香兰素及金属离子与溶菌酶相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是最重要的生物大分子之一,是生物性状的直接表达者,在生物体内担负着各种生理功能。在分子水平上研究小分子与蛋白质的相互作用以及金属离子存在时对这种作用的影响,是当前生命科学、化学和医药学等众多领域所共同关注的课题之一。因此,深入研究小分子物质(特别是药物小分子)与蛋白质的作用机理和规律,不仅对于阐明生命的奥秘,了解小分子在体内的分配、运输、代谢、功效以及蛋白质的构象有重要的意义,而且对药物的设计和筛选、疾病的诊断具有指导意义。
     本文采用光谱法,分别对小分子香兰素和金属离子与溶菌酶的相互作用进行了研究。论文包括以下几个部分:
     第一部分简要介绍了香兰素的特性,溶菌酶的结构和功能性质,并概括了当今研究小分子与蛋白质相互作用的主要方法。
     第二部分以紫外-可见吸收光谱法、荧光光谱法和圆二色谱法研究了香兰素与溶菌酶之间的相互作用。荧光光谱结果表明,香兰素有规律的猝灭溶菌酶的内源荧光,且是一种因相互作用形成复合物而引起的静态猝灭机制;并测定了不同温度下的猝灭常数和表观结合常数,求得1个香兰素分子约与1个溶菌酶分子结合,两者间的作用力类型主要是氢键和范德华力;基于F?rster非辐射能量转移理论测定了两者间的结合距离是3.01nm。同时,通过同步荧光光谱法和圆二色谱法对溶菌酶的构象进行了检测,结果表明,随着香兰素的加入,溶菌酶的二级结构发生改变,并且α-螺旋的含量有增加的趋势。另外,考察了香兰素对溶菌酶酶活力的影响,结果变现为激活作用。
     第三部分研究了金属离子与溶菌酶的相互作用。实验结果表明,金属离子均能使溶菌酶的特征紫外吸收峰增强和特征荧光峰猝灭。根据荧光强度变化和荧光猝灭公式求得铁离子、铜离子分别与溶菌酶作用的荧光猝灭常数、结合常数和结合位点数,推得其猝灭机制属于静态猝灭,并根据热力学参数确定了主要作用力类型。
     第四部分研究了香兰素与金属离子共存时,对溶菌酶(如荧光猝灭机理、结合位点数、作用力类型、酶结构变化等)的影响情况。实验结果表明,香兰素与金属离子对溶菌酶的荧光具有双重猝灭效应,使相互作用增强,并且与二元体系相比,结合位点数发生了变化。
Protein is one of the most important biomacromolecules. It directly expresses biologic characters and performs a wide variety of physiological functions in the life. Exploring the interaction mechanisms between small molecules and proteins is of current interest in many research areas such as biology, chemistry, medicine and so on. Therefore, further investigating the binding mechanisms between small molecules (especially for those drug molecules) and proteins is worthy to be done. This work not only helps us to clarify the secret of life, understand the distribution, transportion, metabolism, efficacy of small molecules in the body and structural features of protein, but also provides valuable information in drug designing and screening, or disease diagnosis.
     In this thesis, the small molecules such as vanillin (VAN) and metal ions (Men+) interaction with lysozyme (LYS) were studied using molecule spectroscopy. The paper was consisted of the following parts:
     In the first part, the properties of VAN, the structures and functions of LYS were introduced briefly. The methods of the research on the interaction between small molecules and proteins were summarized.
     In the second part, the interaction of VAN with LYS in near physiological buffer condition was investigated by UV-Vis absorption spectroscopy, fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The fluorescence analysis showed that VAN could regularly quench the endogenous fluorescence of LYS and the quenching was initiated from compound formation, it was a static quenching mechanism. The quenching constants and apparent binding constants were obtained at different temperature, and every VAN combines to one LYS molecule. It showed that the binding power between VAN and LYS was mainly the hydrogen bond and van der waals force. The binding distance was an area 3.01nm away from LYS based on F?rster’s non-radiation energy transfer theory. The conformation of LYS was analyzed by CD spectroscopy and synchronous fluorescence spectroscopy, the results indicated that conformation of LYS changed with the addition of VAN, and theα-helix was more tightly linked. The effect on the activity of LYS after treated by VAN was studied. We found that VAN can increase its enzymic activity.
     In the third part, the interaction of different Men+ with LYS was investigated. It was found out that these Men+ all can increase the UV absorption and quench the fluorescence intensity of LYS. The quenching constants, binding constants and the number of binding sites were calculated according to the fluorescence effect and quenching equation, and the quenching mechanism belongs to static quenching between Fe~(3+) or Cu~(2+) and LYS. The main sorts of binding force can be known according to the thermodynamic parameters.
