类固醇受体辅活化子-3在炎症/免疫反应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究证实,严重创伤或感染后发生明显的GCR(GR表达或功能下调)、炎症介质(NF-κB、AP-1)功能增强和炎性细胞因子(TNF-α、IL-1β、IL-6等)大量分泌,三者相互影响,互为因果,形成级联式放大效应,引发SIRS。SIRS是创伤或感染后天然免疫反应过度激活所致,是导致继发性全身性损害的主要原因。伴随SIRS的发生发展,由于内源性抗炎症介质的过量释放,可引起机体发生以细胞免疫为主的免疫功能抑制。因此,深入探讨SIRS发生发展及随后免疫抑制的分子机制,具有重要的临床意义。
     SRC家族作为核受体和其它转录因子的转录辅活化子,由SRC-1、SRC-2和SRC-3组成,以配体依赖模式与核受体相互作用,通过组蛋白乙酰化/甲基化和募集另外的辅因子,显著增强核受体依赖的转录。尽管目前关于SRC蛋白在调节机体生长发育、能量代谢以及部分肿瘤形成等方面的研究已积累了很多资料,但关于它在炎症/免疫反应中的作用,目前知之甚少。
     我们通过海外合作的方式从美国休斯顿贝勒医学院成功引进SRC-3基因敲除小鼠的亲代小鼠,并进行了繁殖。在成功繁殖并鉴定的基础上,我们分两个部分探讨了SRC-3在炎症和免疫反应中的作用。首先分别从体内、体外两方面探讨了SRC-3在SIRS发生发展中的作用:1)以5mg/kg体重LPS腹腔注射为炎症反应动物模型,观察SRC-3基因敲除对炎症反应早期炎性细胞因子分泌及肝、脾组织中GR、NF-κB、AP-1表达及核转位的影响;2)在腹腔巨噬细胞原代培养的基础上,在10μg/ml培养体系LPS诱导下,从炎性细胞因子的基因转录、炎症介质的活性等方面观察了SRC-3蛋白缺失对腹腔巨噬细胞激活的影响。其次通过细菌负荷实验观察了SRC-3在天然免疫反应中的作用,并在此基础上,进一步通过烧伤和LPS诱导炎症反应模型,探讨SRC-3与机体免疫功能抑制的关系。
     主要结果:
     1、在成功繁殖逐渐扩大种群的基础上,通过PCR和Western blot方法分别对子代小鼠进行基因表型和蛋白表型鉴定,成功获得一批SRC-3基因敲除小鼠,为下步实验打下了良好的基础;
     2、SRC-3~(+/+)小鼠肝、脾组织均表达SRC-3蛋白,且脾组织表达水平显著高于肝组织,超出约55.8%;
     3、5mg/kg LPS腹腔注射后,SRC-3~(-/-)组小鼠一般情况较SRC-3~(+/+)组小鼠轻,两组肝、脾、肾、心肌及胸腺病理变化未见明显差别;
     4、LPS腹腔注射后1h、4h两组血清TNF-α、IL-1β、IL-6、IL-10的水平均显著升高,但SRC-3~(+/+)组、SRC-3~(-/-)组小鼠相比,血清TNF-α、IL-1β、IL-6水平SRC-3~(-/-)组显著低于SRC-3~(+/+)组,IL-10水平SRC-3~(-/-)组却显著高于SRC-3~(+/+)组;
     5、正常情况下,SRC-3~(+/+)组腹腔巨噬细胞TNF-α、IL-1β、IL-6、IL-10 mRNA与SRC-3~(-/-)组相比,表达差异无统计学意义;体外LPS刺激后两组表达水平均显著升高,其中SRC-3~(-/-)组TNF-α、IL-1β、IL-6 mRNA显著低于SRC-3~(+/+)组,IL-10 mRNA显著高于SRC-3~(+/+)组;
     6、在肝组织,无论是SRC-3~(+/+)组小鼠还是SRC-3~(-/-)组LPS刺激引起GR蛋白表达及核转位均显著降低,但SRC-3~(-/-)组下降幅度显著低于SRC-3~(+/+)组;同样,LPS刺激后SRC-3~(-/-)组脾组织GR表达水平下降幅度显著低于SRC-3~(+/+)组,SRC-3~(+/+)组小鼠GR核转位明显降低,而SRC-3~(-/-)组无显著变化;
     7、LPS刺激早期两组小鼠肝、脾组织IκB-α蛋白水平显著降低,以1h降低最明显,其中SRC-3~(-/-)组小鼠下降幅度显著低于SRC-3~(+/+)组;两组小鼠肝、脾组织NF-κB p65/p50蛋白表达水平及核转位程度显著增加,SRC-3~(+/+)组、SRC-3~(-/-)组相比,SRC-3~(-/-)组小鼠NF-κB p65/p50蛋白表达上升幅度显著大于SRC-3~(+/+)组,而核转位程度显著低于SRC-3~(+/+)组;无论是SRC-3~(+/+)组还是SRC-3~(-/-)组小鼠,LPS刺激引起肝、脾组织IRF-1蛋白表达水平显著增加,并且在相应时相点SRC-3~(-/-)组小鼠均显著低于SRC-3~(+/+)组;
     8、SRC-3~(+/+)组、SRC-3~(-/-)组小鼠肝、脾组织在LPS刺激后c-Jun/c-Fos蛋白表达及核转位程度均显著增加,1h为峰值,在相应时相点SRC-3~(-/-)组小鼠均显著低于SRC-3~(+/+)组;
     9、LPS刺激后SRC-3~(+/+)组、SRC-3~(-/-)组小鼠肝组织SRC-1蛋白表达均显著降低,SRC-3~(-/-)组小鼠变化程度显著小于SRC-3~(+/+)组;肝组织SRC-1蛋白核内水平在SRC-3~(+/+)组小鼠明显降低,而SRC-3~(-/-)组小鼠却显著增加;两组脾组织均未明确检测到SRC-1蛋白表达;
     10、LPS刺激后SRC-3~(-/-)组小鼠SRC-2蛋白表达及核内水平在相应时相点均显著高于SRC-3~(+/+)组,其中在肝组织,SRC-3~(+/+)组、SRC-3~(-/-)组小鼠均显著增加,而在脾组织,SRC-3~(+/+)组降低,SRC-3~(-/-)组升高;
     11、正常情况下,SRC-3~(+/+)组腹腔巨噬细胞GR蛋白表达水平与SRC-3~(-/-)组相比无显著差异,LPS刺激4h后两组均显著降低,但SRC-3~(-/-)组降低程度显著低于SRC-3~(+/+)组;
     12、正常情况下,SRC-3~(+/+)组腹腔巨噬细胞NF-κB p65显著高于SRC-3~(-/-)组,LPS刺激4h后两组表达水平均显著升高,但SRC-3~(-/-)组升高幅度远远高于SRC-3~(+/+)组;
     13、正常情况下,SRC-3~(+/+)组腹腔巨噬细胞c-Jun/c-Fos蛋白表达水平与SRC-3~(-/-)组相比无显著性差异,LPS刺激4h后两组表达水平均显著升高,但SRC-3~(-/-)组升高幅度远远低于SRC-3~(+/+)组;
     14、通过细菌清除实验发现,SRC-3~(-/-)小鼠血液中活菌量显著多于SRC-3~(+/+)小鼠;注射后24h、48h SRC-3~(-/-)小鼠肝、脾及胸腺组织内细菌含量显著多于SRC-3~(+/+)小鼠,而肾组织中细菌含量均较少,两者相差不显著;
     15、正常情况下,两组小鼠血浆IL-2、sIL-2R水平没有显著差别;15%-20%Ⅲ°烧伤后24h,无论是SRC-3~(+/+)组还是SRC-3~(-/-)组,血浆IL-2、sIL-2R水平均显著升高,其中SRC-3~(-/-)组小鼠血浆IL-2显著低于SRC-3~(+/+)组,血浆sIL-2R含量升高幅度却显著大于SRC-3~(+/+)组;5mg/kg体重LPS刺激24h后,无论是SRC-3~(-/-)组小鼠还是SRC-3~(+/+)组,血浆IL-2水平均未见显著变化,而血浆sIL-2R含量却均显著升高,且SRC-3~(-/-)组小鼠升高幅度显著高于SRC-3~(+/+)组;
     16、正常情况下,SRC-3~(-/-)组小鼠外周血、脾脏和胸腺CD3~+、CD4~+及CD4~+/CD8~+比值不同程度降低,CD8~+升高;烧伤或LPS刺激后24h两组小鼠外周血和脾脏CD3~+、CD4~+及CD4~+/CD8~+比值均不同程度下降,且SRC-3~(-/-)组CD3~+、CD4~+显著低于SRC-3~(+/+)组,CD4~+/CD8~+比值与SRC-3~(+/+)组相比无显著差别。
     结论:
     1、SRC-3与炎性细胞因子的合成释放有关,其蛋白缺失可抑制LPS诱导的TNF-α、IL-1β、IL-6的基因转录及释放,改善炎症反应中机体的整体效应,缓解腹腔巨噬细胞的激活程度;
     2、SRC-3对GR蛋白表达及核转位有抑制作用,LPS刺激后GR蛋白表达及核转位显著降低,产生明显的GCR,SRC-3蛋白缺失可缓解其程度;
     3、SRC-3对NF-κB炎症信号转导通路有正性调控作用。SRC-3蛋白缺失可通过抑制炎症反应早期IκB-α水平下调,减少NF-κB核转位,从而导致其基因转录调控功能下降;
     4、SRC-3参与AP-1炎症信号转导通路的激活,SRC-3蛋白缺失可抑制LPS诱导的AP-1蛋白表达水平及活性,这可能是由于TNF-α、IL-1β等致炎细胞因子合成释放相对不足所致;
     5、SRC家族成员间存在相互补偿,SRC-1、SRC-2对SRC-3蛋白缺失具有不同程度的补偿效应,但这种补偿效应是有限的;
     6、SRC-3在维持机体正常的免疫反应中起重要作用。SRC-3缺失可抑制炎性细胞因子的转录和释放,引起对细菌及产物的吞噬及清除功能下降,导致天然免疫功能减弱,同时引起CD3~+、CD4~+及CD4~+/CD8~+比值显著下降,使细胞免疫功能低下;
     7、SRC-3可能通过“双向性”作用精细地调节着细胞免疫,其缺失一方面可促进IL-10表达,导致机体免疫功能抑制加重,另一方面可减轻CD3~+、CD4~+及CD4~+/CD8~+比值的下降程度,也表明SRC-3可能部分参与了SIRS后免疫抑制的发生发展。
Previous study have confirmed that severe trauma or infection can cause glucocorticoid resistance (down-regulation of the expression or the function of glucocorticoid receptor), hyperactivated mediators of inflammation (nuclear factor-kappa B, activator protein-1) as well as hypersecretion of the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). This kind of situation will continue and the interaction of the three factors will lead to the amplification of inflammation reaction and the initiation of systemic inflammatory response syndrome (SIRS). SIRS is the result of hyperactivity of innate immunity and the main cause of subsequent whole body damage, too. The excessive release of endogenous mediators of anti-inflammatory in concomitant with the development of SIRS is an important causative factor of subsequent immunosuppression, mainly of the cell immune. Therefore, investigating the molecular mechanism of the development of SIRS and the subsequent immunosuppression is of theoretical and clinical significance.
