低温弱光对日光温室辣椒生长及其生理功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以辣椒(Capsicum annuum Linn.)为试材,利用人工气候箱模拟日光温室冬季生产中常见的低温弱光环境,从辣椒生长形态、光合作用、矿质营养元素吸收、耐冷性指标等方面探讨了辣椒在低温弱光条件下的生长特性及适应机制,旨在为辣椒设施栽培和耐低温弱光育种提供理论依据。试验主要结果如下:
     1、低温弱光可显著影响辣椒茎的伸长量、茎粗的增长量、及叶面积的增长量;分别在偏低温(昼21~23℃/夜8~10℃),极端低温(昼15~20℃/夜5~6℃)条件下,进一步降低光照,茎的伸长量、茎粗的增长量、及叶面积的增长量差异不显著,而在一定的弱光(150μmol·m~(-2)·s~(-1),100μmol·m~(-2)·s~(-1))下,随着温度的下降,辣椒茎的伸长量、茎粗的增长量、及叶面积的增长量显著降低,说明低温对辣椒茎的伸长、茎粗增长及叶面积增长的抑制作用强于弱光。
     2、低温弱光环境下,两个参试品种辣椒植株的根系及地上部干物质积累均明显减少,而且地上部变化最为突出。与对照相比,偏低温弱光处理地上部干物质积累量缓慢增长,且随着光照减弱,干物质积累也显著减少;实验结果显示,白天15~20℃、夜间5~6℃是辣椒生长的临界温度,处理7~15天,辣椒干物质积累呈现负增长。若遇到这种气候条件,生产中应尽早采取措施,避免此环境持续超过5~7天,否则辣椒生长将无法恢复。
     3、低温弱光处理使辣椒植株根系的琥珀酸脱氢酶活性降低。低温弱光处理7天后,在对照条件下恢复生长10d,偏低温弱光处理的植株根系活力可恢复至与对照相同或接近的水平,而极端低温弱光处理的植株根系活力仍很低,表明低温是影响辣椒根系活力的首要限制因子。
     4、低温弱光显著影响辣椒对矿质营养元素的吸收、运输和分配。研究表明,偏低温弱光及其处理初期,矿质元素从根系向茎、叶的运输减缓,随着温度、光照的逐步降低和处理时间的延长,植株的光合作用及呼吸代谢都受到抑制,矿质元素的吸收明显减弱。陇椒2号在偏低温弱光下,K在辣椒叶片中相对富集、增强了叶片渗透势,这可能是陇椒2号耐低温弱光的机理之一。
     辣椒在低温弱光下对微量元素的吸收特点是,偏低温较弱光下(21~23℃/8~10℃、150μmol·m~(-2)·s~(-1)),叶片中Fe和Mn的含量高于对照,表明植物自身通过调节营养元素的分配以促进叶绿素的合成,同时呼吸作用增强;其余处理Zn、Mn、Cu、Fe等微量元素在根部积累,说明此时微量元素的吸收、运输受阻。随着低温弱光逆境的持续,叶片的光合、呼吸均显著减弱,对营养元素的吸收显著减少。
     5、辣椒经低温弱光处理后,光合色素的含量和组成比例发生了明显的变化,并且两个供试辣椒品种有明显差异。陇椒2号耐低温弱光的能力较佳木斯强,在低温弱光处理初期,其叶绿素含量及其组成比例的变化均小于佳木斯,而且在偏低温弱光下,其对弱光的适应性调节能力较强;而佳木斯在处理初期叶片的叶绿素含量即随温度降低而有显著变化,叶绿素b含量急剧下降导致chla/b比值显著提高,说明在低温弱光下chlb被破坏,叶片的光合作用受到抑制。低温弱光下辣椒的光合参数均显著降低。两个供试辣椒品种之间的光合特性略有差异,佳木斯对低温弱光的反应比陇椒2号敏感,尤其随光照降低,其光合作用显著降低。
     6、低温弱光胁迫下,辣椒叶片的相对电导率和丙二醛含量都有不同程度的提高,在偏低温下,随着光照减弱,相对电导率和丙二醛含量差异不显著;在极端低温下,随着光照进一步减弱,相对电导率和丙二醛含量明显提高,随着处理时间延长,同一温度下,随着光照降低,叶片丙二醛含量也显著增加,由此可初步判断,低温是导致细胞膜脂过氧化的直接原因。
     7、经偏低温较弱光(21~23℃/8~10℃、150μmol·m~(-2)·s~(-1))处理后,辣椒叶片的超氧化物歧化酶(SOD)活性变化与对照无显著差异,但随着温度、光强的逐步降低和处理时间的延长,SOD、POD活性显著降低。
     8、在偏低温较弱光下,辣椒能积累更多的脯氨酸,增强渗透调节,减轻低温冷害。随着温度的降低、光照的减弱及处理时间的延长,辣椒叶片可溶性糖含量显著下降且下降幅度依次增大;笔者认为,可溶性糖是光合作用产物的重要组成分,低温弱光处理已显著阻碍了光和产物的合成及运输,因此,可溶性糖和可溶性蛋白不宜作为测定辣椒幼苗耐冷性的指标。
     9、试验还通过外源Ca~(2+)及Ca~(2+)信号抑制剂对低温下辣椒幼苗生理指标的影响,验证了Ca~(2+)信号系统参与了调节辣椒幼苗抗寒过程中渗透调节物质的合成。
