茶(红茶)与茶(Camellia sinensis)花多酚类物质的分离鉴定及其抗氧化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第1部分茶黄素单体的分离与红茶多酚衍生物质的抑菌、抗氧化活性与机制研究
     多酚类物质的抗氧化作用被认为是茶叶保健抗癌最重要的作用机理。大量生物体内、体外研究和流行病学调查等都证实了绿茶及其多酚类物质—儿茶素具有良好的抗氧化功效。一直以来绿茶及其活性成分在儿茶素的研究备受关注,而红茶在世界茶消费中占80%,所以,近十年来其多酚类衍生物质—茶黄素与茶红素的生物活性也逐渐引起研究学者的重视。本研究采用体外、细胞实验评估红茶中多酚衍生物质—茶色素的抗氧化活性并利用LC-MS与NMR技术从化学结构的角度对其抗氧化机制进行讨论。
     主要研究结果如下:
     1.本研究首先采用固定化酶催化茶多酚氧化,所得产物为茶黄素复合物;其次利用高速逆流色谱(HSCCC)分离茶黄素单体,比较不同溶剂系统与NaHCO_3前处理对其分离效果的影响。试验结果表明:采用溶剂系统乙酸乙酯、正己烷、甲醇和水(3∶1∶1∶6,v/v)与(3∶1∶3∶4,V/V)结合分离具有较佳的分离效果;NaHCO_3前处理明显有助于茶黄素单体的分离;当流动相速度1.2ml/min、仪器转速880r/min时,能达到最好的分离效果;从250mg茶黄素复合物中分离所得57mg 97.7%茶黄素(theaflavin)、26mg 61.2%茶黄素-3'-单没食子酸酯(theaflavin-3'-gallate)、64mg 84.5%茶黄素-3,3'-双没食子酸酯(theaflavin-3,3'-gallate)与33mg of 92.3%茶黄素单食子酸酯(theaflavin-3-gallate and theaflavin-3'-gallate)。
     2.采用微生物实验方法比较了茶黄素复合物和茶多酚对口腔两种主要致病菌变链菌族的S.mutans Ingbritt和S.sobrinus 6715的抑制作用及其对细菌产酸能力的影响。结果表明茶黄素具有较强的抑菌和杀菌能力,与茶多酚相比无显著性差异,且变链菌对两种多酚化合物均未产生耐药性。
     体外模拟红茶中酶促氧化过程制备三类主要多酚氧化产物—茶黄素、茶红素及茶褐素,并对这三类产物的体外清除羟自由基、DPPH自由基能力,及其对HPF-1细胞氧化损伤的保护作用进行评估。结果表明茶黄素在上述体系中显示了最强的抗氧化能力,茶褐素次之,茶红素最弱,且这三类物质均可通过清除细胞内的活性氧保护HPF-1细胞。值得关注的是,对红茶品质具有消极影响的茶褐素却具有接近于茶黄素的活性,因此有必要深入研究红茶中每一种多酚氧化产物的生物活性,对正确评估其在红茶保健作用中的贡献具有重要的意义。
     以EGCG为对照,对茶黄素主要单体茶黄素(TF1)、茶黄素单没食子酸酯(TF2)与茶黄素双没食子酸酯(TF3)的体外清除羟自由基、DPPH自由基能力,及其对HPF-1细胞氧化损伤的保护作用进行研究。结果表明,对羟自由基的清除能力依次为TF3>TF2>TF1>EGCG;对DPPH自由基清除能力依次为TF3>TF2>EGCG>TF1;茶黄素各单体对H_2O_2诱导氧化损伤的HPF-1细胞具有保护作用,且强于EGCG。除了清除细胞内的活性氧外,TF3与TF1还可能通过提高细胞抗氧化体系,保护H_2O_2诱导氧化损伤的HPF-1细胞。TF2对正常HPF-1细胞则表现出最强的增殖作用。
     第2部分
     茶(Camellia sinensis)花中多酚类组成分析及其抗氧化活性与机理研究
     长期以来,人们只是重视茶树芽叶的生产加工,对于具有丰富资源的茶树花朵任其自生自灭,造成资源的大量浪费。已有研究表明茶花含有与茶鲜叶相似的重要生化成分如多酚、咖啡碱,多糖和蛋白质等。本研究对茶花中黄酮类等重要化学成分进行分离和鉴定,对其抗氧化活性进行评估,并利用HPLC与LC-MS技术从化学结构的角度对其抗氧化机制进行阐明。
     1.采用不同的有机溶剂,分步萃取冷冻干燥茶花的70%乙醇提取物与水提物,得到氯仿萃取物、乙酸乙酯萃取物、正丁醇萃取物和萃取后剩余物。采用有机自由基二苯基苦基偕腙肼(DPPH)的分光光度法及其化学发光法,比较各提取物的抗氧化能力。结果表明茶花醇提物比水提物具有更强的清除自由基能力,且醇提物的乙酸乙酯萃取组分(EEA)在所有组分中具有最强的抗氧化活性,同时对茶花的抗氧化能力具有最大的贡献率。通过对各萃取组分的化学成分测定,表明其抗氧化活性与其多酚类物质有关。
     2.通过液质联用分析从茶花乙酸乙酯层中鉴定出3类化合物:a.儿茶素类:儿茶素、表儿茶素、没食子儿茶素、表没食子儿茶素、儿茶素没食子酸酯、表儿茶素没食子酸酯、没食子儿茶素没食子酸酯、表没食子儿茶素没食子酸酯;b.儿茶素衍生物:儿茶素糖苷物与儿茶素二聚体;c.黄酮苷类:山奈酚、毛地黄黄酮与槲皮素单糖苷及双糖苷类物质。经HPLC分离与DPPH测定,确定表没食子儿茶素没食子酸酯与表儿茶素没食子酸酯为茶花中主要抗氧化活性成分,在茶花提取物的抗氧化活性中起到主要的作用。
Part 1 Autioxidant activity and mechanism of phenolic compounds present in black tea
     Tea is one of the most widely consumed beverages in the world. Green tea is more popular in China, Japan, Korea and some African countries, whereas black tea is preferred in India and the Western countries. During the past decade numerous in vitro and in vivo studies have suggested the possible protective effects of green tea and catechins in cancer and cardiovascular disease development. Whereas catechins are the most abundant polyphenols in green tea, the typical pigments in black tea are theaflavins (TF), thearubigins (TR) and theabrownins (TB), which are derived from the oxidation of catechins and their gallates during fermentation stage of black tea processing. Recently, the molecular mechanism and bioactivities of polyphenols in black tea have attracted considerable interest because of its beneficial health properties.