     The family of steroid receptor coactivator (SRC) is composed of SRC-1, SRC-2 and SRC-3. These cofactors interact with nuclear receptors in a ligand-dependent manner and enhance transcriptional activation of the receptor via histone acetylation/methylation and recruitment of additional cofactors. A great deal of information about SRCs has already been accumulated in regulating growth and development, energy metabolism as well as formation of some tumors. But the regulatory effects of SRCs on inflammatory/immune response still remain unclear.
     The SRC-3 knockout mice were introduced from Baylor College of Medicine (Huston, USA) to our laboratory and colonized. On the bases of successful reproduction and identification, we carried out two parts of experiments to explore the regulatory effects of SRCs on inflammatory/immune response. In the first part of experiments, the function of SRC-3 during the development of SIRS was studied in vivo and in vitro: 1) on the model of an intraperitoneal injection of LPS (5mg/kg body weight), the effects of SRC-3 knock-out on the secretion of pro-inflammatory cytokines as well as the expression and nuclear translocation of glucocorticoid receptor, nuclear factor-kappa B, activator protein-1 in liver and spleen were observed; 2) after 10μg/ml LPS challenging, the effects of SRC-3 protein depletion on the activation of primary cultured peritoneal macrophages were studied, including the transcription and bioactivity of pro-inflammatory cytokines. In another part of experiment, the role of SRC-3 in innate immunity was studied on bacteria loading model. The relation of SRC-3 and immunosuppression was studied on animal models of burn- and LPS injection-induced inflammatory response.
     Main results:
     1. Based on successful reproduction and colonial expanding, we used PCR and Western blot to characterize the off-springs on both gene and protein level. A number of SRC-3 knock-out mice were identified, which provided a good condition for the following experiments.
     2. SRC-3 was expressed in the hepatic and splenic tissue from SRC-3~(+/+) mice, with much higher expression level (net excess 55.8%) in spleen than in liver tissue.
     3. After an intraperitoneal injection of LPS with a dose of 5mg/kg body weight, general physiological status in SRC-3~(-/-) group was much easier than that of SRC-3~(+/+) group, but no obvious pathological changes were found in liver, spleen, kidney, myocardium and thymus in mice of the two groups.
     4. After an intraperitoneal injection of LPS, the two groups exhibited a higher expression of serum TNF-α, IL-1β, IL-6 and IL-10 than the normal level. But in contrast to the SRC-3~(+/+) group, the serum level of TNF-α, IL-1βand IL-6 in SRC-3~(-/-) group was significantly lower, however, the IL-10 significantly higher than that of wildtype mice.
     5. Under normal condition, no statistic differences in the level of TNF-α, IL-1β, IL-6, IL-10 mRNA of peritoneal macrophages were observed between the SRC-3~(+/+) group and SRC-3~(-/-) group. After LPS stimulation in vitro, the levels of above cytokines in both groups were markedly elevated at 4h, while the increased extent of TNF-α, IL-1β, IL-6 mRNA were obviously less but IL-10 mRNA more in SRC-3~(-/-) group than that of SRC-3~(+/+) group.
     6. The levels of GR expression and its nuclear translocation in liver were significantly reduced in both SRC-3~(+/+) group and SRC-3~(-/-) group after LPS challenging. However, the reduction extent of SRC-3~(-/-) group is significant less than that of SRC-3~(+/+) group. The reduction extent of GR expression in spleen from SRC-3~(-/-) group is significant less than that from SRC-3~(+/+) group. The nuclear translocation of GR in SRC-3~(+/+) mice was significantly reduced, but no significant changes were observed in SRC-3~(-/-) group.
     7. After LPS stimulation, the IκB-αin liver and spleen was markedly reduced and reached the nadir at 1h in both groups, and the reduction extent of SRC-3~(-/-) group was obviously lower than that of SRC-3~(+/+) group. The levels of NF-κB p65/p50 expression and its nuclear translocation in liver and spleen in both groups was markedly elevated, and the elevated extent of its expression in SRC-3~(-/-) group was obviously larger compared with that of SRC-3~(+/+) group, but the level of its nuclear translocation in SRC-3~(-/-) group was obviously lower than that of SRC-3~(+/+) group. The interferon regulatory factor-1 (IRF-1) expression in liver and spleen in both groups was markedly elevated, and it was obviously less elevation in SRC-3~(-/-) group than that of SRC-3~(+/+) group at matched time points.
     8. After LPS stimulation, the levels of c-Jun/c-Fos expression and its nuclear translocation in liver and spleen in both groups were markedly elevated and reached the peak at 1h, but the increased levels in SRC-3~(-/-) group were significantly lower than those in SRC-3~(+/+) group.
     9. After LPS stimulation, the hepatic SRC-1 in both groups were significantly reduced, but the changes in SRC-3~(-/-) group were less than those in SRC-3~(+/+) group. And the level of intranuclear in the liver was significantly reduced in SRC-3~(+/+) group, but increased in SRC-3~(-/-) group. No SRC-1 in spleen of two groups was detectable
     10. At matched time points, the expression and intranuclear levels of SRC-2 were obviously higher in SRC-3~(-/-) group than those of SRC-3~(+/+) group. They were both significantly increased in the liver of two groups, but in the spleen, they were reduced in SRC-3~(+/+) group and increased in SRC-3~(-/-) group.
     11. Under normal condition, the expression level of GR on peritoneal macrophage in SRC-3~(+/+) group did not differ from that of SRC-3~(-/-) group. The GR expression on peritoneal macrophage in both groups at 4h after LPS stimulation were markedly reduced, but the reduction extent of SRC-3~(-/-) group was obviously lower than that of SRC-3~(+/+) group.
     12. Under normal condition, the expression level of peritoneal macrophage NF-κB p65 in SRC-3~(+/+) group was obviously higher than that of SRC-3~(-/-) group. The expression level of peritoneal macrophage NF-κB p65 in both groups at 4h after LPS stimulation were markedly elevated, but the increased extent of SRC-3~(-/-) group was obviously larger than that of SRC-3~(+/+) group.
     13. Under normal condition, the expression level of peritoneal macrophage c-Jun/c-Fos in SRC-3~(+/+) group was not different from that of SRC-3~(-/-) group. After LPS stimulation, the expression level of peritoneal macrophage c-Jun/c-Fos in both groups were markedly elevated at 4h, but the increased extent of SRC-3~(-/-) group was obviously lower than that of SRC-3~(+/+) group.
     14. The results acquired through bacteria loading experiment showed that the viable organism content in peripheral blood in SRC-3~(-/-) group was obviously more than that of SRC-3~(+/+) group. And at 24h and 48h after bacteria injection, the bacterial content in liver, spleen as well as thymus in SRC-3~(-/-) group was markedly more than those of SRC-3~(+/+) group, but the bacterial content in nephridial tissue was low and no difference between two groups.
     15. Under normal condition, no significant differences in the serum level of IL-2 and sIL-2R were observed between two groups. After TBSA 15%-20%Ⅲ°burn injury, the level of serum IL-2 and sIL-2R significantly reduced at 24h in both SRC-3~(+/+) group and SRC-3~(-/-) group, but serum IL-2 was was markedly lower, serum sIL-2R was obviously higher in SRC-3~(-/-) group than those of SRC-3~(+/+) group, respectively. The levels of serum IL-2 after 5mg/kg body weight of LPS intraperitoneal injection in both groups were no significant difference from normal levels, but sIL-2R was markedly elevated. And the increased extent of serum sIL-2R in SRC-3~(-/-) group was obviously larger than that of SRC-3~(+/+) group.
     16. Under normal condition, the fraction of CD3~+, CD4~+ cell of T cell subgroup decreased with distinct extent in peripheral blood, spleen and thymus in SRC-3~(-/-) group, in concomitant with the increase of the ratio of CD8~+ cells and the decrease of the ratio of CD4~+/CD8~+. After burn injury or LPS injection, the proportion of CD3~+, CD4~+ as well as the ratio of CD4~+/CD8~+ in peripheral blood, spleen and thymus were significantly reduced at 24h in both SRC-3~(+/+) group and SRC-3~(-/-) group. However, the reduction of CD3~+, CD4~+ in SRC-3~(-/-) group was significant less than that of SRC-3~(+/+) group, and the ratio of CD4~+/CD8~+ of two groups were no difference.