This study was conducted in phytotron which modeled lower temperature and poor lightoccurred often in solar greenhouse in winter production.Growth morphology,photosynthesis,absorption of nutrient and chilling tolerance index of pepper(Capsicum annuum Linn.)werestudied under lower temperature and poor light condition to reveal its growth characteristicand acclimation mechanism.The purpose of this study was to provide theoretical basis forprotected cultivation and breeding for tolerance for lower temperature and poor light ofpepper.The results show as follows:
     1.Elongation and augment of stem as well as increase of leaf area were affectedsignificantly under lower temperature and poor light.Under suboptimal temperature(day21-23℃/night 8-10℃)and lower temperature(day 15-20℃/night 5-6℃),there was nosignificant difference in elongation and augment of stem as well as increase of leaf area withdecreasing light intensity,while under poor light(150μmol·m~(-2)·s~(-1),100μmol.m~(-2)·s~(-1)),theywere decreased significantly with decreasing temperature.
     2.Under lower temperature and poor light condition,dry mass accumulation of shootand root of two varieties declined dramatically especially of shoot.Dry mass accumulation ofshoot increased slowly under suboptimal temperature and poor light(21-23℃/8-10℃;150μmol·m~(-2)·s~(-1),100μmol·m~(-2)·s~(-1))compared to control,and it also decreased significantlywith poorer light;the results show that critical temperature of pepper growth were15-20℃and 5-6℃in day and night respectively.Dry mass accumulation decreased after 7-15d treatment.So counter measures should be used early to avoid such climate conditionexceeding 5-7d,or the growth of pepper would not recover.
     3.Succinic dehydrogenase activity decreased under lower temperature and poor lightcondition.After 7 d lower temperature and poor light treatment and then grown 10 d undercontrol condition,root activity of plants treated by suboptimal temperature and poor light(21-23℃/8-10℃;150μmol·m~(-2)·s~(-1),100μmol·m~(-2)·s~(-1))recovered to about level of control,but itwas still very lower in plants treated by low temperature and poor light(15-20℃/5-6℃;150μmol·m~(-2)·s~(-1),100μmol·m~(-2)·s~(-1)),which show that lower temperature was primary factoraffected root activity.
