直燃机吸收器部件仿真与可视化计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国能源政策与能源结构的不断调整,天然气将成为 21 世纪能源发展与
    利用的重点。以燃气为主的直燃型溴化锂吸收式制冷机组在减少污染气体排放、缓解
    电力紧张压力、调节电力和燃气高峰负荷等方面显示出其独特的优势,发展燃气为主
    的直燃机将对传统的压缩式电制冷系统起到巨大的促进作用。
    吸收式制冷系统是换热器的组合,其中吸收器和发生器的传热传质过程都包含着
    二元溶液两相流动传热与传质,即使是一元溶液的蒸发器和冷凝器为了增加传热系数,
    减小换热面积也采取了降膜蒸发与冷凝的技术,这种复杂的热力过程使得要想建立正
    确描述其传热传质现象的物理数学模型非常的困难,而要实现整个吸收式制冷系统的
    仿真还有很多有待研究的内容。为此,本文选择了吸收器这一吸收式制冷机中最具有
    代表性的复杂的热力部件作为部件仿真的对象,在整理溴化锂水溶液以及纯水的物性
    方程的基础上,通过 Fortran 与 Matlab 混合编程,利用 Matlab 强大的矩阵计算、图形
    绘制及编辑功能,基于面向对象的图形用户界面(GUI)技术编制人机交互界面,实
    现了溴化锂吸收式制冷的可视化计算,并编制了溴化锂吸收式制冷系统工具箱,为今
    后的仿真设计、可视化计算提供了方便、实用的工具。
    与以往广泛采用的单管模型相比,本文采用了实际中应用较多的水平管束式吸收
    器作为研究的对象,对吸收器内二元溶液两相流动传热传质机理做了深入细致的分析,
    引入了润湿率 WR 这一参数来衡量实际运行中出现的管壁的不完全润湿特性,并将其
    作为可变参数分析它对吸收器总体性能以及蒸发器制冷能力的影响。吸收器部件仿真
    采用贴近实际运行状况的滴状降膜吸收模型,将每一根水平管的蒸气吸收过程分为三
    个区域,即:沿管壁的降膜区,管底部的液滴形成区和管间的液滴降落区。将三部分
    的控制微分方程组联立,分析了不同结构参数(如水平管排数、管径、管长、管轴向
    间距)、运行工况(如溶液质量流量、温度、浓度、冷却水质量流量、进口温度、蒸发
    温度等)对吸收器总体性能与蒸发器制冷量造成的影响,基于 Matlab 的仿真技术,实
    现了吸收器部件的仿真与可视化计算。
    吸收器建模与仿真的思路和方法可以扩展到其它的热力部件如发生器、蒸发器、
    冷凝器之中去,从而实现吸收式制冷系统的稳态/动态建模与仿真。
With the frequently adjustment of energy policy and structure in China, natural gas is
    sure to be the emphasis of energy development and utilization in 21 century. Fire-directed
    absorption chiller shows the unique predominance in reducing the polluted gas exhausting,
    relaxing the power stress and adjusting the high load of power and natural gas supplement.
    So the fire-directed absorption chiller will play a promote role on traditional compress
    refrigeration system.
     It's very known that absorption refrigeration system is units of many heat exchangers.
    Absorber and generator have the complicate dual-solution two-phase flow heat and mass
    transfer. In order to improve the heat and mass transfer coefficient and reduce the heat
    exchange area of each component, even in the evaporator and condenser which only
    contains the monadic-solution flow, absorption refrigeration system utilizes the falling film
    evaporation and condensing technology. This complicate thermodynamic process makes
    the modeling and description of each component harder and much work to realize the
    simulation of whole absorption refrigeration system. Hence, this paper chooses the most
    representative absorber as the component-simulation object. Based on the thermodynamic
    properties function of LiBr/Water solution and pure water, through mixing programming of
    Fortran and Matlab, and utilizes the powerful matrix computation, graph drawing, edit
    performance and graphic user interface of Matlab, comes true the visualization
    computation and develops the toolbox of absorption refrigeration which supplies the
    facilitate and useful tool for the following simulation design and visualization computation.
     Compared with the general single-tube model, this paper takes the horizontal bundle
    absorber as the research object, analyses the principal of dual-solution two-phase flow heat
    and mass transfer in absorber, introduces the wetting ratio to describe the incomplete
    wetting performance and view it as the changeable parameter to explain it's influence to
    total performance of absorber and cooling capability of evaporator. The component
    simulation of absorber uses the falling and droplet model which divides the whole steam
    absorption process of single tube into three zones, that is to say, falling film along the tube
    wall, droplet formation zone at the bottom of the tube and droplet fall between the tubes.