     Conclusion:
     1. SRC-3 is related with the synthesis and release of pro-inflammatory cytokines. The depletion of SRC-3 protein could suppress the gene transcription and release of TNF-α、 IL-1β、IL-6 induced by LPS, improve system effect during inflammatory reaction, relieve the activation of peritoneal macrophage.
     2. SRC-3 is relavent to the expression and nuclear translocation of GR. The depletion of SRC-3 protein could relieve the LPS-induced response of down-regulation of the expression and nuclear translocation of GR as well as glucocorticoid resistance.
     3. The expression and activity of NF-κB may be concerned with the SRC-3 protein which involves in regulation of NF-κB signal transduction pathway. The absence of SRC-3 protein could result in suppression of gene transcription activity through reversing the down-regulation of IκB-αand subsequently inhibiting nuclear translocation of NF-κB during the early stage of inflammatory response.
     4. SRC-3 is concerned with the activation of AP-1 signal transduction pathway. The absence of SRC-3 protein could result in partial inhibition of LPS-induced the expression and activity of AP-1 owing to relative deficient of the synthesis and release of pro-inflammatory cytokines, such as TNF-α、IL-1β.
     5. There is compensation effect among the members of SRC family. The SRC-1 and SRC-2 could compensate consequence, to certain extent, induced by the absence of SRC-3 protein, but it is limited.
     6. SRC-3 plays an important role in mantaining normal immune response. The absence of SRC-3 protein could result in the attenuation of innate immunity function including suppressing the LPS-induced transcription activity and release of TNF-α、IL-1β、IL-6 and cutting down the function of phagocytotic and eliminating bacterium as well as its production and the suppression of cellular immune function through anomaly depression of CD3~+ and CD4~+ T cells as well as the CD4~+/CD8~+ ratio.
     7. SRC-3 may work as a fine tuner to adjust the cell immune in a“bi-direction”manner. The absence of SRC-3 protein could aggravate immunosuppression through promoting the expression of IL-10 on one side, and on the other side extenuate the degression of CD3~+ and CD4~+ T cells as well as the CD4~+/CD8~+ ratio, which indicate SRC-3 involving in the occurance of immunosuppression accompanied with SIRS.
引文
1. Baue A E, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndromes(MODS), multiple organ failure(MOF):are we winning the battle[J]? Shock, 1998, 10(2):79-89
    2. Baue A E. Sepsis, multi-organ dysfunction syndrome(MODS) and multiple organ failure (MOF). Prevention is better than treatment[J]. Minerva Anestesiol, 1999, 65(7-8):477-480
    3. 李军, 粟永萍, 徐建明, 等. 安定-氯胺酮麻醉对烧伤小鼠早期炎症反应的影响[J]. 中华麻醉学杂志, 2005, 25(3):190-192.
    4. 李军, 史忠, 粟永萍. 烧伤后小鼠血清皮质醇及肝组织糖皮质激素受体的变化[J]. 第三军医大学学报, 2002, 24(12):1427-1429.
    5. 王明海, 太光平, 张雅萍, 等. 重组腺病毒对烫伤大鼠肝组织核因子-κB 活性的调控[J]. 中华烧伤杂志, 2002, 18(1):42-44.
    6. 王军平, 粟永萍, 赵景宏, 等. TNF-α和IL-1 对大鼠肝细胞糖皮质激素受体表达及功能的影响[J]. 第三军医大学学报, 2002, 24(5):585-587.
    7. Menger M D, Vollmar B. Surgical trauma: hyperinflammation versus immunosuppression[J]? Langenbecks Arch Surg, 2004, 389(6): 475-484
    8. Harris B H, Gelfand J A. The immune response to trauma[J]. Semin Pediatr Surg, 1995, 4: 77-82.
    9. Marcu A C, Kielar N D, Paccione K E, et al. Androstenetriol improves survival in a rodent model of traumatic shock[J]. Resuscitation, 2006, 71(3):379-386.
    10. Iwasaka H, Noguchi T. Th1/Th2 balance in systemic inflammatory response syndrome (SIRS)[J]. Nippon-Rinsho, 2004, 62(12): 2237-2243
    11. Chen H, Lin R J, Schiltz R L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms amultimeric activation complex with P/CAF and CBP/p300[J]. Cell, 1997, 90: 569-580.
    12. Li H, Gomes P J, Chen J D. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2[J]. Proc Natl Acad Sci USA, 1997, 94: 8479-8484.
    13. Takeshita A, Cardona G R, Koibuchi N, et al. TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1[J]. J Biol Chem, 1997, 272:27629-27634.
    14. Torchia J, Rose D W, Inostroza J, et al. The transcriptional co-activator p/CIP binds CBPand mediates nuclear-receptor function[J]. Nature, 1997, 387: 677-684.
    15. Liao L, Kuang S Q, Yuan Y, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1[J]. J Steroid Biochem Mol Biol, 2002, 83: 3-14.
    16. Wang Z, Rose D W, Hermanson O, et al. Regulation of somatic growth by the p160 coactivator p/CIP[J]. Proc Natl Acad Sci USA, 2000, 97:13549-13554.
    17. Xu J, Liao L, Ning G, et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development[J]. Proc Natl Acad Sci USA, 2000, 97: 6379-6384.
    18. Kuang S Q, Liao L, Zhang H, et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice[J]. Cancer Res, 2004, 64: 1875-1885.
    19. Kuang S Q, Liao L, Wang S, et al. Mice lacking the amplified in breast cancer 1/steroid receptor coactivator-3 are resistant to chemical carcinogen-induced mammary tumorigenesis[J]. Cancer Res, 2005, 65: 7993-8002
    20. Torres-Arzayus M I, Font de Mora J, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene[J]. Cancer Cell, 2004, 6: 263-274.
    21. Coste A, Antal M C, Chan S, et al. Absence of the steroid receptor coactivator-3 induces B-cell lymphoma[J]. EMBO J, 2006, 25: 2453-2464.
    22. Wu R C, Qin J, Hashimoto Y, et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/ RAC-3/TRAM-1) coactivator activity by I kappa B kinase[J]. Mol Cell Biol, 2002, 22: 3549-3561.
    23. Xu J, Qiu Y, Demayo F J. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1(SRC-1) gene[J]. Science, 1998, 279(20): 1922-1925.
    24. 杜智勇, 粟永萍. SRC-3 基因敲除小鼠的饲养繁殖及鉴定[J]. 第三军医大学学报, 2005, 27(5):373-375
    25. Xu J, O,Malley B W. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function[J]. Rev Endocr Metab Disord, 2002, 3:185-192.
    26. 刘都户,粟永萍,张渭,等. 烫伤大鼠血浆 TNF-α 水平的变化及 αMSH、合成肽 KPV的调节作用研究[J]. 中国危重病急救医学, 2001; 13(7):410-412
    27. 刘都户,粟永萍,张渭,等. 烫伤大鼠血浆白介素 1β 水平的变化及调节[J]. 第三军医大学学报, 2001;23(11):1257-1259
    28. Chen J, Zhou Y P, Rong X Z. An experimental study on systemic inflammatory response syndrome induced by subeschar tissue fluid[J]. Burns, 2000:26:149-155.
    29. Grenier J, Trousson A, Chauchereau A, et al. Selective recruitment of p160 coactivators on glucocorticoid-regulated promoters in Schwann cells[J]. Mol Endocrinol, 2004, 18:2866-2879.
    30. Na SY, Lee SK, Han SJ, et al. Steroid Receptor Coactivator-1 Interacts with the p50 Subunit and Coactivates Nuclear Factor kappa B-mediated transactivations[J]. J Biol Chem, 1998, 273:10831-10834.
    31. Lee S K, Kim J H, Lee J W. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits[J]. J Biol Chem, 1998, 273:16651-16654.
    32. Summer WR. Severe sepsis: new concepts in pathogenesis and management[J]. Am J Med Sci, 2004, 328: 193-195.
    33. Cavaillon JM, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis[J]. Scand J Infect Dis, 2003, 35: 535-544
    34. 马朋林. 全身炎症反应综合征发生机制及临床干预[J]. 中华儿科杂志, 2006, 44(8): 599-601
    35. Chen J, Zhou Y P, Rong X Z. An experimental study on systemic inflammatory response syndrome induced by subeschar tissue fluid[J]. Burns, 2000, 26(2):149-155
    36. Yao Y M, Redl H, Bahrami S, et al. The inflammatory basis of trauma/shock- associated multiple organ failure[J]. Inflamm Res, 1998, 47(5): 201-210
    37. Fukushima R, Alexander J W, Wu J Z. Time course of production of cytokines and prostaglandin E2 by macrophages isolated after thermal injury and bacterial translocation[J]. Circ Shock, 1994, 42:154-162.
    38. Dinarello C A, Cannon J G, Wolff S M. Tumor necrosis factor is an endogenous pyrogen and induces the production of interleukin 1[J]. J Exp Med, 1986, 163:1433-1450.
    39. Dinarello C A. Proinflammatory cytokines[J]. Chest, 2000, 118:503-508.
    40. Maass D L, Peters H D,White J. The time course of cardiac NF-κB activation and TNF-αsecretion by cardiac myocytes after burn injury[J]. Shock, 2002, 17(4):293-299.
    41. Yeh F L, Lin W L, Shen H D. Changes in circulating levels of interleukin 6 in burned patients[J]. Burns, 1999, 25:131-136.
    42. Raf F, De Jongh, Kris C. Interleukin-6 and perioperative thermoregulation and HPA-axis activation[J]. Cytokine, 2003, 21:248-256.
    43. Vanni H E, Gordon B R, Levine D M.Cholesterol and interleukin-6 concentrations relate to outcomes in burn-injured patients[J]. J Burn Care Rehabil, 2003, 24(3):133-141.