     4.Low temperature and poor light significantly affected absorption,transportation andallocation of nutrients of pepper plants.The results show that in early stage of suboptimaltemperature and poor light,transportation of mineral elements from root to shoot and leafdecreased,photosynthesis and respiration of plants were inhibited with decreasingtemperature and light as well as treatment time which resulted in dramatic decline ofabsorption of mineral elements.K enriched in leaves of Longjiao No.2 under lowtemperature and poor light which could increase osmotic regulation,this maybe thetolerancemechanism to low temperature and poor light of Longjiao No.2.
     With respect to absorption of micro-nutrients of pepper,Fe and Mn were higher thancontrol under suboptimal temperature and lower light(21~23℃/8~10℃、150μmol·m~(-2)·s~(-1)),which indicate that plant could regulate allocation of nutrients by itself to synthesischlorophyll and increase respiration;Zn,Mn,Cu,Fe etc.micro-nutrients accumulated in rootunder other treatments,i.e.transportation of micro-nutrients were inhibited.Photosynthesisand respiration of leaves declined and absorption of nutrients reduced significantly withlonger treatment.
     5.Photosynthesis pigment content and component ratio were altered by low temperatureand poor light treatments and there were significant difference between two varieties.Longjiao No.2 can tolerate low temperature and poor light more than Jiamusi as itschlorophyll content and ratio changed less than that of Jiamusi as well as its strongerregulation capacity.On the country,chlorophyll content of Jiamusi changed dramatically withdecreasing temperature,chlb declined rapidly resulted in increasing chla/b which indicatesdamage of chlb and inhibition of photosynthesis.Photosynthesis parameters were declinedremarkably under low temperature and poor light.There was a little difference betweenphotosynthesis characteristic of the two varieties,response of Jiamusi to low temperature andpoor light was more sensitive than that of Longjiao No.2 and decreased pronouncedly withdecreasing light.
     6.EC and MDA of pepper leaves increased under low temperature and poor light,therewere no significant differences between them with decreasing light at 21-23℃/8-10℃,butthey were increased dramatically at 15-20℃/5-6℃.So we can speculate that lowertemperature was the direct reason resulted in cell membrane lipid peroxidation.
     7.No significant difference of SOD activity was observed under suboptimal temperatureand poor light(21-23℃/8-10℃;150μmol·m~(-2)·s~(-1)),but SOD and POD activity substantiallydeclined with lowering temperature and light as well as treatment time.
     8.Under suboptimal temperature and lower light,proline accumulated to increaseosmotic regulation capacity and alleviate chilling damage.Soluble carbohydrate of pepper leaves decreased progressively and significantly with decreasing temperature and lightintensity as well as longer treatment time.So we think that synthesis and transport ofphotosynthetic product were inhibited by low temperature and poor light as solublecarbohydrate was important component of photosynthetic product.Thus,soluble carbohydrateand protein were not suitable to be used as index of chilling tolerance of pepper seedling.
     9.Effects of different concentrations of Ca~(2+)and inhibitors of Ca~(2+)signal system onsome osmolytes,including soluble protein,soluble sugar and proline in pepper under lowtemperature stress were investigated.The results indicated that extraneous calcium(10mmol/L)treatment could markedly increase the content of soluble protein,soluble sugar and proline.Moreover,addition of Ca~(2+)chelating agent EGTA or calmodulin antagonist W7 couldmarkedly decrease the content of soluble protein,soluble sugar and proline.Taken togetherthe above results,it is suggested that Ca~(2+)signal system may be regulated by change of someosmolytes in Pepper under low temperature.