     In this study, oxidized phenolic compounds (TF, TR and TB) present in black tea were obtained from a model oxidation system, using immobile enzyme. The major theaflavins monomers were separated by high-speed countercurrent chromatography (HSCCC). The antioxidant activities of these products were evaluated in Fenton reaction system, 2,2-diphenyl-1- picrylhydrazyl (DPPH) system and H_2O_2-induced oxidative damage system in the HPF-1 cells. Their antioxidant mechanisms were discussed. The main results were showed as followings:
     1. Separation of theaflavins monomers.
     Three theaflavins monomers were separated from the oxidation product of polyphenols by immobilized polyphenol oxidase plate using HSCCC. The effects of solvent systems and NaHCO_3 on the separation were investigated. The result showed that NaHCO_3 was helpful to purify the theaflavins. Separation was performed with a two-phase solvent system composed of ethyl acetate - hexane -methanol-water (3:1: 1: 6, V/V) and (3: 1: 3: 4, V/V) by eluting the lower aqueous phase at 1.2 ml/min at a revolution speed of 880 rpm. 57 mg of 97.7% theaflavin, 26 mg of 61.2% theaflavin-3'-gallate, 64 mg of 84.5% theaflavin-3-3'-gallate and 33 mg of 92.3% theaflavin-3-gallate and theaflavin-3'-gallate complex were obtained from 250 mg of the crude TFs sample.
     2. The antibacterial, and antioxidant function and mechanism of black tea pigments.
     The effects of theaflavins and tea polyphenols on two major oral bacterium, namely S.mutans Ingbritt and S.sobrinus 6715 were investigated. It indicated that the two polyphenols had the potent inhibiting activity. It was no remarkable difference between them. Furthermore, the two bacterium had no medicine-resistant against the two polyphenols.
     In this study, oxidized phenolic compounds (TF, TR and TB) present in black tea were obtained from a model oxidation system, using immobile enzyme. The order of OH·and DPPH scavenging ability of these oxidation products was TF> TB> TR. These oxidized phenolic compounds showed protection against H_2O_2-induced damage in HPF-1 cells and suppressed the accumulation of intracellular reactive oxygen species in H_2O_2-induced damage HPF-1 cells. Interestingly, TB, as a further oxidative product from TF or TR, showed the potent activity followed TF in the above four systems.
     The protective effect of three major black tea polyphenols, namely theaflavin (TF1), theaflavin-3 (3')-gallate (TF2) and theaflavin-3,3'-digallate (TF3) on oxidative damage human fibroblast (HPF-1) cell were investigated by comparing with epigallocatechin gallate (EGCG). The order of OH·and DPPH scavenging ability were TF3 > TF2 > TF1 >EGCG and TF3>TF2>EGCG>TF1 respectively. TF1, TF2, and TF3 showed more effective than EGCG in protection against H_2O_2-induced damage in HPF-1 cells. Pretreated for 2h and eliminated from the cell, TF1 and TF3 still showed protection against H_2O_2-induced damage in HPF-1 cells. TF1, TF2 and TF3 suppressed the accumulation of intracellular reactive oxygen species (ROS) in H_2O_2-induced damage HPF-1 cells. Our results suggest, other than inhibition of ROS, the protective effect of TF1 and TF3 on oxidative damage HPF-1 cell may also be responsible for improvement of normal HPF-1 cell resistive ability toward radical-damage. TF2 may protect against H_2O_2-induced damage in HPF-1 cells, through enhancing HPF-1 cell proliferation.
     Part 2 Analysis of chemical compositons in tea (Camellia sinensis) flowers and their antioxidant mechanism
     While these properties of tea have been extensively studied, the less attention has been given to these properties of tea flower. This is due to the fact that people have been only picking the tender shoots from tea tree to make tea for a long history, but for tea flowers, the majority lets them run their courses. Compared with tea leaves, tea flowers have similar chemical compositions such as polyphenols and caffeine, polysaccharide and protein etc. The aim of the present study was to ascertain the phenolic profile of tea flower extracts, as well as to know the major active components responsible for the antioxidant activity of tea flowers. The antioxidant activity of the extracts was evaluated by DPPH assay. Phenolic compounds were separated using HPLC-DAD, and identified by means of LC-MS-ion trap.
     1. Evaluation of the antioxidant compounds of extracts from tea (Camellia sinensis) flower.
     The antioxidant activity of tea flower was investigated by the DPPH free radical-scavenging assay and the hydroxyl radical-induced luminol chemiluminescence assy. The tea flower was extracted with ethanol (EE) and separated by the order of chloroform, ethyl acetate (EEA), and n-butanol. The result pointed tea flower ethyl acetate extract (EEA) had the strongest antioxidant activity and the most contribution to the antioxidant activity of tea flower. The stronger scavenging abilities to free radicals were shown by EE and EEA, which might be due to the content of polyphenols contained. However, almost non free radical-scavenging activity was observed while the tea flower was extracted with water and its fractions of several organic solvents.