    44. Thomas J C, Charlene Brewer J P. Acute stress suppresses proinflammatory cytokines TNF-α and IL-1β independent of a catecholamine-driven increase in IL-10 production[J]. J Neuroimmu, 2005, 159:119-128.
    45. Yeh F L, Lin W L, Shen H D. Changes in circulating levels of an anti-inflammatory cytokine interleukin 10 in burned patients[J]. Burns, 2000, 26:454-459.
    46. Ozbalkan Z,Aslar A K,Yildiz Y.Investigation of the course of proinflammatory and anti-inflammatory cytokines after burn sepsis[J]. Int J Clin Pract, 2004, 58(2):125-129.
    47. Opal S M, Huber C E. The role of interleukin-10 in critical illness[J]. Curr Opin Infect Dis, 2000, 13:221-226
    48. Pretolani M. Interleukin-10: an anti-inflammatory cytokine with therapeutic potential[J]. Clin Exp Alle, 1999, 29:1164-1171.
    49. Oberholzer A, Oberholzer C, Moldawer L L.Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug[J]. Crit Care Med, 2002, 30(1):s58-s63.
    50. Liu ZG. Molecular mechanism of TNF signaling and beyong[J]. Cell Res, 2005, 15(1):24-27.
    51. Grundy R I, Rothwell N J, Allian S M. Site-specific actions of interleukin-1 on excitotoxic cell death in the rat striatum[J]. Brain Res, 2002, 926:142-148.
    52. Medan D, Wang L, Yang X. Induction of neutrophil apoptosis and secondary necrosis during endotoxin-induced pulmonary inflammation in mice[J]. J Cell Physiol, 2002, 191(3):320-326.
    53. Allan S M, Tyrrell PJ, Rothwell N J. Interleukin-1 and neuronal injury[J]. Nat Rev Immunol, 2005, 5(8):629-640.
    54. Schmidt S, Rainer J, Ploner C. Glucocorticoid-induced apoptosis and glucocorticoidresistance: molecular mechanisms and clinical relevance[J]. Cell Death Differ, 2004, 11 (1):s45-s55.
    55. Distelhorst C W. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis[J]. Cell Death Differ, 2002, 9(1):6-19.
    56. Kofler R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells[J]. Histochem Cell Biol, 2000, 114(1):1-7.
    57. Riccardi C, Zollo O, Nocentini G. Glucocorticoid hormones in the regulation of cell death[J]. Therapie, 2000, 55(1):165-169.
    58. Smoak K A, Cidlowski J A. Mechanisms of glucocorticoid receptor signaling during inflammation[J]. Mech Ageing Dev, 2004, 125 (10-11): 697–706
    59. Marco B D, Massetti M, Bruscoli S, et al. Glucocorticoid-induced leucine zipper (GILZ)/NF-[kappa]B interaction: role of GILZ homo-dimerization and C-terminal domain[J]. Nucle Acid Res, 2007, 35(2): 517-528
    60. 李军, 史忠, 粟永萍. 烧伤后小鼠血清皮质醇及肝组织糖皮质激素受体的变化[J]. 第三军医大学学报, 2002, 24(12):1427-1429.
    61. Meduri G U,Yates C R. Systemic inflammation-associated glucocorticoid resistance and outcome of ARDS[J]. Ann N Y Acad Sci,2004,1024(6): 24-53
    62. Schwatz H J, Lowell F C, Melby J C. Steroid resistance in bronchial asthma[J]. Ann Intern Med, 1968, 69(3): 493-499.
    63. Werbajh S, Nojek I, Lanz R,et al. RAC-3 is a NF-κB coactivator[J]. FEBS Lett, 2000, 485(24): 195-199.
    64. Wu R C, Qin J, Hashimoto Y, et al. Regulation of SRC-3 (pCIP/ACTR/AIB- 1/RAC-3/TRAM-1) coactivator activity by IkB kinase[J]. Mol Cell Biol, 2002, 22(10):3549-3561.
    65. Okabe T, Yanase T, Nawada H. The role of AP-1 and NF-kappaB in glucocorticoid resistance[J]. Nippon Rinsho, 2005, 63(9): 1654-1659
    66. Webster J C, Oakley R H, Jewell C M, et al. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance[J]. Proc Natl Acad Sci USA, 2001, 98(12):6865-6870.
    67. 李军, 粟永萍, 王军平, 等. 氯胺酮调节炎症反应中类固醇受体辅活化子的表达[J].中国急救医学, 2007, 27(1):36-38
    68. 杜智勇, 粟永萍, 徐建明, 等. 严重烧伤对 SRC-3 基因敲除小鼠肝脏 NF-κB 表达及核转位的影响[J]. 第三军医大学学报, 2006, 28(8):743-745
    69. 杜智勇, 粟永萍, 徐建明, 等. 严重烧伤早期 SRC-3 基因敲除小鼠肝脏糖皮质激素受体表达变化的实验研究[J]. 第三军医大学学报, 2006, 28(17):1735-1737
    70. CarterA B, MonickM M, Hunninghake G W. Both Erk and p38 kinases are necessary for cytokine gene transcription[J]. Am J Respir Cell Mol Biol, 1999, 20: 751-758.
    71. Sen R, Baltimore D. Multiple nuclear factors interact with immunoglobulin enhancer sequences[J]. Cell, 1986, 46(5): 705-716.
    72. Iwai K, Lee BR, Hashiguchi M, et al. IkB-alpha-specific transcript regulation by the C-terminal end of c-Rel[J]. FEBS Lett, 2005, 579(1): 141-144.
    73. Li X, Massa PE, Hanidu A, et al. IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappaB-mediated inflammatory response program[J]. J Biol Chem, 2002, 277(47): 45129-45140.
    74. Lentsch AB, Ward PA. Activation and regulation of NF-KappaB during acute inflammation[J]. Clin Chem Lab Med, 1999, 37(3): 205-208.
    75. Auphan N, DiDonato J A, Rosette C, et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis[J]. Science, 1995, 270: 286-290.
    76. 吴娜, 夏佐中. 核转录因子 NF-κB 与脑损伤的研究进展[J]. 国际神经病学神经外科学杂志, 2006, 33(5): 453-457.
    77. Vasudevan KM , Gurumurthy S, Rangnekar VM. Suppression of PTEN expression by NF-kappaB prevents apoptosis[J]. Mol Cell Biol, 2004, 24(3): 1007-1021.
    78. Zou JY, Crews FT. TNF-alpha potentiates glutamate neurotoxicity by inhibiting glutamate up take in organotypic brain slice cultures: neurop rotection by NF-kappaB inhibition[J]. Brain Res, 2005, 1034 (122): 11-24.
    79. Luo G and Lee L Y. Stat5b inhibits NF-kappaB-mediated signaling[J]. Mol Endocrinol, 2000, 14:114-123.
    80. Shaulian E, Karin M. AP-1 as a regulator of cell life and death[J]. Nat Cell Biol, 2002, 4:E131-E136.
    81. Herrlich P. Cross-talk between glucocorticoid receptor and AP-1[J]. Oncogene, 2001,20:2465-2475.
    82. Chang L, Karin M. Mammalian MAP kinase signaling cascades[J]. Nature, 2001, 410:37-40.
    83. Karin M, Li Z G, Zandi E. AP-1 function and regulation[J]. Curr Opin Cell Biol, 1997, 9: 240-246.
    84. Brown J R. Fos family members induce cell cycle entry by activating cyclin D1[J]. Mol Cell Biol, 1998, 18: 5609-5619.
    85. Adcock I M, Brown C R, Barnes P J. Tumour necrosis factor α causes retention of activated glucocorticoid receptor within the cytoplasm of A549 cells[J]. Biolchem Biophys Res Comm, 1996, 225(2):545-550.
    86. Schule R, Rangarajan P, Kliewer S, et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor[J]. Cell, 1990, 62(21): 1217-1226.
    87. Yang Yen H F, Chambard J C, Sun Y L, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction[J]. Cell, 1990, 62(21): 1205-1215.
    88. Iwasaka H, Noguchi T. Th1/Th2 balance in systemic inflammatory response syndrome (SIRS)[J]. Nippon-Rinsho, 2004, 62(12): 2237-2243.
    89. Ogle C K, Mao J X, Wu J Z, et al. The production of tumor necrosis factor, interleukin 1, interleukin 6, and prostaglandin E2 by isolated enterocytes and gut macrophages: effect of lipopolysaccaride and thermal injury[J]. J Burn Care Rehabil, 1994, 15:470-477.
    90. Rumbaugh K P, Colmer J A, Griswold J A, et al. The effects of infection of thermal injury by pseudomonas aeruginosa pao1 on the murine cytokine response[J]. Cytokine, 2001, 16:160-168.
    91. Schwacha MG, Somers SD. Thermal injury induced immunosuppression in mice: the role of macrophage derived reactive nitrogen intermediates[J]. J Leukoc Biol, 1998, 63:51-58.
    92. Masson I, Mathieu J, Nolland X B, et al. Role of nitric oxide in depressed lymphproliferative responses and altered cytokine production following thermal injury in rats[J]. Cell Immunol, 1998,186:121-132.
    93. Nake H, Endo S, Inada K, et al. Plasma concentrations of type II phospholipase A2, cytokines, ecosinoids in patients with burns[J]. Burns, 1995, 21:422-426.
    94. Prieser J, Reper P, Vlasselaer D, et al. Nitric oxide production is increased in patientsafter burn injury[J]. J Trauma, 1996, 40:368-371.
    95. 李军, 粟永萍, 刘合年, 等. 安定-氯胺酮麻醉对烧伤小鼠早期三种炎性细胞因子影响[J]. 第三军医大学学报, 2004, 26(2):98-100.