引文
[1]中国种植业信息网.数据库来源于《中国统计年鉴》及《中国农业统计资料》
    [2]李式军.设施园艺学[M].中国农业出版社.2007
    [3]孙日飞.我国蔬菜产业发展现状、问题与现状[J].见:中国园艺学会第九届第二次全国理事扩大会议会刊.2003
    [4]Blum.A.1998.in:plant breeding for stress envioroments(Blum.A.ed).99-132 CRC press.Inl.Boca roton,Florida
    [5]Lyons,J.M.Chilling injury in plant.Ann.Rev.Plant Physiol.197324:445
    [6]王毅,杨宏福,李树德.园艺植物冷害和抗冷性研究——文献综述[J].园艺学报,1994,21(3):239-244
    [7]郑光华.大豆种子萌发过程中冷害问题的研究[J].中国农业科学,1985,2:65-72
    [8]刘文明.辣椒落叶、落花和落果分析[J].天津农业科学,1996,29(4):19-20
    [9]钱芝龙,丁梨平,赵华仑.辣椒苗期耐低温性研究[J].江苏农业科学,1996(1):46-48
    [10]Markart H1AH.Chilling injury:a review of possible cause.1986,21(6):1329-1333
    [11]简令成,吴索莹.植物抗寒性的细胞学研究——小麦越冬过程中细胞结构形态的变化[J].植物学报,1965,13(1):239-244
    [12]朱其杰,高守云,蔡洙湖等.黄瓜耐冷性鉴定指标及遗传规律的研究[M]见:李树德.中国主要蔬菜抗病育种进展.北京:科学出版社,1995,457-462
    [13]宋述尧等,黄瓜不同品种耐冷力的初步研究,吉林农业大学学报,1992(1):27-32
    [14]王荣富.植物抗寒指标的种类及其应用[J].植物生理学通讯,1987,3:49-55
    [15]陈瑗,周玖.谈谈脂至过氧化作用[J].生命的科学,1983,3:16-19
    [16]刘鸿先,曾韶西,王以柔等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧物歧化酶SOD的影响[J].植物生理学报,1985.11(1):48-55
    [17]张泽煌等.低温胁迫对茄子的伤害及茄子抗寒机理[J].福建农业学报,2000,15(1):40-42
    [18]王以柔,刘鸿先.李平等.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响[J].植物生理学报,1998,12(3):244-251
    [19]钱芝龙,丁犁平,曹寿椿.低温胁迫对辣椒幼苗膜脂过氧化水平及保护酶活性的影响[J].园艺学报,1994,21(2):203-204
    [20]邹志荣,陆帼一,低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响[J].西北农学报,1994,3(3):51-56
    [21]顾增辉,宋剑陶.大豆抗冷性生理生化指标的筛选[J].中国农业科学,1992,25(4):15-23
    [22]易金鑫,陈静华,杨起英.茄子苗期耐低温性鉴定方法初步研究[J].江苏农业科学,1998,(5):51-53
    [23]边静,胡迎雪.青椒耐低温弱光鉴定的初步研究[J].辽宁农业科学.1994,(4):37-40
    [24]朱世东.茄果类幼苗低温伤害与膜脂过氧化作用[J].安徽农学院学报.1991,18(2):141-146
    [25]陈贻竹,B·帕特森.低温对植物叶片中超氧化物歧化酶、过氧化氢和过氧化氢水平的影响[J].植物生理学报,1985,(11):48-51
    [26]简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983,(1):17-23
    [27]简令成.植物抗寒机理研究的新进展[J].植物生理学报,1992,9(3):17-22
    [28]Levitt J.Responses of plants to environments[M].Vol.1.P.23-64.Academic Press.New York.