     2. Liquid chromatographic-mass spectrometric analysis of phenolics in tea flower extract.
     High performance liquid chromatography (HPLC) combined with diode array (DAD) and electrospray (ESI)-ion trap-MS detection was used to separate and identify the compounds present in EEA. Eight catechins, namely, catechin, epicatechin (EC), gallocatechin, epigallocatechin, gallocatechin gallate, epigallocatechin gallate (EGCG), catechin gallate and epicatechin gallate (ECG), catechins derivatives, namely, EC-3'-di- rhamnoside and catechins dimer, and flavonol glycosides, namely, quercetin, luteolin, kaempferide and kaempferol mono-, diglycosides (glucoside and rhamnoside) were identified. In addition, it is found that EGCG and ECG are the major active components responsible for the antioxidant activity of tea flowers by HPLC separation and DPPH assay.
引文
[1] 宛晓春,主编.茶叶生物化学 (第三版)[M].北京:中国农业出版社,2003.
    [2] Roberts, E. A. H. The phenolic substances of manufactured tea [J]. J. Sci. Food Agric., 1958, 9: 212-216.
    [3] Collier, P. D., Mallows, B. R., Thomas, P. E., Frost, D. J., Korver, O., and Wilkins, C. K. The theaflavins of black tea [J]. Tetrahedron., 1973, 29: 125-142.
    [4] Lewis, J. R., Davis, A. L., Cai, Y., Davies, A. P., Wilkins, J. P. G., and Pennington, M. Theaflavin B, isotheaflavin-3'-O-gallate and neotheaflavin-3-O-Gallate: Three polyphenolic pigments from black tea [J]. Phytochem., 1998, 49: 2511-2519.
    [5] Sang, S. M., Lambert, J. D., Tian, S. Y., Hong, J., Hou Z., Ryu, J. H., Stark, R. E., Rosen, R. T., Huang, M. T., Yang, C. S., and Ho, C. T. Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities [J]. Bioorg. Med. Chem., 2004, 12: 459-467.
    [6] Wan, X. C., Nursten, H. E., Cai, Y., Davis, A. L., Wilkins, J. P. G., and Davies, A. P. A new type of tea pigment-from the chemical oxidation of epicatechin gallate and isolated from tea [J]. J. Sci. Food Agric., 1997, 74: 401-418.
    [7] 李大祥,宛晓春,杨昌军,王华.茶儿茶素氧化机理[J].天然产物研究与开发,2006,18:171-181.
    [8] Sang, S. M., Tian, S. Y., Meng, X., Stark, R. E., Rosen, R. T., Yang, C. S., and Ho, C. T. Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS [J]. Tetrahedron. Lett., 2002, 43: 7129-7133.
    [9] Sang, S. M., Tian, S. Y., Stark, R. E., Yang, C. S., and Ho, C. T. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS [J]. Bioorg. Med. Chem., 2004, 12: 3009-3017.
    [10] Tanaka, T., Inoue, K., Betsumiya, Y., Mine, C., and Kouno, I. Two types of oxidative dimerization of the black tea polyphenol theaflavin [J]. J. Agric. Food Chem., 2001, 49: 5785-5789.
    [11] Takino, Y., Imagawa, H., Horikawa, H., and Tanaka, A. Studies on the mechanism of the oxidation of tea leaf catechins—formation of the reddish orange pigment and its spectral relationship to some benzotropolone derivatives [J]. Agric. Bio. Chem., 1964, 28: 64-71.
    [12] Tanaka, T., Mine, C., Inoue, K., Matsuda, M., and Kouno, I. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin [J]. J. Agric. Food Chem., 2002, 50: 2142-2148.
    [13] Luczaj, W., and Skrzydlewska, E. Antioxidative properties of black tea [J]. Prev. Med., 2005, 40: 910-918.
    [14] Haslam, E. Thoughts on thearubigins [J]. Phytochemistry, 2003, 64: 61-73.
    [15] Takeo, T., and Unitani, J. The leaf polyphenoxidase Ⅱ purification and properties of the solibilized polyphenol oxidase in tea leaves [J]. Agric. Biol. Chem., 1966, 30: 155-156.
    [16] Roberts, E. A. H., Cartwright, R. A., and Oldschool, M. The phenolic substances of manufactured tea (Ⅰ) [J]. J. sci. Food Agric., 1957, 8: 72-80.
    [17] Dix, M. A., Fairley, C. J., and Millin, D. J. Fermentation of tea in aqueous sus-pension, influence of tea periodase [J]. J. Sci. Food Agric., 1981, 32: 920-932.
    [18] 加腾司多,冈本顺子,大森正司.添加微生物多酚氧化酶对红茶汤色的效果 [J].日本农艺化学会志,1987,61(5):599.
    [19] Burton, S. G., Bosho, A., Edwards, W., and Rose, P. D. Biotransformation of phenols using immobilized polypbenol oxidase [J]. J. Mol. Catal. B: Enzymatic, 1998, 5: 411-416.
    [20] Pruidze, G. N., Mcbedlishvili, N. I., Omiadze, N. T., Gulua, L. K., and Pruidze, N. G. Multiple forms of phenol oxidase from Kolkhida tea leaves (Camelia Sinensis) and their role in tea production [J]. Food Res. Intern., 2003, 36: 587-595.