    Connecting with the three control differential function group, analyses the influence of
    different structure parameters such as number of horizontal tube, tube diameter, tube length,
    axial distance between tubes and running conditions such as solution mass flow rate,
    temperature, concentration, cooling water mass flow rate, inlet temperature and
    evaporative etc. to total performance of absorber and cooling capability of evaporator, and
    oriented from the simulation of Matlab, comes true the component simulation and
    visualization computation of absorber.
     The way of modeling and simulation of absorber can also be expanded to other
    thermodynamic component such as generator, evaporator and condenser, which will be
    basis of the static and dynamic modeling and simulation of absorption refrigeration system.
引文
[1] Herold KE, Radermacher L. Absorption heat pump, Mech. Eng., Aug, 1989; 68– 73.
    [2] Gosney WB. Principle of refrigeration. Cambridge Uni. Press, 1982.
    [3] 由世俊,带排烟热回收发生器的并联溶液循环、低温溶液热交换器后分流的溴化
    锂直燃机工作流程,中国专利,01222914.8
    [4] 戴永庆主编,溴化锂吸收式制冷技术及应用,北京:机械工业出版社,1996
    [5] Srikhirin, Pongsid; Aphornratana, Satha; Chungpaibulpatana, Supachart,A review of
    absorption refrigeration technologies,Renewable and Sustainable Energy Reviews Volume:
    5, Issue: 4, December, 2001, pp. 343-372
    [6] Holmberg P, Berntsson T. Alternative working fluids in heat transformers. ASHRAE
    Trans 1990;96:1582–9.
    [7] Marcriss RA, Gutraj JM, Zawacki TS. Absorption fluid data survey: final report on
    worldwide data, ORLN/sub/8447989/3, Inst. Gas Tech., 1988.
    [8] Berestneff AA. Absorption refrigeration. Mech Eng 1949;72:216–20.
    [9] Best R, Holland FA. A study of the operating characteristics of an experimental
    absorption cooler using ternary systems. Int J Energy Res 1990;14:553–61.
    [10]Idema PD. Real process simulation of a LiBr/ZnBr2/CH3OH absorption heat pump.
    ASHRAE Trans 1987;93:562–74.
    [11]Herold KE, Radermacher R, Howe L, Erickson DC. Development of an absorption
    heat pump water heater using an aqueous ternary hydroxide working fluid. Int J Refrig
    1991;14:156–67.
    [12]Barragan RM, Arellano VM, Heard CL, Best R. Experimental performance of ternary
    solution in an absorption heat transfer. Int J Energy, Res 1998;22:73–83.)
    [13]Ramshaw C, Winnington TL. An intensified absorption heat pump. Proc Inst Refrig
    1988;85:26–33.
    [14]Kang YT, Christensen RN. Transient analysis and design model of LiBr-H2O
    absorber with rotating drums. ASHRAE Trans 1995;101:1163–74.
     71
    
    
    天津大学硕士学位论文 参考文献
    [15]Hanna WT, Wilkinson WH, Ball DA. The Battelle Dual-Cycle Absorption Heat
    Pump, Direct Fired Heat Pumps, Procs. Int. Conf. Uni. of Bristol, 19–24 Sept., paper 2.7,
    1984.
    [16]Kuhlenschmidt D. Absorption Refrigeration System with Multiple Generator Stages,
    US Patent No.3717007, 1973.
    [17]Chung H, Huor MH, Prevost M, Bugarel R. Domestic Heating Application of an
    Absorption Heat Pump, Directly Fired Heat Pumps, Procs. Int. Conf., Uni. of Bristol, paper
    2.2, 1984.
    [18]Chen LT. A new ejector-absorber cycle to improve the COP of an absorption refrige
    - ration system.Applied Energy 1988;30:37–51.
    [19]Aphornratana S, Eames IW. Experimental investigation of a combined ejector-
    absorption refrigerator.Int J of Energy Res 1998;22:195–207.
    [20]戴永庆,耿惠彬,蔡小荣,燃气空调及其应用,机电设备.2003,20(2).15-21
    [21]李先瑞,任莉,燃气空调的现状与展望,煤气与热力.2001,21(1).51-54
    [22]侯瑛,何耀东,发展天然气直燃型溴冷(热)水机的技术经济性分析,天津建设
    科技.2002,12(1).-35-37
    [23]Patnaik V, Perez_blanco H.Roll waves in falling films: an approximate treatment of
    the velocity field. International Journal of Heat and Fluid Flow 1996;17(1):63-70.
    [24]Ruheman,M.(1947). The transfer of heat and mass in an ammonia absorber.