    [29]刘明池.提高黄瓜幼苗抗冷性研究[J].华北农学报,1994,9(3):52-58
    [30]王孝宣,李树德,东惠茹等.低温胁迫下对番茄苗期和花期若干性状的影响[J].园艺学报,1996,23(4):349-354
    [31]孙爱民,孙其信.有关小麦抗寒生理的研究概况[J].国外农学—麦类作物,1985,6:32-35
    [32]刘祖琪,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,4344
    [33]马艳青,戴雄泽.低温胁迫对辣椒抗寒性相关生理指标的影响[M].园艺学进展(第四辑).哈尔滨工程大学出版社,2000:374
    [34]龚明,刘友良,朱培人,低温下稻苗叶片中蛋白质及脯氨酸的变化[J].植物生理学通讯,1989,25(4):18-22
    [35]钱永常,余叔文,植物中的逆境蛋白[J].植物生理学通讯,1989(5):5-11
    [36]孙孟健,李本湘.植物耐寒性及防寒技术[M].北京:学术书刊出版社,1989,93-159
    [37]李晓萍,郭俊彦.黄瓜幼苗发育及冷锻炼过程中子叶中的多肽变化[J].植物学报,1993,35(10):766-771
    [38]Murata N,Ishizaki-Nishizawa O,Higashi S,etal.Genetically engineeredalteration in thechilling sensitivity of plants.Nature,1992,356(23):710-713
    [39]武兰芳.低温下玉米幼苗叶片某些细胞器可溶性蛋白质的变化[J].1990,5(2):38-43
    [40]刘大永,王维香.过氧化氢对水稻幼苗中CAT和POD活性的影响[J].作物学报,1 998,24(3):38-43
    [41]王克安等.低温对黄瓜生理生化代谢功能及形态的影响[J].山东农业科学,1998,(4):52-55
    [42]陈杰忠等.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58
    [43]由继红等.钙对萝卜幼苗抗寒性及某些生理指标的影响[J].植物研究,2001,21(3):409-412
    [44]Yelenosky G.Accumulation of free Proline in citrus leaves during cold hardening of young Trees in countroued temperature regimes.Plant Physiol,1979,64(3):425-427
    [45]郭确,潘瑞炽.ABA对水稻幼苗耐冷性的影响[J].植物生理学报,1984,10(4):295-302
    [46]李育军,赵玉田,常汝镇等.大豆萌发期对6℃低温的反应[J].大豆科学,1990,9(2):136-143
    [47]郭绍川,刘玲玉.脯氮酸含量在什物低温锻炼中的变化及同抗寒性的关系[J].西北植物研究,1984,4(1):45-50
    [48]陈翠莲,马平福.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验.华中农业大学学报,1998,8(2):176-179
    [49]汤章成.水分胁迫的高梁幼苗内游离脯氨酸的积累及其作用[J].植物生理学报.1989,15(1):105-110
    [50]Yelenosky G.Cold hardening“ Valecia” orange tress to tolerate-6.7℃ without injuring.Amer Soc Hort Sci.1987,103:1449-1452
    [51]Whner T.C.Screening for low-temperature Germination Ability in Cucumber.Hort.Science,1981 16(3):339
    [52]朱为民等.光合特性作为番茄设施专用品种选育指标的效应[J].上海农业学报,200l,17(4):45-48
    [53]马德华等.黄瓜耐低温研究进展[J].天津农业科学,1997,(4):1-7
    [54]何洁等.低温植物的光合作用[J].植物生理学通讯,1 986(2):2 1-26
    [55]庞金安,沈文云.黄瓜幼苗耐低温指标研究初报[J].天津农业科学.1998.4(2):53-56
    [56]Irving R.M,Lanpher F.O.Effect of salts and electron transport on the conformation of isolated chloroplasts.Ⅱ.Electron microscopy[J].Plant phystol,1968,43:9-12
    [57]李美如,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物抗冷性的关系[J].植物生理学通 讯.1995,31(5):328-334.