    [21] Roberts, E. A. H. The phenolic substances of manufactured tea (Ⅱ) [J]. J. Sci. Food Agric., 1958, 9: 212-216.
    [22] Roberts, E. A. H. The phenolic substances of manufactured tea (Ⅲ) [J]. J. Sci. Food Agric., 1958, 9: 217-223.
    [23] Robertson, A.(卢振辉译).体外氧化时儿茶素浓度对红茶氧化产物形成的影响[J].国外农学-茶,1984,3:26-34.
    [24] Hilton, P. J. The effect of shade upon the chemical composition of the flush of tea (Camellia sinensis ) [J]. Trop Sci., 1974, 16: 15-22.
    [25] 萧伟祥,钟瑾,胡耀武,萧慧.双液相系统酶化学技术制取茶色素[J].天然产物研究与开发,2001,13:49-52.
    [26] 夏涛,高丽萍.茶鲜叶匀浆悬浮发酵工艺监测参数[J].茶叶科学,1999,19:47-53.
    [27] Komatsuy, Y., Suematsu, S., Hisanobu, Y., Saigo, H., Matsuda, R., and Hara, K. Effects of pH and temperature on reaction kinetics of catechins in green tea infusion [J]. Biosci. Biotechnol. Biochem., 1993, 57: 907-910.
    [28] Robertson, A. Effects of physical and chemical conditions on the in-vitro oxidation of tea leaf catechins [J]. Phytochemistry, 1983, 4: 889-896.
    [29] 陈以义,江光辉.红茶变温发酵的理论探讨[J].茶叶科学,1993,13:81-86.
    [30] 丁晓芳.茶黄素组份分离以及与制茶技术品质的关系[J].茶叶通报,1991,2:8-11.
    [31] Millin, D. J., and Swanine, D. Fermentation of tea aqueous suspension [J]. J. Sci. Food Agric., 1981, 32: 905-919.
    [32] 谷记平,刘仲华,黄建安,施兆鹏.茶黄素生物合成的研究进展[J].福建茶叶,2004,(2):19-21.
    [33] 屠幼英.红茶萎凋过程中多酚氧化酶生化特性的变化[J].茶叶科学简报,1990,(4):16-19.
    [1] 张天佑.逆流色谱技术[M].北京:北京科学技术出版社,1991.
    [2] 戴德舜,王义明,罗国安.高速逆流色谱研究进展[J].分析化学,2001,29:586-591.
    [3] 屠幼英,夏会龙.固定化多酚氧化酶催化高纯度茶多酚生产茶黄素的方法 [P].国家发明专利 (授权号:2136982.8 ZL).
    [4] Tu, Y. Y., Xu, X. Q., Xia, H. L., and Watanabe, N. Optimization of theaflavin biosynthesis from tea polyphenols using an immobilized enzyme system and response surface methodology [J]. Biotechnol. Lett., 2005, 27: 269-274.
    [5] Liang, Y. R., Lu, J. L., and Zhang, L. Y. Comparative study cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze] [J]. Int. J. Food Sci. Technol., 2002, 34: 627-634.
    [6] 江和源,程启坤,杜琪珍.高速逆流色谱法分离纯化茶黄素 [J].天然产物研究与开发,2000,12:30-35.
    [7] 戴德舜,伍方勇,王义明.高速逆流色谱实验体系的选择和优化 [J].分析仪器,2001,3:31-34.
    [1] 杨贤强,主编.茶多酚化学[M].上海:上海科学技术出版社,2003.
    [2] 李立祥,萧伟祥.茶色素及茶黄素药理作用研究进展 [J].福建茶叶,2002,(4):35-38.
    [3] Sakanaka, S., Kim, M., Taniguchi, M., and Yamamoto, T. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium [J]. Agric. Biol. Chem., 1989, 53: 2307-2311.
    [4] 游士奇,洪方耀.中国绿茶多酚预防龋病的研究[J].中华口腔医学杂志,1993,28:197-199.
    [5] Hattori, M., Kusumoto, I. T., Namba, T., Ishigami, T., and Hara, Y. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans [J]. Chem. Pharm. Bull., 1990, 38: 717-720.
    [6] Yoshino, K., Nakamura, Y., and Ikeya, H. Antimicrobial activity of tea extracts on cariogenic bacterium (Streptococcus mutans) [J]. J. Food Hyg. Soc., 1996, 37: 104-108.
    [1] Luczaj, W., and Skrzydlewska, E. Antioxidative properties of black tea [J]. Prev. Med., 2005, 40: 910-918.
    [2] Haslam, E. Thoughts on thearubigins [J]. Phytochemistry, 2003, 64: 61-73.
    [3] 杨贤强,主编.茶多酚化学[M].上海:上海科学技术出版社,2003.
    [4] Pan, M. H., Lin-shiau, S. Y., Ho, C. T., Lin, J. H., and Lin, J. K. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3, 3-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages [J]. Biochem. Pharm., 2000, 59: 357-367.
    [5] Lin, Y. L., Tsai, S. H., Lin-Shiau, S. Y., Ho, C. T., and Lin, J. K. Theaflavin-3, 3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages [J]. Eur. J. Pharmacol., 1999, 367: 379-388.
    [6] Lin, J. K., Chen, P. C., Ho, C. T., and Lin-Shiau, S. Y. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3, 3'-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate [J]. J. Agric. Food Chem., 2000, 48: 2736-2743.
    [7] Feng, Q., Torii, Y., Uchida, K., Nakamura, Y., Hara, Y., and Osawa, T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures [J]. J. Agric. Food Chem., 2002, 50: 213-220.