     In the forth part, the effect of the coexistence of VAN and Men+ on the interaction characteristics among VAN, Men+ and LYS were investigated such as the change of quenching mechanism of fluorescence, the number of binding sites, the interaction forces, the conformation of enzyme. The experimental results showed that VAN and Men+ can further quench the fluorescence of LYS and enhance the interaction. The number of binding sites also changed compared with the binary system.
引文
[1]陈煜强,刘幼君.香料产品的开发与应用[M].上海:上海科学技术出版社,1994,247-250
    [2] Ramachandra R S, Ravishankar G A. Vanilla flavour: production by conventional and biotechnological routes[J]. Journal of the Science of Food and Agriculture, 2000, 80(3): 289-304
    [3]凌关庭,王亦芸,唐述潮.食品添加剂手册(上册)[M].北京:化学工业出版社,2003
    [4] Carpinella M C, Giorda L M, Ferrayoli C G, et al. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components[J]. Journal of Agricultural and Food Chemistry, 2003, 51(9):2506-2511
    [5]张智维,周庆礼.香兰素对细菌抑制作用的研究[J].食品工业科技,2007,28(1):183-184,230
    [6]张智维,周庆礼.香兰素对真菌的抑制作用的研究[J].香料香精化妆品,2007,(1):17-18,40
    [7]周庆礼,张智维,王昌禄,等.香兰素抑菌作用的研究[J].食品科学,2005,26(S1):23-25
    [8] Ngarmsak M, Delaquis P, Toivonen P, et al. Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes[J]. Journal of Food Protection, 2006, 69(7):1724-1727
    [9]高蕙文.香兰素可用于豆腐保鲜[J].农家顾问,2009,(1):30
    [10]陈默,胡长鹰,王志伟,等.香兰素对大豆分离蛋白膜抗菌作用的影响[J].包装工程,2008,29(10):83-85
    [11] Rattanapitigorn P, Arakawa M, Tsuro M. Vanillin enhances the antifungal effect of plant essential oils against Botrytis cinerea[J]. International Journal of Aromatherapy, 2006,16(3-4):193-198
    [12]孙玉泉.香兰素在精细化工领域中的应用[J].潍坊教育学院学报,1999,12(1-2):109-112
    [13]贺宴,袁履冰.乙基香兰素的性质及合成方法[J].精细化工,1993,10(3):20
    [14]徐绍颖.植物生长调节剂与果树生产[M].上海:上海科学技术出版杜,1987,108-120
    [15]危常州,赵伯善.香草醛对苹果增产效应的研究[J].果树科学,1997,14(3):167-171
    [16]丁绍民.香兰素的应用及制备方法[J].农牧产品开发,1995,(11):26-28
    [17]李平,孙凤琴,赵惠敏,等.香草醛的应用及制备[J].河北师范大学学报(自然科学版),1999,23(2):250-254
    [18] Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin[J]. Applied Microbiology and Biotechnology, 2001, 56(3-4):296-314
    [19]孙成.香草醛在阀控铅酸蓄电池中的用例[J].蓄电池,2003,(1):42-44
    [20] El-Etre A Y. Inhibition of acid corrosion of aluminum using vanillin[J]. Corrosion Science, 2001, 43(6):1031-1039
    [21]邓书端,李向红,付惠,等.盐酸溶液中香兰素在钢表面的吸附及缓蚀作用[J].清洗世界,2007,23(12):1-5
    [22]李耀先.乙醛酸法合成香兰素及其下游产品开发研究[J].中国石油和化工,2009,(1):47-49
    [23]汪多仁.香草醛的开发与应用[J].北京日化,2000,(3):13-18
    [24]孙玉泉,王锡宁.香兰素的合成及其应用[J].牙膏工业,2002,(3):48-50
    [25]刘国卿,戴德哉,饶经玲,等.天麻成分香荚兰醇的神经药理研究[J].中草药,1974,(5):33
    [26]赵翕平,陈建家,李毓隽,等.香草醛治疗癫痫的疗效观察[J].中华神经精神科杂志,1985,18(3):1
    [27]吴惠秋,谢林,金小南,等.香荚兰素对抗大鼠杏仁核点燃效应[J].药学学报,1989,24(7):482-486
    [28]袁惠南.对天麻所含化学成分香荚兰素论点的疑义[J].中国药学杂志,1992,27(3):182-184
    [29]李真顺,迟玉杰.香兰素的合成方法及应用[J].中国食品添加剂,2004,(6):105
    [30]黄希顺,黄丽娟,魏建科.香草醛治疗癫痫的疗效观察[J].实用神经疾病杂志,2005,8(4):78
