,317-326.
    [83] Castagna, J. P., and Smith, C. W., Comparison of AVO indicators: A modeling study: Geophysics, 1994, 59, 1849-1855.
    [84] Foster, D., Smith, S. W., Dey-Sarkar, S. K. and Swan, H. W., A closer look at hydrocarbonindicators, 63rd Ann. Internat. Mtg: Soc. of Expl. Geophys., 1993, 731-733.
    [85] Foster, D. J., Keys, R. G., and Reilly, J. M., Another perspective on AVO crossplotting: The Leading Edge, 1997, 16, 1235-1237.
    [86] Swan, H. W., Properties of direct AVO hydrocarbon indicators, in Backus, M. M., Ed.,Offset-dependent reflectivity - theory and practice of AVO analysis: Soc. of Expl. Geophys., 1993, 78-92.
    [87] Verm, R., and Hilterman, F., Lithology color-coded seismic sections: The calibration of AVO crossplotting to rock properties, The Leading Edge, 1995, 14 , 847-853.
    [88] Nickerson, R. L., Cambois, G. and Weyer, J. P., A successful AVO case study from marginal 3-D land data, 67th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1997, 167-170.
    [89] Nickerson, R. L. and Cambois, G., Interpreter's Corner - AVO attribute analysis on marginal 3-D land data improved target selection in the Sacramento Basin: The Leading Edge, 1998, 17(12), 1672-1677.
    [90] Sams, M., Yet another perspective on AVO crossplotting: The Leading Edge, 1998, 17, 911-917.
    [91] Chopra, S. and Pruden, D., Multiattribute seismic annalysis on AVO-derived parameters.:The Leading Edge, 2003a ,22(10), 998-1002.
    [92] Chopra, S., Alexeev, V. and Xu, Y., 3D AVO crossplotting - An effective visualization technique.: The Leading Edge, 2003b, 22, no. 11, 1078-1089.
    [93] Gretener, P. and Thomsen, L., AVO and Poisson's ratio: The Leading Edge, 2003, 22(1), 70-71.
    [94] Ruger, A. and Tsvankin, I., Using AVO for fracture detection: Analytic basis and practical solutions: The Leading Edge, 1997a, 16, no. 10, 1429-1434.
    [95] Ruger, A., P-wave reflection coefficients for transversely isotropic models with verticaland horizontal axis of symmetry: Geophysics, Soc. of Expl. Geophys., 1997b, 62, 713-722.
    [96] Ruger, A., Variation of P-wave reflectivity with offset and azimuth in anisotropic media: Geophysics, Soc. of Expl. Geophys., 1998, 63, 935-947.
    [97] Ruger, A., 2000, Variation of P-wave reflectivity with offset and azimuth in anisotropic media,Applied seismic anisotropy: theory, background, and field studies, 20: Soc. of Expl. Geophys.,277-289.
    [98] Ruger, A., Analytic insight into shear-wave AVO for fractured reservoirs, Advances in anisotropy: Selected theory, modeling and case studies: Soc. of Expl. Geophys., 2001,159-185.
    [99] Castagna, J., An introduction to this special section: AVO--the next step: The Leading Edge, 2000, 19, no. 11, 1187.
    [100] Downton, J. and Lines, L., High-resolution AVO analysis before NMO, 73rd Ann. Internat. Mtg.: Soc. of Expl. Geophys., 2003a, 219-222.
    [101] Haitao Ren, Gennady Goloshubin and Fred Hilterman. Spectra cross plot [J]. SEG/San Antonio 2007 Annual Meeting, 26: 199-203.
    [102] Jinfeng Ma, Igor B. Morozov. The exact elastic impedance for P-SV wave [J]. SEG/San Antonio 2007 Annual Meeting, 26: 288-292.
    [103] Xin Zhang and Xiaodong Zheng. Thin bed identification based on attribute difference between far and near offset within prestack data: A model study [J]. SEG/San Antonio 2007 Annual Meeting, 26: 293-297.
    [104] Kathryn T. Young,Robert H.Tatham. Lambda-mu-rho inversion as a fluid and lithology discriminator in the Columbus Basin,Offshore Trinidad [J]. SEG/San Antonio 2007 Annual Meeting, 26: 214-218.
    [105] Isabel Varela,Sonja Maultzsch,Xiang-Yang Li and Mark Chapman.Fracture PropertiesInversion fron Azimuthal AVO Using Value Decomposition [J]. SEG/San Antonio 2007 Annual Meeting, 26: 259-263.
    [106]董春梅,张宪国,林承焰.地震沉积学的概念、方法和技术[J].沉积学报,2006, 24(5):698-703.
    [107] Hongliu Zeng and Tucker F. Hentz. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana [J]. AAPG Bulletin, 2004, 88(2):153-174.
    [108] Zeng Hongliu, Henry C Stephen, Riola P John. Strata Slicing: Part II, Real 3-D seismic data [J]. Geophysics, 1998, 63(2):514-522.
    [109]Wolfgang Schlager. The Future of Applied Sedimentary Geology [J]. Journal of Sedimentary Research, 2000, 20(1):2-9.
    [110]Hongliu Zeng and Tucker F, Wood Lesli J. Stratal slicing of Miocene–Pliocene sediments in Vermilion Block 50–Tiger Shoal Area , offshore Louisiana. The Leading Edge, 2001, 20(4): 408-418.
    [111]Hongliu Zeng, Milo M. Backus, Kenneth T. Barrow and Noel Tyler. Facies Mapping from Three-Dimensional seismic data Potential and guidelines from a Tertiary Sandstone-Shale Sequence Model Powerhorn Field, Calhoun County ,Texas. AAPG Bulletin, 1996, 80(1): 16-46.
    [112]Yilmaz, O., 1987, Seismic data processing: Society of Exploration Geophysicists, 526 p.
    [113] Posamentier H W. 3-D Yields Strat Geologic Insights [J]. AAPG Explorer, 2004: 26-27.
    [114] Posamentier H W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings [J]. Journal of Sedimentary Research, 2003, 73 (3): 367-388.
    [115] David Charles Carter. 3-D seismic geomorphology: Insights into fluvial reservoir deposition and performance, Widuri field, Java Sea [J]. AAPG Bulletin, 2003, 87 (6): 909-934.
    [116] Zeng Hongliu and Charles Kerans. Seismic frequency control on carbonate seismic stratigraphy: A case study of the Kingdom Abo sequence, west Texas. AAPG Bulletin, 2003, 87(2):273-293.
    [117] Hongliu Zeng, Robert G. Loucks, and L. Frank Brown Jr. Mapping sediment-dispersal patterns and associated systems tracts in fourth- and fifth-order sequences using seismic sedimentology: Example from Corpus Christi Bay, Texas. AAPG Bulletin, 2007, 91(7): 981–1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700