    [8] Ying, C. J., Xu, J. W., Ikeda, K., Takahashi, K., Nara, Y., and Yamori, Y. Tea polyphenols regulate nicotinamide adenine dinucleotide phosphate oxidase subunit expression and ameliorate angiotensin Ⅱ-induced hyperpermeability in endothelial cells [J]. Hypertens. Res., 2003, 26: 823-828.
    [9] Darley-Usmar, V., and Halliwell, B. Blood, radicals: Reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system [J]. Pharm. Res., 1996, 13: 649-662.
    [10] Sarkar, A., and Bhaduri, A. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea [J]. Biochem. Biophys. Res. Commun., 2001, 284: 173-178.
    [11] 谢笔钧,石煌,胡慰望,陈钦云,何倛傥.绿茶、乌龙茶、红茶中的主要组分和酚类化合物抑制脂肪氧合酶活性和抗油脂自动氧化特性的研究[J].天然产物研究与开发,1994,16:19-26.
    [12] Miller, N. J., Castelluccio, C., Tijburg, L., and Rice Evans, C. The antioxidant properties of theaflavins and their gallate esters--radical scavengers or metal chelators? [J]. FEBS Lett., 1996, 392: 40-44.
    [13] Leake, D. S., and Rankin, S. M. The oxidative modification of low-density lipoproteins by macrophages [J]. Biochem. J., 1990, 270: 741-748.
    [14] Steele, V. E., Kelloff, G. J., Balentine, D., Boone, C. W., Mehta, R., Baqheri, D., Siqman, C. C., Zhu, S., and Sharma, S. Comparative chemopreventive mechanisms of green tea, black tea and selected polyphenol extracts measured by in vitro bioassays [J]. Carcinogenesis, 2000, 21: 63-67.
    [15] Yoshida, H., Ishikawa, T., Hosoai, H., Suzukawa, M., Ayaori, M., Hisada, T., Sawada, S., Yonemura, A., Higashi, K., Ito, T., Nakajima, K., Yamashita, T., Tomiyasu, K., Nishiwaki, M., Ohsuzu, F., and Nakamura, H. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein [J]. Biochem. Pharmacol., 1999, 58: 1695-1703.
    [16] Yoshino, K., Hara, Y., Sano, M., and Tomita, I. Antioxidative effects of black tea theaflavins and thearubigin on lipid of rat liver homogenates induced by tert-Butyl hydroperoxide [J]. Biol. Pharm. Bull., 1994, 17: 146-149.
    [17] Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., and Chen, Z. Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants [J]. J. Nutr., 2001, 131: 2248-2251.
    [18] Miura S, Watanabe, J., Sano, M., Osawa, T., Hara, Y., and Tomita, I. Effects of various natural antioxidants on the Cu (2+)-mediated oxidative modification of low density lipoprotein [J]. Biol. Pharm. Bull., 1995, 18: 1-4.
    [19] Saha, P., and Das, S. Regulation of hazardons exposure by protective exposure: modulation of phase Ⅱ detoxification and lipid peroxidation by Camellia sinensis and Swertia chirata [J]. Teratog. Carcinog. Mutagen, 2003, Suppl 1:313-322.
    [20] Das, M., Chaudhuri, T., Goswami, S. K., Murmu, N., Gomes, A., Mitra, S., Besra, S. E., Sur, P., and Vedasiromoni, J. R. Studies with black tea and its constituents on leukemic cells and cell lines [J]. J. Exp. Clin. Cancer Res., 2002, 21: 563-568.
    [21] Dong, Z. Effect of green tea and black tea on the blood glucose, the blood triglycerides, and antixoidation in aged rats [J]. J. Agric. Food Chem., 1998, 46: 3875-3878.
    [22] Saha, P., and Das, S. Elimination of deleterious effects of free radicals in murine skin carcinogenesis by black tea infusion, theaflavins & epigallocatechin gallate [J]. Asian Pac. J. Cancer Prev., 2002, 3: 225-230.
    [23] Erba, D., Riso, P., Foti, P., Frigerio, F., Criscuoli, F., and Testolin, G. Black tea extract supplementation decreases oxidative damage in Jurkat T cells [J]. Arch. Biochem. Biophys., 2003, 416: 196-201.
    [24] Rice-Evans, C. A. Structure-anti-oxidant activity relationships of flavonoids and phenolic acids [J]. Free Radic. Boil. Med., 1996, 20: 933-956.
    [25] Sawai, Y., Moon. J. H., Sakata, K., and Watanabe, N. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-Diphenyl-2-picrylhydrazyl radicals [J]. J. Agric. Food Chem., 2005, 53: 3598-3604.
    [26] Valcic, S., Burr, J. A., Timmermann, B. N., and Liebler, D. C. Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin from their reactions with peroxyl radical [J]. Chem. Res. Toxicol., 2000, 13: 801-810.
    [27] Valcic, S., Muders, A., Jacobsen, N. E., Liebler, D. C., and Timmermann, B. N. Antioxidant chemistry of green tea catechins. Identification of products of the reaction of (-)-epigallocatechin gallate with peroxyl radical [J]. Chem. Res. Toxicol., 1999, 12: 382-386.
    [28] Sang, S., Tian, S., Wang, H., Stark, R. E., Rosen, R. T., Yang, C. S., and Ho, C. T. Chemical studies of the antioxidant mechanism of tea catechins: radical reaction products of epicatechin with peroxyl radicals [J]. Bioorg. Med. Chem., 2003, 11: 3371-3378.
    [29] Zhu, N. Q., Huang, T. C., Yu, Y., LaVoie, E. J., Yang, C. S., and Ho, C. T. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H_2O_2 [J]. J. Agric. Food Chem., 2000, 48: 979-981.