    96. Schwacha MG. Macrophages and post-burn immune dysfunction[J]. Burns, 2003, 29(1):1-14.
    97. Mackrell P J, Daly J M, Mestre J R, et al. Elevated expression of cyclooxygenase-2 contributes to immune dysfunction in a murine model of trauma[J]. Surgery, 2001, 130:826-833.
    98. Strong V E, Mackrell P J, Concannon E M, et al. Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival[J]. Shock, 2000, 14:374-379.
    99. McCarter M D, Mack V E, Daly J M, et al. Trauma-induced alterations in macrophage function[J]. Surgery, 1998, 123:96-101.
    100.Deitch E A. Multiple organ failure: pathophysiology and potential future therapy[J]. Ann Surg, 1992, 216:117-134.
    101.David P S, Angela T, Kristian B, et al. LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action[J]. Immunobiology, 2005, 210(19):97-107.
    102.Sung H U, Dong K R, Suhkneung P. Involvement of protein kinase C and tyrosin kinase in tumoricidal activation of macrophage induced by Streptococcus pneumoniae type II capsular polysaccharide[J]. Int Immuno, 2002, 2(1):129-137.
    103.Gerard C, Bruyns C, Marchant A, et al. Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia[J]. J Exp Med, 1993, 177(2): 547-550.
    104.Beato M. Transcriptional control by nuclear receptors[J]. FASEB J, 1991, 5: 2044-2051.
    105.Diamond M I, Miner J N, Yoshinaga S K, et al. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element[J]. Science, 1990, 249, 1266-1272.
    106.Riccardi C, Cifone M G, Migliorati, G. Glucocorticoid hormone-induced modulation of gene expression and regulation of T-cell death: role of GITR and GILZ, two dexamethasone-induced genes[J]. Cell Death Differ, 1999, 6: 1182-1189.
    107.Ray A and Prefontaine K E. Physical association and functional antagonism between thep65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor[J]. Proc Natl Acad Sci USA, 1994, 91: 752-756
    108.Scheinman R I, Cogswell P C, Lofquist A K, et al. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids[J]. Science, 1995, 270: 283-286
    109.赵玉华, 刘秉文. 核因子 κB 与糖皮质激素受体途径的拮抗作用[J]. 生理科学进展, 2002, 33(3):261-264
    110.Schule R, Rangarajan P, Kliewer S, et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor[J]. Cell, 1990, 62: 1217-1226
    111.Siebenlist U, Franzoso C, Brown K, et al. Structure, regulation and function of NF-κB[J]. Annu Rev Cell Biol, 1994, 10: 405-455
    112.Caradonna L, Mastronardi ML, Magrone T, et al. Biological and clinical significance of endotoxemia in the course of hepatitis C virus infection[J]. Curr Pharm Des, 2002, 8: 995-1005
    113.Aggarwal B B. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappa B[J]. Ann Rheum Dis, 2000, 59(1): s6-s16.
    114.Lo C J, Cryer H G, Fu M et al . Regulation of macrophage eicosanoid generation is dependent on nuclear factor kappaB[J]. J Trauma, 1998, 45(1): 19-23
    115.Chen C, Chen Y H, Lin W W. Involvement of p38 mitogen - activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages[J]. Immunology, 1999, 97(1):124
    116.Seger R, Krebs E G. The MAPKsignaling cascade[J]. FASEB J, 1995, 9(9): 726-735.
    117.Sigal L H. The Mitogen-Activated Protein Kinase Family in Inflammatory Signaling[J]. 2007, 13(2):96-99
    118.Borregaard N, Elsbach P, Ganz T, et al. Innate immunity: from plants to humans[J]. Immunol Today, 2000, 21: 68- 70
    119.Takeda K, Akira S. Toll-like receptors in innate immunity[J]. Int Immunol, 2005, 17: 1- 14
    120.Walz C R, Zedler S, Schneider C P, et al. Depressed T cell-derived IFN-gamma following trauma-hemorrhage: a potential mechanism for diminished APC responses[J].Langenbecks Arch Surg, 2007, 22.
    121.Kim HP, Imbert J, Leonard WJ. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system[J]. Cytokine Growth Factor Rev, 2006, 17(5):349-366
    122.Nelson DL, Warner C. The hueman interleukin 2 recepter: normal and abnormal expresslon in T cells and retroviruses[J]. Ann Int Med, 1996, 105(4):560-563
    123.詹剑华, 毛远桂, 张红艳, 等. 严重烧伤患者细胞免疫功能研究[J]. 中国微循环, 2004, 8(1):48-50
    124.Pellegrini JD , De AK , Kodys K , et al . Relationships between T lymphocyte apoptosis and anergy following trauma[J]. J Surg Res, 2000, 88: 200-206
    125.Montoya MC, Sancho D, Vicente Manzanares M, et al. Cell adhersion and polarity during immune interactions[J]. Immunol Rev, 2002, 186:68-82
    1. Baue A E, Durham R, Faist E. Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndromes(MODS), multiple organ failure(MOF):are we winning the battle[J]? Shock, 1998, 10(2):79-89
    2. Baue A E. Sepsis, multi-organ dysfunction syndrome(MODS) and multiple organ failure (MOF). Prevention is better than treatment[J]. Minerva Anestesiol, 1999, 65(7-8):477-480
    3. 李军, 粟永萍, 徐建明, 等. 安定-氯胺酮麻醉对烧伤小鼠早期炎症反应的影响[J]. 中华麻醉学杂志, 2005, 25(3):190-192.
    4. 李军, 史忠, 粟永萍. 烧伤后小鼠血清皮质醇及肝组织糖皮质激素受体的变化[J]. 第三军医大学学报, 2002, 24(12):1427-1429.
    5. 王明海, 太光平, 张雅萍, 等. 重组腺病毒对烫伤大鼠肝组织核因子-κB 活性的调控[J]. 中华烧伤杂志, 2002, 18(1):42-44.
    6. 王军平, 粟永萍, 赵景宏, 等. TNF-α和IL-1 对大鼠肝细胞糖皮质激素受体表达及功能的影响[J]. 第三军医大学学报, 2002, 24(5):585-587.
    7. Schwatz H J, Lowell F C, Melby J C. Steroid resistance in bronchial asthma[J]. Ann Intern Med, 1968, 69(3): 493-499.
    8. Smoak K A, Cidlowski J A. Mechanisms of glucocorticoid receptor signaling during inflammation[J]. Mech Ageing Dev, 2004, 125 (10-11) :697–706
    9. Muller M, Renkawitz R. The glucocorticoid receptor[J]. Biochem Biophy Acta, 1991, 1088(2):171-182
    10. Bamberger C M, Bamberger A, de Castro M, et al. Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans[J]. J Clin Invest, 1995, 95: 2435-2441
    11. Lewis Tuffin L J, Cidlowski J A. The physiology of human glucocorticoid receptor beta (hGRbeta) and glucocorticoid resistance[J]. Ann N Y Acad Sci, 2006, 1069: 1-9
    12. Webster J C; Oakley R H; Jewell C M, et al. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance[J]. Proc Natl Acad Sci USA, 2001, 98(12): 6865-6870
    13. Goecke A, Guerrero J. Glucocorticoid receptor beta in acute and chronic inflammatory conditions: clinical implications[J]. Immunobiology, 2006, 211(1-2): 85-96.
    14. 李思齐, 白祥军, 王海平, 等. 多发伤患者外周血白细胞糖皮质激素受体α、β的表达及其意义[J]. 中华创伤杂志, 2005, 21(10): 729-732
    15. Giffin W, Kwast Welfeld J, Rodda D J, et al. Sequence-specific DNA binding and transcription factor phosphorylation by Ku Autoantigen/DNA-dependent protein kinase. Phosphorylation of Ser-527 of the rat glucocorticoid receptor[J]. J Biol Chem, 1997, 272(9): 5647-5658
    16. Burnstein K L, Jewell C M, Cidlowski J A. Human glucocorticoid receptor cDNA contains sequences sufficient for receptor down-regulation[J]. J Biol Chem, 1990, 265(13):7284-7291
    17. Kurihara I, Shibata H, Suzuki T, et al. Transcriptional regulation of steroid receptor coactivator-1 (SRC-1) in glucocorticoid action[J]. Endocr Res 2000, 26(4):1033-1038
    18. Rosewicz S, McDonald A R, Maddux B A, et al. Mechanism of glucocorticoid receptor down-regulation by glucocorticoids[J]. J Biol Chem, 1988, 263(6):2581-2584
    19. Svec F. Corticosterone regulates the level of hepatic glucocorticoid receptors in mice[J]. Proc Soc Exp Biol Med, 1988, 188(4):474-479
    20. Sun Y N, DuBois D C, Almon R R, et al. Dose-dependence and repeated-dose studies for receptor/gene-mediated pharmacodynamics of methylprednisolone on glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver[J]. J Pharm Biop, 1998, 26(6):619-648
    21. Sun Y N, DuBois D C, Almon R R, et al. Fourth-generation model for corticosteroid pharmacodynamics: a model for methylprednisolone effects on receptor/gene-mediated glucocorticoid receptor down-regulation and tyrosine aminotransferase induction in rat liver[J]. J Pharm Biop, 1998, 26(3):289-317
    22. Kalinyak J E, Dorin R I, Hoffman A R, et al. Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone[J]. J Biol Chem, 1987, 262(22): 10441-10444
    23. Svec F, Gordon S, Tate D. Glucocorticoid receptor regulation: the effects of adrenalectomy, exogenous glucocorticoid, and stress on hepatic receptor number in male and female mice[J]. Biochem Med Metab Biol, 1989, 41(3):224-233
    24. Cvoro A, Dundjerski J, Trajkovic D, et al. Association of the rat liver glucocorticoid receptor with Hsp90 and Hsp70 upon whole body hyperthermic stress[J]. J Steroid Biochem Mol Biol, 1998, 67(4):319-325
    25. Hu Y, Gursoy E, Cardounel A, et al. Biological effects of single and repeated swimming stress in male rats: beneficial effects of glucocorticoids[J]. Endocrine, 2000,13(1):123-129
    26. Al Mohaisen M, Cardounel A, Kalimi M. Repeated immobilization stress increases total cytosolic glucocorticoid receptor in rat liver[J]. Steroids, 2000, 65(1):8-15
    27. Webster J C, Jewell C M, Bodwell J E, et al. Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein[J]. J Biol Chem, 1997, 272(14):9287-9293
    28. 刘都户, 粟永萍, 张渭, 等. 烫伤大鼠血浆 TNF-α 水平的变化及 αMSH、合成肽 KPV的调节作用研究[J]. 中国危重病急救医学, 2001, 13(7):410-412
    29. 刘都户, 粟永萍, 张渭, 等. 烫伤大鼠血浆白介素 1β 水平的变化及调节[J]. 第三军医大学学报, 2001, 23(11):1257-1259
    30. Miller A H, Pariante C M, Pearce B D. Effects of cytokines on glucocorticoid reeptor expression and function. Glucocorticoid resistance and relevance to depression[J] . Adv Exp Med Biol, 1999, 461:107-116.