    [31] Kumar S S, Ghosh A, Devasagayam T P A, et al. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA[J]. Mutation Research, 2000, 469(2):207-214
    [32] Kumar S S, Priyadarsini K I, Sainis K B. Inhibition of peroxynitrite-mediated reactions by vanillin[J]. Journal of Agricultural and Food Chemistry, 2004, 52(l):139-145
    [33] Tamai K, Tezuka H, Kuroda Y. Different modifications by vanillin in cytotoxicity and genetic changes induced by EMS and H2O2 in cultured Chinese hamster cells[J]. Mutation Research, 1992, 268(2):231-237
    [34] Kamat J P, Ghosh A, Devasagayam T P A. Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization[J]. Molecular and Cellular Biochemistry, 2000, 209(l-2):47-53
    [35] Cordano G, Pezoa J, Munoz S, et al. Inhibitory effect of vanillin-like compounds on respiration and growth of adenocarcinoma TA3 and its multiresistant variant TA3-MTX-R[J]. European Journal of Pharmaceutical Sciences, 2002, 16(4):255-263
    [36]郑红,安静,徐勤枝,等.香兰素衍生物P7抗辐射的作用[J].毒理学杂志,2005,19(3):247
    [37]严雨倩,周平坤.香兰素衍生物对细胞增殖和辐射敏感性的影响[J].毒理学杂志,2005,19(3):247-248
    [38] Watanabe K, Ohta T, Watanabe M, et al. Inhibition of induction of adaptive response by o-vanillin in Escherichia coli B[J]. Mutation Research, 1990, 243(4):273-280
    [39] Jansson T, Zech L. Effects of vanillin on sister-chromatid exchanges and chromosome aberrations in human lymphocytes[J]. Mutation Research, 1987, 190(3):221-224
    [40] Keshava C, Keshava N, Ong T M, et al. Protective effect of vanillin on radiation-induced micronuclei and chromosomal aberrations in V79 cells[J]. Mutation Research, 1998, 397(2):149-159
    [41] Durant S, Karran P. Vanillins - a novel family of DNA-PK inhibitors[J]. Nucleic Acids Research, 2003, 31(19):5501-5512
    [42]周庆礼,王洪亮.紫外-光复活诱变香兰素生产菌株的研究[J].安徽农业科学,2008,36(4):1292-1294
    [43]高文.香兰素的生产技术与市场分析[J].精细化工原料及中间体,2006,(11):28-31
    [44]刘仲敏,何伯安.溶菌酶及其在食品工业中的应用[J].食品与发酵工业,1995,(5):80-82
    [45]沈同,王镜岩.生物化学[M].北京:高等教育出版社,1990,280-281
    [46] Warren J S, Rinehart J J, Zwilling B S, et al. Lysozyme enhancement of tumor cell immunoprotection in a murine fibrosarcoma[J]. Cancer Research, 1981, 41(5):1642-1645
    [47]王佃亮.重组人溶菌酶研究进展[J].中国生物工程杂志,2003,23(9):59-63
    [48] Prakash J, Van Loenen-weemaes A M, Haas M, et al. Renal-selective delivery and angiotensin-converting enzyme inhibition by subcutaneously administered captopril-lysozyme[J]. Drug Metabolism Disposition, 2005, 33(5):683-688
    [49]谭平,张友玉,文艳清.荧光猝灭法研究溶菌酶与白藜芦醇苷的相互作用[J].湖南师范大学自然科学学报,2009,32(1):92-96
    [50]张国文,赵楠,李蔚博,等.槐定碱与溶菌酶相互作用的荧光法研究[J].南昌大学学报(理科版),2009,33(4):350-353
    [51] Imoto T, Forster L S, Rupley J A, et al. Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration[J]. Proceeding of the National Academy of Science USA, 1972, 69(5):1151-1155
    [52] Phillips D C. Three-dimensional structure of an enzyme molecule[J]. Scientific American, 1966, 215(5): 78-90