    [30] Sang, S. M., Cheng, X. F., Stark, R. E., Rosen, R. T., Yang, C. S., Ho, C. T. Chemical studies on antioxidant mechanism of tea catechins: analysis of radical reaction products of catechins and epicatechin with 2, 2-diphenyl-1-picrylhydrazyl [J]. Bioorg. Med Chem., 2002, 10: 2233-2237.
    [31] Zhu, N. Q., Wang, M. F., Wei, G. J., Lin, J. K., Yang, C. S. and Ho, C. T. Identification of reaction products of (-)-epigallocatechin gallate and pyrogallol with 2, 2-diphenyl-1-picrylhydrazyl radical [J]. Food Chem., 2001, 73: 345-349.
    [32] Panzella, L., Manini, P., Napolitano, A., and d'Ischia, M. The acid-promoted reaction of the green tea polyphenol epigallocatechin gallate with nitrite ions [J]. Chem. Res. Toxicol., 2005, 18: 722-729.
    [33] O'Coinceanainn, M., Bonnely, S., Baderschneider, B., and Hynes, M. J. Reaction of iron (Ⅲ) with theaflavin: complexation and oxidative products [J]. J. Inorg. Biochem., 2004, 98: 657-663.
    [34] Jhoo, J. W., Lo, C. Y., Li, S. M., Sang, S. M., Ang, C. Y. W., Heinze, T. M., and Ho, C, T. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product [J]. J. Agric. Food Chem., 2005, 53: 6146-6150.
    [35] Jovanovic, S. V., Hara, Y., Steenken, S., and Simic, M. G. Antioxidant potential of theaflavins. A pulse radiolysis study [J]. J. Am. Chem. Soc., 1997, 119: 5337-5343.
    [36] O'Coinceanainn, M., Astill, C. and Baderschneider, B. Coordination of aluminium with purpurogallin and theaflavin digallate [J]. J. Inorg. Biochem., 2003, 96: 463-468.
    [37] Sang, S. M., Tian, S. Y., Jhoo, J. W., Wang, H., Stark, R. E., Rosen, R. T., Yang, C. S., and Ho, C. T. Chemical studies of the antioxidant mechanism of theaflavins: radical reaction products of theaflavin 3, 3'-digallate with hydrogen peroxide [J]. Tetrahedron Letters, 2003, 44: 5538-5587.
    [38] Su, Y. L., Leung, L. K., Huang, Y., and Chen, Z. Y. Stability of tea theaflavins and catechins [J]. Food Chem., 2003, 83: 189-195.
    [1] Luczaj, W., and Skrzydlewska, E. Antioxidative properties of black tea [J]. Prev. Med., 2005, 40: 910-918.
    [2] Trevisanato, S. I. Tea and health [J]. Nutr. Rev., 2000, 58: 1-10.
    [3] Bushman, J. L. Green tea and cancer in humans: a review of the literature [J]. Nutri. & Cancer, 1998, 31: 151-159.
    [4] Zhu, Y. X., Huang, H., and Tu, Y. Y. A review of recent studies in China on the possible beneficial health effects of tea [J]. Int. J. Food Sci. Technol., 2005, 40: 1-8.
    [5] 宛晓春,主编.茶叶生物化学 (第三版)[M].北京:中国农业出版社,2003.
    [6] Liang, Y. C., Chen, Y. C., Lin, Y. L. Lin-shiau, S. Y., Ho, C. T., and Lin, J. K. Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3, 3'-digallate [J]. Carcinogenesis, 1999, 20: 733-736.
    [7] Lodovici, M., Casalini, C., De-filippo, C., Copeland, E., Xu, X., Clifford, M., and Dolara, P. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols [J]. Food Chem. Toxicol., 2000, 38: 1085-1088.
    [8] Das, M., Chaudhuri, T., Goswami, S. K., Murmu, N., Gomes, A., Mitra, S., Besra, S. E., Sur, P., and Vedasiromoni, J. R. Studies with black tea and its constituents on leukemic cells and cell lines [J]. J. Exp. Clin. Cancer Res., 2002, 21: 563-568.
    [9] Maity, S., Ukil, A., Karmakar, S., Datta, N., Chaudhuri, T., Vedasiromoni, J. R., Ganguly, D. K., and Das, P. K. Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis [J]. Eur. J. Pharmacol., 2003, 470: 103-112.
    [10] Satoh, E., Ishii, T., Shimizu, Y., Sawamura, S., and Nishimura, M. Black tea extract, thearubigin fraction, counteract the effects of botulinum neurotoxins in mice [J]. Br. J. Pharmacol., 2001, 132: 797-798.
    [11] Satoh, E., Ishii, T., Shimizu, Y., Sawamura, S., and Nishimura, M. The mechanism underlying the protective effect of the thearubigin fraction of black tea (Camellia sinensis) extract against the neuromuscular blocking action of botulinum neurotoxins [J]. Pharmacol. Toxicol., 2002, 90: 199-202.
    [12] Yoshino, K., Hara, Y., Sano, M., and Tomita, I. Antioxidative effects of black tea theaflavins and thearubigin on lipid peroxidation of rat liver homogenates induced by tert-butyl hydroperoxide [J]. Biol. Pharm. Bull., 1994, 17:146-149.
    [13] Catterall, F., Copeland, E., Clifford, M. N. and Ioannides, C. Contribution of theafulvins to the antimutagenicity of black tea: their mechanism of action [J]. Mutagenesis, 1998, 13: 631-636.