    [58]罗正荣.植物激素与抗寒力的关系[J].植物生理学通报,1989,(3):1-5
    [59]刘祖祺,张石城.植物抗性生理学[M].北京中国农业出版社,1994:81-83
    [60]邹志荣,陆帼一.氯化钙对辣椒幼苗抗冷性的影响[J].陕西农业科学,1996,(5):8-11
    [61]Minorsky P V.An heuristic hypothesis of chilling in plants:a role for calcium as the primary physiology transducers of injury[J].Plant Cell Environ,1995,8:75-82
    [62]Legge R L,Thompsom J E,Baker J K,et al.The effect of Calcium in the fluidity and phase poperties of miciosomal membranes isolated from postlimateric Glod Delicious Apples[J].Plant Physiol,1982,23:161-169
    [63]Rickauer M,Tanner W.Effect of Ca2+ on amino acid transport and accumulation in roots of phaseolus rulgaris[J].Plant Physiol,1986,82:41-47
    [63]Arora R,Palta J P.A loss in plasma membrane ATPase activity and its recovery coincides with incip freeze-thaw injury and post-thaw recovery in onion bulb scale tissue.Plant Physiol,1991,95:846-852
    [65]宋广运,陈惠民.钙对棉花胚根抗冷性的影响[J].中国农业科学.1986,2:23-26
    [66]赵可夫,卢元芳,张宝泽等.Ca~(2+)对小麦幼苗降低盐害的研究[J].植物学报.1993,35:51-56
    [68]陈由强,叶冰莹,高一平等.低温胁迫下枇杷幼叶细胞内Ca~(2+)水平的变化的细胞化学研究[J].武汉植物学研究.2000,18(2)138-142
    [69]张红,简令成,李广敏.低温逆境中黄瓜幼苗细胞内钙离子水平的变化的细胞化学研究[J].实验生物学报,1994,27(4)419-422
    [70]张红,薛庆林,李广敏等.低温胁迫对黄瓜幼苗细胞内钙离子水平的影响及抗旱剂的调控作用[J].电子显微学报,1996,15(5)396
    [71]W.P.Chen.And P.H.Li.Chilling-induced Ca~(2+)owerload enhances production of active oxygen species in maize(Zea mays L.)cultured cells the effect of abascisic acid treatment[J].Plant cell and Environment,2001,24:791-800
    [72]梁颖,王三根.Ca~(2+)对低温下水稻幼苗膜的保护作用[J].作物学报,2000,27(1):59-64
    [73]曾绍西,王以柔,李美如.冷锻炼和ABA诱导水稻幼苗提高抗冷性期间膜保护系统的变化[J].热带亚热带植物学报,1994,2:44-50
    [74]费云标,舒念红,黄涛等.植物寒冻损伤与抗性的细胞化学及生物化学[J].生物工程进展,1994.14:40-44
    [75]李美如,刘鸿先,王以柔等.水稻幼苗冷锻炼过程中钙的效应[J].植物学报,1994,38(2):735-784
    [76]李美如,刘鸿先,王以柔等.钙对水稻幼苗抗冷性的影响[J].植物生理学报,1996,22(4):379-384
    [77]陈立松,刘星辉.植物体内的Ca~(2+)信使系统及其与抗逆性的关系[J].福建农业大学学报,1997,26(36):291-297
    [78]孙大业.钙调节蛋白及其在植物体内的功能[J].植物生理学通讯,1984,6:13-19
    [79]钟国瑞.水稻耐寒性研究进展[J].江苏农业学报,1991,7(3):52-55
    [80]唐崇钦,彭德川,娄世庆等.Ca2+对叶绿体两个光系统间激发能分配调节的影响[J].植物学集刊,1994,7:230-236
    [81]梁颖,王三根,余建桥.Ca~(2+)对冷害水稻幼苗某些生理特性的影响[J].西南师范大学学报,1997,22(4):411-415
    [82]Ming Gong,Yong Junli,Xun Dai,et al.Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings[J].Plant Physiol.1997,150,615-621
    [83]龚明.钙信使系统对植物逆境伤害及抗逆性的影响[A].全国植物环境生理会议论文汇编[C],1994,9-12
    [84]梁颖,王三根.Ca2+对低温下水稻幼苗膜的保护作用[J].作物学报,2000,27(1):59-64
    [85]简令成,孙龙华,李积宏.低温逆境中不同抗寒性植物细胞内Ca~(2+)稳定平衡的区别[J].植物学报,2000,42(4):1182-1188