    [53] Alderton G, Fevold H L. Direct crystallization of lysozyme from egg white and some crystalline salts of lysozyme[J]. The Journal of Biological Chemistry, 1946, 164(1):1-5
    [54] Black C C F, Koenig D F, Mair G A, et al. Structure of hen-egg white lysozyme: a three-dimensional fourier synthesis at 2? resolution[J]. Nature, 1965, 206:757-761
    [55]肖怀秋,林亲录,李玉珍,等.溶菌酶及其在食品工业中的应用[J].中国食物与营养,2005,(2):32-34
    [56]何金花,刘誉,刘冠杰,等.溶菌酶在医药中的应用及其研究进展[J].药学进展,2008,18(2):16-19
    [57]陈冬梅,王霆.溶菌酶的抗病毒作用及其抗艾滋病毒作用[J].广东药学,2005,15(5):2
    [58] Yamaoka K, Yoshioka T. Effects of lysozyme chloride on immune responses of patients with uterine cervical cancer[J]. Gan to Kagaku Ryoho, 1983, 10(8):1803-1809
    [59]赵红艳,王爱军.溶菌酶及其在食品工业中的应用[J].职业与健康,2008, 24(1):74-75
    [60]李罗珠.复合溶菌酶在烧伤创面感染中的临床应用[J].中华烧伤杂志,2001,6(7):225
    [61] Kirstila V, Hakkinen P, Jentsch H, et al. Longitudinal analysis of the association of human salivary antimicrobial agents with caries increcent and cariogenic microorganisms: a two-year cohort study[J]. Journal of Dental Research, 1998, 77(1):73-80
    [62]柴向华,万彬,黄应球.溶菌酶辅助治疗小儿急性鼻窦炎效果观察[J].包头医学院学报,2007,23(3):286-287
    [63]杨保全,许卫.溶菌酶在口腔疾病中的作用[J].现代口腔医学杂志,1990,4(1):40-41
    [64]卢继新,李惠芬,蔡乐,等.药物小分子与生物大分子相互作用的研究方法进展[J].分析科学学报,2007,23(5):601-606
    [65]阎隆飞,孙之荣.蛋白质分子结构[M].北京:北京清华大学出版社,1999
    [66] Dewey T G. Biophysical and biochemical aspects of fluorescence spectroscopy[M]. New York: Plenum Press, 1991
    [67]陈国珍.荧光分析法(第二版)[M].北京:科学出版社,1990,131
    [68]魏群.生物工程技术试验指导[M].北京:高等教育出版社,2002,8-9
    [69] Lakowica J R. Principles of fluorescence spectroscopy[M]. New York: Plenum Press, 1983, 341-381
    [70]张树政,孟广霞,何忠效.酶学研究技术(上册)[M].北京:北京科学出版社,1987,352-353
    [71] Kamat B P, Seetharamappa J. In vitro study on the interaction of mechanism of tricyclic compounds with bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35(3):655-664
    [72] Byler D M, Brouillette J N, Susi H. Quantitative studies of protein structure by FTIR spectral deconvolution and curve fitting[J]. Spectroscopy, 1986, 1(3):29-32
    [73]黄承志.共振光散射技术在生化及药物分析中的应用[J].广西师范大学学报(自然科学版),2003,21(1):144-145
    [74]施蕴渝,吴季辉.核磁共振波谱研究蛋白质三维结构及功能[J].中国科学技术大学学报,2008,38(8):941-949
    [75]李从刚,刘买利.亲和磁共振波谱法及其在药物研究中的应用[J].自然科学进展,2001,11(1):1-7
    [76]黄瑾,袁余洲,梁宏.紫外光谱、荧光光谱及平衡透析研究磷钨杂多酸与HSA或BSA的结合平衡[J].中国科学B辑,2001,31(6):530-535
    [77]梁宏,边贺东,涂楚桥,等.La(Ⅲ)与HSA、BSA的结合平衡研究[J].高等学校化学学报,2001,22(1):21-25
    [78]周波,孙润光,王丽华,等.蛋白质直接电化学研究及其应用[J].化学进展,2006,18(7-8):1010-1013
    [79]李锐,任海平,孙艳亭,等.小分子与生物大分子间非共价相互作用分析方法研究进展[J].分析化学,2006,34(12):1801-1806
    [80]李德海,迟玉杰.溶菌酶活力的简易测定[J].中国乳品工业,2002,30(5):128-129
    [81]赵玉萍,张灏,杨严俊.溶菌酶测定方法的改进[J].食品科学,2002,23(3):116-119
    [82] Ross P D, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3102
    [83] F?rster T. Modern quantum chemistry[M]. New York: Academic Press, 1965
    [84]姜子涛,李荣.树脂相紫外分光光度法测定食品中的香兰素[J].食品科学,1998,19(4):49-51
    [85]张国文,倪永年.多元校正-光度法同时测定食品中的香兰素和乙基麦芽酚[J].分析科学学报,2005,21(1):20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700