    31. Pariante C M, Pearce B D, Pisell T L, et al. The proinflammatory cytokine, interleukin- 1alpha, reduces glucocorticoid receptor translocation and funtion[J]. Endocrinology, 1999, 140(9):4359-4366
    32. Goleva E, Kisich KO, Leung D Y. A role for STAT5 in the pathogenesis of IL-2-induced glucocorticoid resistance [J]. J Immunol, 2002, 169(10):5934-5940
    33. Liu D H, Su Y P, Zhang W, et al. Changes in glucocorticoid and mineralocorticoid receptors of liver and Kinney cytosols after pathologic stress and its regulation in rats[J]. Crit Care Med, 2002, 30(3):623-627
    34. Davis R J. Signal transduction by the JNK group of MAP kinases[J]. Cell, 2000, 103(13):239- 252
    35. Pulverer B J, Kyriakis J M, Avruch J, et al. Phosphorylation of c-jun mediated by MAP kinases[J]. Nature, 1991, 353(6345):670-674
    36. Smeal T, Binetruy B, Mercola D A, et al. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73[J]. Nature, 1991, 354(6353): 494-496
    37. Gupta S, Campbell D, Derijard B, et al. Transcription factor ATF-2 regulation by the JNK signal transduction pathway[J]. Science, 1995, 267(5196):389-393
    38. Gonzalez M V, Jimenez B, Berciano M, et al. Glucocorticoids antagonize AP-1 by inhibiting the activation/phosphorylation of JNK without affecting its subcellular distribution[J]. J Cell Biol, 2000, 150(5):1199-1207
    39. Wang X, Wu H; Lakdawala V S, et al. Inhibition of Jun N-terminal kinase (JNK) enhances glucocorticoid receptor-mediated function in mouse hippocampal HT22 cells[J]. Neuropsychopharmacology, 2005, 30(2): 242-249
    40. Barnes P J, Adcock I M. Anti-inflammatory actions of steroids: molecular mechanisms[J]. Trends Pharmacol Sci, 1993, 14(12):436-441
    41. De Bosscher K, Vanden Berghe W, Haegeman G. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators[J]. Mol-Endocrinol, 2001, 15(2): 219-227
    42. Okabe T, Yanase T, Nawada H. The role of AP-1 and NF-kappaB in glucocorticoid resistance[J]. Nippon Rinsho, 2005, 63(9):1654-1659.
    43. Lane S J, Adcock I M, Richards D, et al. Corticosteroid-resistant bronchial asthma is associated with increased c-fos expression in monocytes and T lymphocytes[J]. J Clin Invest, 1998, 102(12):2156-2164.
    44. Schule R, Rangarajan P, Kliewer S, et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor[J]. Cell, 1990, 62(21):1217-1226
    45. Yang Yen H F, Chambard J C, Sun Y L, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction[J]. Cell, 1990, 62(21):1205-1215
    46. Adcock I M, Brown C R, Barnes P J. Tumour necrosis factor α causes retention of activated glucocorticoid receptor within the cytoplasm of A549 cells[J]. Biolchem Biophys Res Comm, 1996, 225(2):545-550
    47. Tao Y, Williams Skipp C, Scheinman R I. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis[J]. J Biol Chem, 2001, 276(4): 2329-2332
    48. Wang X, Chinsky J M, Costeas P A, et al. Acidification and glucocorticoids independently regulate branched-chain alpha-ketoacid dehydrogenase subunit genes[J]. Am J Physiol Cell Physiol, 2001, 280(5):C1176-1183
    49. Wu J, Li Y, Dietz J. Repression of p65 transcriptional activation by the glucocorticoid receptor in the absence of receptor-coactivator interactions[J]. Mol Endocrinol, 2004, 18(1):53-62
    50. McKay L I, Cidlowski J A. CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism[J]. Mol Endocrinol, 2000, 14(8):1222-1234
    51. Xu J, Kim G M, Ahmed S H, et al. Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury[J]. J Neurosci, 2001, 21(1):92-97
    52. Bitko V, Velazquez A, Yang L, et al. Transcriptional induction of multiple cytokine by human respiratory syncytial virus requires activation of NF-kappa B and is inhibited by sodium salicylate and aspirin[J]. Virology, 1997, 232(2):369-378
    53. Tak P P, Firestein G S. NA-kappaB: a key role in inflammatory diseases[J]. J Clin Invest, 2001,107(1):7-11
    54. Xu J, O’Malley B W. Molecular mechanisms and cellular biology of the steroid receptor coactivator(SRC) family in steroid receptor function[J]. Rev Endocr Metab Disord, 2002,3(3):185-192
    55. Grenier J, Trousson A, Chauchereau A, et al. Selective recruitment of p160 coactivators on glucocorticoid-regulated promoters in Schwann cells[J]. Mol Endocrinol, 2004, 18(12):2866-2879.
    56. Na S Y, Lee S K, Han S J, et al. Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations[J]. J Biol Chem, 1998, 273(18):10831-10834.
    57. Lee S K, Kim J H, Na S Y, et al. Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits[J]. J Biol Chem, 1998, 273(27):16651-16654.
    58. Werbajh S, Nojek I, Lanz R, et al. RAC-3 is a NF-B coactivator[J]. FEBS Lett, 2000, 485(2-3): 195-199.
    59. Saatcioglu F, Claret F X, Karin M. Negative transcriptional regulation by nuclear receptors[J]. Semin Cancer Biol, 1994, 5(5): 347-359
    60. Sheppard K A, Phelps K M, Williams A J, et al. Nuclear integration of glucocorticoid receptor and nuclear factor-kappaB signaling by CREB-binding protein and steroid receptor coactivator-1[J]. J Biol Chem, 1998, 273(45):29291-29294
    61. Leite R S, Brown A G, Strauss J F. Tumor necrosis factor-alpha suppresses the expression of steroid receptor coactivator-1 and -2: a possible mechanism contributing to changes in steroid hormone responsiveness[J]. FASEB J, 2004, 18(12):1418-20.