    [86]Velutha mbi K.and Poouai A H B.W.Calcium and calmodulin-regulated Phophorylation of Soluble and Membrane protins from Com Coleoptiles[J].Plant Physiol,1984,76:359-365
    [87]高辉远.大豆生长发育过程中光合作用和光合效率的调节[M].山东农业大学博士论文,1999
    [88]胡文海,喻景权.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响明.园艺学报,2001,28(1):41-46
    [89]睦晓蕾,蒋健箴,王志源等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-318
    [90]王兴银,张福漫.弱光对日光温室黄瓜光合产物分配的影响[J].中国农业大学学报,2000,5(5):3641
    [91]王昭辉,张振贤,于贤昌.遮荫对生姜生理生化特性的影响[J].西北农业学报,1999,8(2):77-79
    [92]Gizawy,A.M,Gomaa,H.M.Effect of different shading levels on tomato plants.Ⅰ:Growth,flowering and chemical composition.Acta hort 1992(323):341-347
    [93]Krause GH and Weis E.Chlorophy Ⅱ fluorescence and photosynthesis:The basics.Annu.Rev Plant Physiol.Plant Mol.Biol.1991(43):313-349
    [94]M.Nieuwhof,J.Janson,and J.C.van Oeveren.Genotypic variation for relative growth rate and other growth parameters in tomato(Lycopersicon esculentum Mill)under low energy conditions.J.Genet and Breed,1993(47):35-44
    [95]Mark,H.,Brand.Shade influences plant growth,leaf color,and chlorophy Ⅱ content of Kalmia latifolia L.culfivars HortSclence.1997(32):206-208
    [96]眭晓蕾,蒋健箴,王志源等.弱光对甜椒不同品种光合特性的影响[J].园艺学报,1999,26(5):314-318
    [97]黄伟,任华中,张福墁.低温弱光对番茄苗期生长和光合作用的影响[J].中国蔬菜,2002(4):15-17
    [98]艾希珍,崔志峰,张振贤等.日光温室辣椒不同层次叶片光合速率及其对产量的贡献[J].长江蔬菜,2000(4):25-27
    [100]沈文云,候锋.低温对杂交一代黄瓜幼苗生理特性的影响[J].华北农学报,1995,10(1):56-59
    [101]许大全,沈允钢.光合作用的限制因素.余叔文,汤章城主编:植物生理与分子生物学(第二版)[M].1 998,262-274
    [102]Genty B.,Briantais JM.,Baker NK.The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochim.Biophys.Acta 1989(990):87-92
    [103]Giarmopolitis C N,Ries S K.Superoxide dimutase Ⅰ.Occurrence in high plants.Plant Physiol,1977(59):309-314
    [104]张其德,唐崇钦,林世青.光强度对小麦幼叶光合特性的影响[J].植物学报,1988,30(5):508-514
    [105]刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994:43-44
    [106]Coilatz G D.Influence of certain environment factors on photorespiration in Simmondisis [J].Planta,1997,130-132
    [107]沈允钢,徐大全.光合机构对环境的响应与适应[M].见:余叔文主编.植物生理与分子生物学[M],北京:科学出版社,1992,225-235
    [108]Ogren E.Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching compoments[J].Planta.1991,184:538-544
    [109]别之龙,刘佩瑛.2、4-D对辣椒光和产物分配和32P运转的影响研究[J].西南农业大学学报,1998,20(3):263-266
    [110]郭泳,李天来,黄广学等.环境因素对番茄单叶净光合速率的影响[J].沈阳农业大学学报,1998,29(2):127-131
    [111]王永健,姜亦巍,吴国胜等.黄瓜光补偿点与低温弱光耐受性关系初探[J].园艺学报,1998(2):360-362
    [112]王永健,姜亦魏,吴国胜等.黄瓜对低温弱光的耐受性与光合补偿点的关系[J].园艺学报,1998,25(2):199-200