    [14] Gupta, S., Chaudhuri, T., Ganguly, D. K., and Giri, A. K. Anticlastogenic effects of black tea (World blend) and its two active polyphenols theaflavins and thearubigins vivo in Swiss albino mice [J]. Life Sci., 2001, 69: 2735-2744.
    [15] Haslam, E. Thoughts on thearubigins [J]. Phytochemistry, 2003, 64: 61-73.
    [16] Dix, M. A., Fairley, C. J., Millin, D. J., and Swaine, D. Fermentation of tea in aqueous suspension influence of tea peroxidase [J]. J. Sci. Food Agric., 1981, 32: 920-932.
    [17] Bonnely, S., Davis, A. L., Lewis, J. R., and Astill, C. A model oxidation system to study oxidized phenolic compounds present in black tea [J]. Food Chem., 2003, 83: 485-492.
    [18] Opie, S. C., Clifford, M. N., and Robertson, A. The formation of thearubigin-like substances by in-vitro polyphenol oxidase-mediated fermentation of individual flavan-3-ols [J]. J. Sci. Food Agric., 1995, 67: 501-505.
    [19] Opie, S. C., Clifford, M. N., and Robertson, A. The role of (-)-epicatechin and polyphenol oxidase in the coupled oxidative break-down of theaflavins [J]. J. Sci. Food Agric., 1993, 63: 435-438.
    [20] Robertson, A. Effects of catechin concentration on the formation of black tea polypbenols during in vitro oxidation [J]. Phytochemistry, 1983, 22: 897-903.
    [21] Robertson, A. Effects of physical and chemical conditions on the in vitro oxidation of tea leaf catechins [J]. Phytochemistry, 1983, 22: 889-896.
    [22] Tu, Y. Y., Xu, X. Q., Xia, H. L., and Watanabe, N. Optimization of theaflavin biosynthesis from tea polyphenols using an immobilized enzyme system and response surface methodology [J]. Biotechnol. Lett., 2005, 27: 269-274.
    [23] Frippiat, C., Chen, Q. M., Zdanov, S., Magalhaes, J. P., Remacle, J., and Toussaint, O. Subcytotoxic H_2O_2 stress triggers a release of transforming growth factor-b1, which induces biomarkers of cellular senescence of human diploid fibroblasts [J]. J. Biol. Chem., 2001, 276: 2531-2537.
    [24] Zhu, Q. Y., Robert, M. H., Jodi, L. E. Roberta, R. H., and Carl, L. K. Antioxidant activities of oolong tea [J]. J. Agric. Food Chem., 2002, 50: 6929-6934.
    [25] Cheng, Z., Yan, G., Li, Y., and Chang, W. Determination of antioxidant activity of phenolic antioxidants in a Fenton-type reaction system by chemiluminescence assay [J]. Anal. Bioanal. Chem., 2003, 375: 376-380.
    [26] Koh, SH., Kwon, H., Kim, K. S., Kim, J., Kim, M. H., Yu, H. J., Kim, M., Lee, K. W., Do, B. R., Jung, H. K., Yang, K. W., Appel, S. H., and Kim, S. H. Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motoneuron cells by alteration of cell survival and death signals [J]. Toxicology, 2004, 202: 213-225.
    [27] Denizot, F., and Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability [J]. J. Immunol. Methods, 1986, 89: 271-277.
    [28] Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays [J]. J. Immunol. Methods, 1983, 65: 55—63.
    [29] Hayflick, L. The illusion of cell immortality [J]. Br. J. Cancer, 2000, 83: 841-846.
    [30] Toussaint, O., Medrano, E. E., and von Zglinicki, T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes [J]. Exp. Gerontol., 2000, 35: 927-945.
    [31] Frippiat, C., Dewelle, J., Remacle, J., and Toussaint, O. Signal transduction in H_2O_2-induced senescence-like phenotype in human diploid fibroblasts [J]. Free Radic. Biol. Med, 2002, 33: 1334-1346.
    [32] Lin, J. K., Chen, P. C., Ho, C. T., and Lin-Shiau, S. Y. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3, 3'-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate [J]. J. Agric. Food Chem., 2000, 48: 2736-2743.
    [33] Giovannelli, L., Testa, G, De-filippo, C., Cheyier, V., Clifford, M. N., and Dolara, P. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo [J]. Eur. J. Nutr, 2000, 39: 207-212.
    [34] Halder, J., and Bhaduri, A. N. Protective role of black tea against oxidative damage of human red blood cells [J]. Biochem. Biophys. Res. Commun., 1998, 244: 903-907.
    [35] Lodovici, M., Casalini, C., De-filippo, C., Copeland, E., Xu, X., Clifford, M., and Dolara, P. Inhibition of 1, 2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols [J]. Food Chem. Toxicol., 2000, 38: 1085-1088.
    [1] Shiraki, M., Hara, Y., Osawa, T., Kumon, H., Nakayama, T., and Kawakishi, S. Antioxidative and antimutagenic effects of theaflavins from black tea [J]. Mut. Res., 1994, 323: 29-34.
    [2] Miller, N. J., Castelluccio, C., Tijburg, L., and Rice Evans, C. The antioxidant properties of theaflavins and their gallate esters--radical scavengers or metal chelators? [J]. FEBS Lett., 1996, 392: 40-44.
    [3] Jovanovic, S. V., Hara, Y., Steenken, S., and Simic, M. G. Antioxidant potential of theaflavins. A pulse radiolysis study [J]. J. Am. Chem. Soc., 1997, 119: 5337-5343.
    [4] Lin, J. K., Chen, P. C., Ho, C. T., and Lin-Shiau, S. Y. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3, 3'-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate [J]. J. Agric. Food Chem., 2000, 48: 2736-2743.