    Transcation of the Institute of Chemical Engineerings, 1947:17-20
    [25]吴重光主编,中国系统仿真学会组织编写,仿真技术,北京:化学工业出版社,
    2000.5
    [26]王磊,陆震,溴化锂溶液 h-ξ 图的扩展,流体机械.2001,29(7).58-60
    [27]王磊 陆震,溴化锂水溶液热物性计算可视化程序,能源工程.2001,(2).37-40
    [28]苏金明,阮沈勇编 Matlab6.1 实用指南 北京:电子工业出版社,2002
    [29]McNeely LA. Thermodynamic properties of aqueous solutions of lithium bromide.
    ASHRAE Trans 1979;85(2):413–34
    [30]ASHRAE. ASHRAE handbook-1981 fundmentals[M].Atlanta,American society of
     72
    
    
    天津大学硕士学位论文 参考文献
    heating,refrigeration,and air conditioning engineering Inc,1981.275
    [31]H.T.Chua, H.K.Toh,A.Malek,K.C.Ng,K.Srinivasan. Improved thermodynamic
    property fields of Libr-H2O solution. International Journal of Refrigeration ,23(2000)412
    -429
    [32]Patterson MR, Perez-Blanco H. Numerical fits of properties of lithium-bromide
    water solutions. ASHRAE Trans 1988;94(2):2059–77.
    [33]Lee RJ, DiGuilio RM, Jeteter SM, Teja AS. Properties of lithium bromide-water
    solutions at high temperatures and concentrations-part II: density and viscosity.
    ASHRAE Trans 1990;96:709–14.
    [34]Jeter SM, Moran JP, Teja AS. Properties of lithium bromide-water solutions at high
    temperatures and concentrations-part III: specific heat. ASHRAE Trans 1992;
    98:137–49.
    [35]Lenard JLY, Jeter SM, Teja AS. Properties of lithium bromide-water solutions at
    high temperatures and concentrations-part IV: vapor pressure. ASHRAE Trans 1992; 98:
    167– 72.
    [36]Y.Kaita, thermodynamic properties of lithium bromide-water solutions at high
    temperatures, international journal of Refrigeration 24(2001)374-390
    [37]戴永庆主编,溴化锂吸收式制冷技术及应用[M],北京:机械工业出版社,1996
    [38]康凤举主编,现代仿真技术与应用,北京:国防工业出版社,2001.9
    [39]Meyer,C.A., McClintock,R.B., Silvestri, G.J., Spencer Jr., R.C., "ASME STEAM
    TABLES, Thermodynamics and Transport Properties of Steam",Sixth Edition,ASME
    Press,1993
    [40]M.J. Kirby, H. Perez-Blanco, Adesign model for horizontal tube water/lithium
    bromide absorbers, in: Heat Pumpand Refrigeration Systems Design, Analysis and
    Applications,vol. 32, AES, American Society of Mechanical Engineers, New York, 1994
    [41]X. Hu, A.M. Jacobi, The inter tube falling film: Part 1 –flow characteristics mode
    transition and hysteresis, J. Heat Transfer 118 (1996) 616–625.
    [42]X. Hu, A.M. Jacobi, Departure-site spacing for liquid droplets and jet falling
     73
    
    
    天津大学硕士学位论文 参考文献
    between horizontal circular tubes,Exp. Thermal Fluid Sci. 16 (1998) 322–331.
    [43]D. Yung, J.J. Lorenz, E.N. Ganic, Vapor/liquid interaction and entrainment in falling
    film evaporators, J. Heat Transfer 102 (1980) 20–25.
    [44]章熙民,任泽霈,梅飞鸣编著,传热学,北京:中国建筑工业出版社,1993.6(第
    三版)
    [45]J.W. Andberg, G.C. Vliet, A simplified model for absorption of vapors into liquid
    films flowing over cooled horizontal tubes, ASHRAE Trans. 93 (2) (1987) 2454–2463.
    [46]S. Sideman, H. Horn, D. Moalem, Transport characteristics of films flowing over
    horizontal smooth tubes, Int. J. Heat Mass Transfer 21 (1978) 285–294.
    [47]A.H.P. Skelland, S.S. Minhas, Dispersed phase mass transfer during drop formation
    and coalescence in liquid–liquid extraction, AlChE J. 17 (6) (1971) 1316–1324.
    [48]P.M. Heertjes, W.A. Holve, H. Talsma, Mass transfer between isobutanol and water in
    a spray-column, Chem.Eng. Sci. 3 (1954) 122–142.
    [49] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press,
    New York, 1978.
    [50]李大庆等,吸收器二维热质交换模型的研究,流体机械,1995;23(6):51-54
    [51]T. Nomura, N. Nishimura, S. Wei, S. Yamaguchi, Heat and mass transfer mechanism
    in the absorber of water/LiBr conventional absorption refrigerator: experimental
    examination by visualized model, in: International Absorption Heat Pump Conference, vol.
    31, AES, American Society of Mechanical Engineers, New York, 1993, pp. 203–208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700