    62. Defranco D B. Role of molecular chaperones in subnuclear trafficking of glucocorticoid receptors[J]. Kidney Int, 2000, 57(4):1241-1249
    63. Pratt W B, Krishna P, Olsen L J. Hsp90-binding immunophilins in plants: the proteinmovers[J]. Trends Plant Sci, 2001, 6(2):54-58
    64. Prima V, Depoix C, Masselot B, et al. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds[J]. J Steroid Biochem Mol Biol, 2000, 72(1-2):1-12
    65. Morishima Y, Kanelakis K C, Silverstein A M, et al. The Hsp organizer protein hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system[J]. J Biol Chem, 2000, 275(10):6894-6900
    66. Jibard N, Meng X, Leclerc P, et al. Delimitation of two regions in the 90-kDa heat shock protein (Hsp90) able to interact with the glucocorticosteroid receptor (GR) [J]. Exp Cell Res, 1999, 247(2):461-474
    67. Giannoukos G, Silverstein A M, Pratt W B, et al. The seven amino acids (547-553) of rat glucocorticoid receptor required for steroid and hsp90 binding contain a functionally independent LXXLL motif that is critical for steroid binding[J]. J Biol Chem, 1999, 274(51):36527-36536
    68. Xu M, Dittmar K D, Giannoukos G, et al. Binding of hsp90 to the glucocorticoid receptor requires a specific 7-amino acid sequence at the amino terminus of the hormone-binding domain[J]. J Biol Chem, 1998, 273(22):13918-24
    69. Liu J, DeFranco D B. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90[J]. Mol Endocrinol, 1999, 13(3):355-65
    70. Kang K I, Meng X, Devin Leclerc J, et al. The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter[J]. Proc Natl Acad Sci U S A, 1999, 96(4):1439-1444
    71. Bucci M, Roviezzo F, Cicala C, et al. Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has antiinflammatory effects and interacts with glucocorticoid receptor in vivo[J]. Br J Pharmacol, 2000, 131(1):13-16
    72. Zhang X, Clark A F, Yorio T. Heat shock protein 90 is an essential molecular chaperone for nuclear transport of glucocorticoid receptor beta[J]. Invest Ophthalmol Vis Sci, 2006, 47(2): 700-708
    73. 王军平, 粟永萍, 刘贤华, 等. 严重烫伤大鼠肝脏热休克蛋白 90α的表达变化及意义[J]. 第三军医大学学报, 2003, 25(9):747-749
    74. Cato A C, Mink S. BAG-1 family of cochaperones in the modulation of nuclear receptor action[J]. J Steroid Biochem Mol Biol, 2001, 78(5):379-388
    75. Schneikert J, Hubner S, Langer G, et al. Hsp70-RAP46 interaction in downregulation ofDNA binding by glucocorticoid receptor[J]. EMBO J, 2000, 19(23):6508-6516
    76. Boone A N, Ducouret B, Vijayan MM.Glucocorticoid-induced glucose release is abolished in trout hepatocytes with elevated hsp70 content[J]. J Endocrinol, 2002, 172(1):R1-5
    77. Reynolds P D, Ruan Y, Smith D F, et al. Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51[J]. J Clin Endocrinol Metab, 1999, 84(2):663-9
    78. Silverstein A M, Galigniana M D, Kanelakis K C, et al. Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein[J]. J Biol Chem, 1999, 274(52):36980-36986
    79. Li D P, Li Calzi S, Sanchez E R. Inhibition of heat shock factor activity prevents heat shock potentiation of glucocorticoid receptor-mediated gene expression[J]. Cell Stress Chaperones, 1999, 4(4):223-34
    80. Li D P, Periyasamy S, Jones T J, et al. Heat and chemical shock potentiation of glucocorticoid receptor transactivation requires heat shock factor (HSF) activity. Modulation of HSF by vanadate and wortmannin[J]. J Biol Chem, 2000, 275(34):26058-65
    81. Galigniana M D, Piwien Pilipuk G, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide[J]. Mol Pharmacol, 1999, 55(2):317-323
    82. Herman J P, Spencer R. Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo[J]. J Neurosci, 1998, 18(18):7462-7473
    83. Spencer R L, Kim P J, Kalman B A, et al. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic- pituitary-adrenal axis activity[J]. Endocrinology, 1998, 139(6): 2718-2726
    84. Herman J P, Watson S J, Spencer R L, et al. Defense of adrenocorticosteroid receptor expression in rat hippocampus: effects of stress and strain[J]. Endocrinology, 1999, 140(9): 3981-3991
    85. Liu D H, Su Y P, Zhang W, et al. Changes in glucocorticoid and mineralocorticoid receptors of liver and kidney cytosols after pathologic stress and its regulation in rats[J]. Crit Care Med, 2002, 30(3):623–627
    86. 陆建华, 粟永萍, 程天民, 等. 颈交感神经阻滞对放烧复合伤小鼠的治疗作用[J]. 第三军医大学学报, 2005, 27(12): 1253-1255
    87. 李军, 粟永萍, 徐建明, 等. 安定-氯胺酮对烧伤小鼠早期肝功能和死亡率的影响[J].中国急救医学, 2005, 25(7):501-502
    88. Neder M T, Lazaro D S A. Ketamine reduces mortality of severely burnt rats, when compared to midazolam plus fentanyl[J]. Burns, 2004, 30(5):425-430
    89. Larsen B, Hoff G, Wilhelm W, et al. Effect of intravenous anesthetics on spontaneous and endotoxin-stimulated cytokine response in cultured human whole blood[J]. Anesthesiology, 1998, 89(5):1218-1227
    90. Mastronardi C A, Yu W H, McCann S M. Comparisons of the effects of anesthesia and stress on release of tumor necrosis factor-alpha, leptin, and nitric oxide in adult male rats[J]. Exp Biol Med (Maywood), 2001, 226(4):296-300
    91. Lange M, Broking K, van Aken H, et al. Role of ketamine in sepsis and systemic inflammatory response syndrome[J]. Anaesthesist, 2006, 55(8):883-891
    92. Koga K, Ogata M, Takenaka I, et al. Ketamine suppresses tumor necrosis factor-alpha activity and mortality in carrageenan-sensitized endotoxin shock model[J]. Circ Shock, 1994, 44(3):160-168
    93. Kawasaki T, Ogata M, Kawasaki C, et al.Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro[J]. Anesth Analg, 1999, 89(3):665-669
    94. Kawasaki C, Kawasaki T, Ogata M, et al. Ketamine isomers suppress superantigen- induced proinflammatory cytokine production in human whole blood[J]. Can J Anaesth, 2001, 48(8):819- 823
    95. Roytblat L, Talmor D, Rachinsky M, et al. Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass[J]. Anesth Analg, 1998, 87(2):266-271
    96. Gurfinkel R, Czeiger D, Douvdevani A, et al. Ketamine improves survival in burn injury followed by sepsis in rats[J]. Anesth Analg, 2006, 103(2):396-402
    97. 李军, 刘合年, 粟永萍, 等. 地西泮-氯胺酮对烧伤小鼠肝组织 c-Jun、NF-κB 的影响[J]. 临床麻醉学杂志, 2004, 20(1):26-28
    98. 李军, 史忠, 粟永萍, 等. 安定-氯胺酮对烧伤小鼠肝组织糖皮质激素受体的影响[J]. 第三军医大学学报, 2003, 25(2):144-146
    99. 李军, 粟永萍, 王军平, 等. 氯胺酮调节炎症反应中类固醇受体辅活化子的表达[J]. 中国急救医学, 2007, 27(1):36-38
    100.Sun J, Zhou ZQ, Lv R, et al. Ketamine inhibits LPS-induced calcium elevation and NF-kappa B activation in monocytes[J]. Inflamm Res, 2004, 53(7):304-308
    101.李军, 粟永萍, 王军平, 等. 颈交感神经阻滞对烧伤小鼠早期核因子-κB 及其辅活化子的影响[J]. 第三军医大学学报, 2007, 28(2):
    [1] Menger M D, Vollmar B. Surgical trauma: hyperinflammation versus immunosuppression[J]? Langenbecks Arch Surg, 2004, 389(6): 475-484
    [2] Harris B H, Gelfand J A. The immune response to trauma[J]. Semin Pediatr Surg, 1995, 4: 77-82.
    [3] Marcu A C, Kielar N D, Paccione K E, et al. Androstenetriol improves survival in a rodent model of traumatic shock[J]. Resuscitation, 2006, 71(3):379-386.
    [4] Celada A, Mckercher S, Maki R A, et al. Repression of major histocompatibility complex I-A expression by glucocorticoids: The glucocorticoids receptor inhibits the DNA binding of the X box DNA binding protein [J]. Exp Med, 1993, 177(3):691-698
    [5] Popovich PG, Stuckman S, Gienapp I E, et al. Alterations in immune cell phenotype and function after experimental spinal cord injury[J]. Neurotrauma, 2001, 18(9): 957-966
    [6] Elenkov I L, Chrousos G P, Wilder R L. Neutoendoeine regulation of IL-12 and TNF-α/ IL-10 balance. Clinical implications[J]. Ann N Y Acad Sci, 2000, 917:94-105
    [7] Maddali S, Stapleton PP, Freeman TA, et al. Neuroendocrine responses mediate macrophage function after trauma[J]. Surgery, 2004, 136(5):1038-1046
    [8] Wichmann M W, Muller C, Meyer G, et al. Different immune responses to abdominal surgery in men and women[J]. Langenbecks Arch Surg, 2003, 387(11-12):397-401
    [9] Deitch E A, Ananthakrishnan P, Cohen D B, et al. Neutrophil activation is modulated by sex hormones after trauma-hemorrhagic shock and burn injuries[J]. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1456-1465
    [10] Pap G, Furesz J, Fennt J, et al. Self-regulation of neutrophils during phagocytosis is modified after severe tissue injury[J]. Int J Mol Med, 2006, 17(4): 649-654
    [11] Stapleton P P, Strong V E, Freeman T A, et al. Gender affects macrophage cytokine and prostaglandin E2 production and PGE2 receptor expression after trauma[J]. J Surg Res, 2004, 122(1): 1-7
    [12] Kovacs E J, Messingham K A, Gregory M S, et al. Estrogen regulation of immune responses after injury[J]. Mol Cell Endocrinol, 2002, 139(1-2):129-135
    [13] Dienstknecht T, Schwacha MG, Kang SC, et al. Sex steroid-mediated regulation of macrophage/monocyte function in a two-hit model of trauma-hemorrhage and sepsis[J].Cytokine, 2004, 25(3):110-118
    [14] Beery T A. Sex differences in infection and sepsis[J]. Crit Care Nurs Clin North Am, 2003, 15(1): 55-62
    [15] Schneider C P, Schwacha M G, Samy TS, et al. Androgen-mediated modulation of macrophage function after trauma-hemorrhage: central role of 5alpha-dihydrotestosterone[J]. J Appl Physiol, 2003, 95(1):104-112
    [16] Nickel EA, Schwacha M G, Schneider C P, et al. Trauma-haemorrhage-induced alterations in thymic prolactin receptor expression: implications in immune dysfunction[J]. Cytokine, 2002, 18(3):127-132
    [17] Iwasaka H, Noguchi T. Th1/Th2 balance in systemic inflammatory response syndrome (SIRS)[J]. Nippon-Rinsho, 2004, 62(12): 2237-2243
    [18] Schwacha MG. Macrophages and post-burn immune dysfunction[J]. Burns, 2003, 29(1):1-14
    [19] Mackrell P J, Daly J M, Mestre J R, et al. Elevated expression of cyclooxygenase-2 contributes to immune dysfunction in a murine model of trauma[J]. Surgery, 2001, 130:826-833
    [20] Strong V E, Mackrell P J, Concannon E M, et al. Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival[J]. Shock, 2000, 14:374-379.
    [21] McCarter M D, Mack V E, Daly J M, et al. Trauma-induced alterations in macrophage function[J]. Surgery, 1998, 123:96-101
    [22] Ogle C K, Mao J X, Wu J Z, et al. The production of tumor necrosis factor, interleukin 1, interleukin 6, and prostaglandin E2 by isolated enterocytes and gut macrophages: effect of lipopolysaccaride and thermal injury[J]. J Burn Care Rehabil, 1994, 15:470-477.
    [23] Rumbaugh K P, Colmer J A, Griswold J A, et al. The effects of infection of thermal injury by pseudomonas aeruginosa pao1 on the murine cytokine response[J]. Cytokine, 2001, 16:160-168.