    [113]Kurkela,1990.见余叔文,汤章城土编:植物生理与分子生物学(第二版)[M],1998,721-728
    [114]别之龙,刘佩瑛,李家标等.温度和光强对辣椒生殖器官脱落的影响[J].西南农业大学学报,1995,17(3):228-231
    [115]马国成,张福墁.日光温室不同光温环境对黄瓜光合产物运输及分配的影响[J].北京农业大学学报,1995,21(1):34-38
    [116]Vjacheslav G K,ElbinaL M,Elena A Z,Mikhail K C.1989.Effect of 6-benzylm inopurine onStem formation and flower bud initiatbn in Rudbeckia bicobr plants of different ages under no-indudtive conditions.Acta Horticulturae,251:25-33
    [117]XuX,Van AA,Vreugdenhil D.The role of gibberellic acid,abscisic and sucrose in the regulation of potato tuber formation in vitro.Plant Physiol,1998,117:575-584
    [118]刘成连,战吉成,原永兵等.水杨酸对苹果叶片光合作用的影响[J].园艺学报,1999,26(4):261-262
    [119]程晋美,周宝利.植物生长调节剂在茄果类蔬菜上的应用进展[J].长江蔬菜,2005,5:30-32
    [120]彭良志,何绍兰,汤军等.水溶性BA粉剂防止脐橙幼果脱落的作用[J].中国南方水果,1999,(28)1:7
    [121]叶自新.几种生长调节剂防止黄瓜与瓠瓜化瓜及其增产效应[J].浙江农业大学学报,1996,22(2):191-195.
    [122]张平,郝建军.GA3与6-BA复合剂对黄瓜产量的影响[J].沈阳农业大学学报,2003,12,34(6):415-418.
    [123]沈善酮,钱桂琴,朱启泰.日光温室低温逆境下辣椒落花落果的研究初报[J].江苏农业科学,1995(4).60-62
    [124]Rylski L,Spigelman M.Effect of shading on plant development,yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation.Sci Hort.,1986.29:31-35
    [125]张宪政.植物叶绿素含量测定—丙酮-乙醇混合液法[J].辽宁农业科技,1986,(3):26-28
    [126]邹琦主编.植物生理学实验指导[M].北京:中国农业出版社,2000
    [127]赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社,1998
    [128]李合生主编.植物生理生化实验技术原理和技术[M].高等教育出版社,2000
    [129]陈青君,张福曼等.黄瓜对低温弱光反应的生理特征研究。中国农业科学,2003,36(1):77-81
    [130]YANG T,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plants[J].Trends in plant science.2003,8(10):505~512.
    [131]陈贵林,高洪波,乜兰春,等.钙对茄子嫁接苗生长和抗冷性的影响[J].植物营养与肥料学报,2002,8(4):478~482.
    [132]高洪波,陈贵林.钙调素拮抗剂和钙对茄子嫁接苗抗冷性的影响[J].园艺学报,2002,29(3):243~246.
    [133]Monroy A F,Sarhan F,Dhindsa R S.Cold-induced changes in freezing tolerance,protein phosphorglation,and gene expression:Evidence of a role of calcium.Plant Physiol.,1993,102: 1227~1235
    [134]利容千,王建波主编.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.
    [135]王凤华,林德清,王贵学.钙提高茄子幼苗抗寒力的研究[J].四川农业大学学报,2005,23(2):192~194,222.
    [136]汪良驹,刘友良,马凯.钙在无花果细胞盐诱导脯氨酸累积中的作用[J].植物生理学报,1999,25(1):38~42.
    [137]苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca的调节作用研究[J].林业科学研究,2003,16(3):335~338.
    [138]宗会,刘娥娥,郭振飞,等.干旱、盐胁迫下LaCl3和CPZ对稻苗脯氨酸积累的影响[J].作物学报,2001,27(2):173~177.
    [139]宗会,徐照丽,刘娥娥,等.低温胁迫下氯丙嗪和氯化镧对水稻幼苗脯氨酸积累的影响[J].热带亚热带植物学报,2003,11(3):241~244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700