    [1] 湖南农学院 主编.茶树育种学[M].北京:中国农业出版,1999.
    [2] 伍锡岳,熊宝珍,何睦礼,苗爱清,李勤,庞式.茶树花果利用研究总结报告[J].广东茶叶,2003(1):11-23,38。
    [3] 苏松坤,陈盛禄,林雪珍,胡福良,邵梅,童富淡.茶(Camellia sinensis)花粉营养成分的测定[J].中国养蜂,2000,51:3-5.
    [4] 李晋玲.茶花氨基酸和蛋白质含量测定及研究[J].茶业通讯,2003,25:61.
    [5] Lin, Y. S., Wu, S. S., and Lin, J. K. Determination of tea polyphenols and caffeine in tea flowers (Camellia sinensis) and their hydroxyl radical scavenging and nitric oxide suppressing effects [J]. J. Agric. Food Chem., 2003, 51: 975-978.
    [6] Mokbel, M. S., and Hashinaga, F. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues [J]. Food Chem., 2006, 94: 529-534.
    [7] 钟萝.茶叶品质理化分析[M].上海:上海科技出版社,1989.
    [8] Liang, Y. R., Lu, J. L., and Zhang, L. Y. Comparative study cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze] [J]. Int. J. Food Sci. Technol., 2002, 34: 627-634.
    [9] Tu, Y. Y., Xu, X. Q., Xia, H. L., and Watanabe, N. Optimization of theaflavin biosynthesis of tea polyphenols using an immobilized enzyme system and response surface methodology [J]. Biotechnol. Lett., 2005, 27: 269-274.
    [10] 翁蔚.茶花(Camellia sinensis)主要化学成分分析及其应用研究[D].浙江大学硕士学位论文,2004.
    [1] Dalluge, J. J., Nelson, B. C., Thomas, J. B., and Sander, L. C. Selection of column and gradient elution system for separation of catechins in green tea using high performance liquid chromatography [J]. J. Chromatogr. A, 1998, 783: 265-274.
    [2] Lin, Y. S., Wu, S. S., and Lin, J. K. Determination of tea polyphenols and caffeine in tea flowers (Camellia sinensis) and their hydroxyl radical scavenging and nitric oxide suppressing effects [J]. J. Agric. Food Chem., 2003, 51: 975-978.
    [3] Almela, L., Sanchez-Munoz, B., Fernandez-Lopez, J. A., Roca, M. J., and Rabe, V. Liquid chromatographic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material [J]. J. Chromatogr. ,4, 2006, 1120: 221-229.
    [4] Lai, J. P., Lim, Y. H., Su, J., Shen, H. M., and Ong, C. N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS [J]. J. Chromatogr. B (In press).
    [5] Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs [J]. J. Chromatogr. A, 2000, 902: 369-379.
    [6] Finger, A., Engelhardt, U. H., and Wray, V. Flavonol glycosides in tea - kaempferol and quercetin rhanmodiglucosides [J]. J. Sci. Food Agric., 1991, 55: 313-321.
    [7] 朱旗,Clifford,M.N.,毛清黎,邓放明.LC-MS分析普洱茶与红茶成分的比较研究[J].茶叶科学,2006,26(3):191-194.
    [8] Porto, C. D., Calligaris, S., Cellotti, E., and Nicoli, M. C. Antiradical properties of commercial cognacs assessed by the DPPH test [J]. J. Agric. Food Chem., 2000, 48: 4241-4245.
    [9] Cotelle, N., Bernier, J. L., Catteau, J. P., Pommery, J., Wallet, J. C., and Gaydou, E. M. Antioxidant properties of hydroxyl-flavones [J]. Free Radical Biol. Med, 1996, 20: 35-43.
    [10] Oares, J. R., Dinis, T. C. P., Cunha, A. P., and Almeida, L. M. Antioxidant activities of some extracts of thymus zygis [J]. Free Radical Res., 1997, 26: 469-478.
    [11] Finger, A., Engelhardt, U. H., and Wray, V. Flavonol glycosides in tea - kaempferol and quercetin rhamnodiglucosides [J]. J. Sci. Food Agric., 1991, 55: 313-321.
    [12] Engelhardt, U. H., Finger, A., and Kuhr, S. Determination of flavone C-glycosides in tea [J]. Z Lebensm. Unters. Forsch., 1993, 197: 239-244.
    [13] Kiehne, A., and Engelhardt, U. H. Thermospray-LC-MS analysis of various groups of polyphenols in tea. I, Catechins, flavonol O-glycosides and flavone C-glycosides [J]. Z Lebensm. Unters. Forsch., 1996, 202: 48-54.
    [14] Wada, S., He, P. M., Watanabe, N., Sakata, K., and Sugiyama, K. Suppression of d-galactosamine-induced rat liver injury by glycosidic flavonoids-rich fraction from green tea [J]. Biosci. Biotechnol. Biochem., 1999, 63: 570-572.
    [15] Wada, S., He, P. M., Hashimoto, I., Watanabe, N., and Sugiyama, K. Glycosidic flavonoids as rat-liver injury preventing compounds from green tea [J]. Biosci. Biotechnol. Biochem., 2000, 64: 2262-2265.
    [16] 杨贤强,主编.茶多酚化学[M].上海:上海科学技术出版社,2003.
    [17] Uchida, S., Ohta, H., Edamatsu, R., Hiramatsu, M., Mori, A., Nonaka, G., Nishioka, I., Niwa, M., Akasshi, T., and Ozaki, M. Active oxygen free radicals are scavenged by condensed tannins [J]. Prog. Clin. Biol. Res., 1988, 280: 135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700