    [24] Schwacha MG, Somers SD. Thermal injury induced immunosuppression in mice: the role of macrophage derived reactive nitrogen intermediates[J]. J Leukoc Biol, 1998, 63:51-58.
    [25] Masson I, Mathieu J, Nolland X B, et al. Role of nitric oxide in depressed lymphproliferative responses and altered cytokine production following thermal injury inrats[J]. Cell Immunol, 1998,186:121-132.
    [26] Nake H, Endo S, Inada K, et al. Plasma concentrations of type II phospholipase A2, cytokines, ecosinoids in patients with burns[J]. Burns, 1995, 21:422-426.
    [27] Prieser J, Reper P, Vlasselaer D, et al. Nitric oxide production is increased in patients after burn injury[J]. J Trauma, 1996, 40:368-371.
    [28] 李军, 粟永萍, 刘合年, 等. 安定-氯胺酮麻醉对烧伤小鼠早期三种炎性细胞因子影响[J]. 第三军医大学学报, 2004, 26(2):98-100
    [29] Deitch E A. Multiple organ failure: pathophysiology and potential future therapy[J]. Ann Surg, 1992, 216:117-134.
    [30] Piguet P F, Grau G E, Vassalli P. Tumor necrosis factor and immunopathology[J]. Immunol Res, 1991, 10:122-140.
    [31] Fukushima R, Alexander J W, Wu J Z, et al. Time course of production of cytokines and prostaglandin E2 by macrophages isolated after thermal injury and bacterial translocation[J]. Circ Shock, 1994, 42:154-162.
    [32] Faunce D E, Gregory M S, Kovacs E J. Acute ethanol exposure prior to thermal injury results in decreased T cell responses mediated in part by increases in IL-6 production[J]. Shock, 1998, 10:135-150.
    [33] Drost A C, Burleson D G, Cioffi W G, et al. Plasma cytokines after thermal injury and their relationship to infection[J]. Ann Surg, 1993, 218:74-78.
    [34] Biffl W L, Moore E E, Moore F A, et al. Interleukin-6 in the injured patient: marker of injury or mediator of inflammation[J]. Ann Surg, 1996, 224:647-664.
    [35] Meert K L, Ofenstein J P, Genyea C, et al. Elevated transforming growth factor-beta concentration correlates with posttrauma immunosuppression[J]. J Trauma, 1996, 40:901-906.
    [36] Nishimura T, Nishiura T, deSerres S, et al. Transforming growth factor-beta1 and splenocyte apoptotic cell death after burn injuries[J]. J Burn Care Rehabil, 2000, 21:128-134.
    [37] Nishimura T, Yamamoto H, deSerres S, et al. Transforming growth factor-beta impairs postburn immunoglobulin production by limiting B-cell proliferation, but not cellular synthesis[J]. J Trauma, 1999, 46:881-885.
    [38] Langrehr J M, Hoffman R A, Lancaster J J, et al. Nitric oxide-a new endogenousimmunomodulator[J]. Transplantation, 1993, 55:1205-1212.
    [39] MacMicking J, Xie Q W, Nathan C. Nitric oxide and macrophage function[J]. Ann Rev Immunol, 1997, 15:323-350.
    [40] Milano S, Arcoleo F, Dieli M. Prostaglandin E2 regulates inducible nitric oxide synthase in the murine macrophage cell line J774[J]. Prostaglandins, 1995, 49:105-115.
    [41] Salvemini D, Seibert K, Masferrer J L, et al. Nitric oxide and the cyclooxygenase pathway[J]. Adv Prostaglandin Thromboxane Leukoc Res, 1995, 23:491-493.
    [42] Daniel T, Alexander M, Hubbard W J, et al. Nitric oxide contributes to the development of a post-injury Th2 T-cell phenotype and immune dysfunction[J]. J Cell Physiol, 2006, 208(2): 418-427
    [43] Valenti L M, Mathieu J, Chancerelle Y, et al. High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis[J]. Exp Cell Res, 2005, 306(1): 150-167
    [44] Kulkarni S K, Jain N K, Singh A. Cyclooxygenase isoenzymes and newer therapeutic potential for selective COX-2 inhibitors[J]. Methods Find Exp Clin Pharmacol, 2000, 22:291-298.
    [45] Schwacha M G, Chung C S, Ayala A, et al. Cyclooxygenase-2-mediated suppression of macrophage interleukin-12 production following thermal injury[J]. Am J Physiol, 2002, 282:263-270.
    [46] Strong V E, Mackrell P J, Concannon E M, et al. Blocking prostaglandin E2 after trauma attenuates pro-inflammatory cytokines and improves survival[J]. Shock, 2000,14:374-379.
    [47] Salvemini D, Currie M G, Mollace V. Nitric oxide-mediated cyclooxygenase activation. A key event in the antiplatelet effects of nitrovasodilators[J]. J Clin Invest, 1996, 97:2562-2568.
    [48] Tetsuka T, Daphna-Iken D, Miller BW, et al. Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells[J]. J Clin Invest, 1996, 97:2051-2066.
    [49] Salvemini D, Settle SL, Masferrer J L, et al. Regulation of prostaglandin production by nitric oxide; an in vivo analysis[J]. Br J Pharmacol, 1995, 114:1171-1178.
    [50] Mullet D, Fertel RH, Kniss D, et al. An increase in intracellular cyclic AMP modulates nitric oxide production in IFN-gammatreated macrophages[J]. J Immunol, 1997,158:897-904.
    [51] Schwacha MG, Samy TSA, Cantania RA, et al. Thermal injury alters macrophage responses to prostaglandin E2: contribution to the enhancement of inducible nitric oxide synthase activity[J]. J Leukoc Biol, 1998, 64:740-746.
    [52] Montminy M. Transcriptional regulation by cyclic AMP[J]. Annu Rev Biochem, 1997, 66:807-822.
    [53] MacMicking J, Xie Q W, Nathan C. Nitric oxide and macrophage function[J]. Ann Rev Immunol, 1997, 15:323-350.
    [54] Tremblay P, Houde M, Arbour N, et al. Differential effects of PKC inhibitors on gelatinase B and interleukin 6 production in the mouse macrophage[J]. Cytokine, 1995, 7:130-136.
    [55] Choudhry MA, Ahmad S, Sayeed MM. Role of Ca2+ in prostaglandin E2-induced T-lymphocyte proliferative suppression in sepsis[J]. Infect Immun, 1995, 63:3101-3105.
    [56] Chouaib S, Robb R J, Welte K, et al. Analysis of prostaglandin E2 effect on T lymphocyte activation. Abrogation of prostaglandin E2 inhibitory effect by the tumor promotor 12.0 tetradecanoyl phorbol-13 acetate[J]. J Clin Invest, 1987, 80:333-340.
    [57] Szabo C, Hasko G, Zingarelli B, et al. Isoproterenol regulates tumour necrosis factor, interleukin-10, interleukin-6 and nitric oxide production and protects against the development of vascular hyporeactivity in endotoxaemia[J]. Immunology, 1997, 90:95-100.
    [58] Goebel A, Kavanagh E, Lyons A, et al. Injury induces deficient interleukin-12 production, but interleukin-12 therapy after injury restores resistance to infection[J]. Ann Surg, 2000, 231:253-261
    [59] Monteleone G, Parrello T, Monteleone I, et al. Interferon-gamma (IFN-gamma) and prostaglandin E2 (PGE2) regulate differently IL-12 production in human intestinal lamina propria mononuclear cells (LPMC) [J]. Clin Exp Immunol, 1999, 117:469-475.
    [60] Procopio D O, Teixeira M M, Camargo M M, et al. Differential inhibitory mechanism of cyclic AMP on TNF-alpha and IL-12 synthesis by macrophages exposed to microbial stimuli[J]. Br J Pharmacol, 1999, 127:1195-1205.
    [61] Utsunomiya T, Kobayashi M, Herndon DN, et al. A mechanism of interleukin-12 unresponsiveness associated with thermal injury[J]. J Surg Res, 2001, 96:211-217.
    [62] Betz M, Fox B S. Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines[J]. J Immunol, 1991, 146:108-113.
    [63] Cavaillon J M. Cytokines and macrophages[J]. Biomed Pharmacother, 1999, 48:445-453.
    [64] Schwacha M G, Schneider C P, Bland K I, et al. Resistance of macrophages to the suppressive effect of interleukin-10 following thermal injury[J]. Am J Physiol, 2001, 281: C1180-1187.
    [65] Walz C R, Zedler S, Schneider C P, et al. Depressed T cell-derived IFN-gamma following trauma-hemorrhage: a potential mechanism for diminished APC responses[J]. Langenbecks Arch Surg, 2007, 22.
    [66] O'Suilleabhain C B, Kim S, Rodrick M R, et al. Injury induces alterations in T-cell NFkappaB and AP-1 activation[J]. Shock, 2001, 15(6): 432-437
    [67] Bandyopadhyay G, De A, Laudanski K, et al. Negative signaling contributes to T-cell anergy in trauma patients[J]. Crit Care Med, 2007, 23.
    [68] Palmer J L, Tulley J M, Kovacs E J, et al. Injury-induced suppression of effector T cell immunity requires CD1d-positive APCs and CD1d-restricted NKT cells[J]. J Immunol, 2006, 177(1): 92-99
    [69] Makarenkova V P, Bansal V, Matta B M, et al. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress[J]. J Immunol, 2006, 176(4): 2085-2094
    [70] Kobayashi M, Herndon DN, Pollard RB, et al. CD4+ contrasuppressor T cells improve the resistance of thermally injured mice infected with HSV[J]. J Leukoc Biol, 1995, 58:159-167.
    [71] Schwacha M G, Ayala A, Chaudry I H. Insights into the role of γδT-lymphocytes in the immunopathogenic response to thermal injury[J]. J Leukoc Biol, 2000, 67:644-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700