小麦成株抗条锈性及小种专化抗条锈性相关基因的表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由Puccinia striiformis f.sp. tritic引起的小麦条锈病是世界范围内小麦(Triticum aestivum)生产上的重要病害。小麦成株抗性与小麦对条锈病的持久抗性有着密切的关系,是持久抗性的重要组成部分。为了对小麦成株抗性机制有更好的了解,我们采用抑制差减杂交的方法,选取条锈菌接种后12h,24h及36h的小麦材料及各时间点对照材料,构建了条锈菌诱导的成株期小麦“兴资9104”的基因表达谱。通过该实验,我们得到1250个阳性克隆,阳性克隆比例为68.5 %。对所有阳性克隆提取质粒DNA,经序列测定、去除载体序列及低质量序列后,共得到1188条高质量的ESTs。ESTs长度范围为100-800bp,多为100-400bp,其中17个序列长度大于600bp。
     对所有EST用Cap3软件进行聚类拼接,共获得427个Unigenes,包括245个Contigs和182个Singlets。多数congtigs包含2-3个序列,有一个contig包含了33个序列。经Blastx对所得Unigenes与NCBI非冗余蛋白质数据库进行比对分析和功能注释,发现在所有的Unigenes中,比对后没有显著性匹配(no hits)的占37.4%,这一类序列有可能是新的基因,也有可能是因为片段太短而造成没有匹配的序列。267个unigenes (62.6%)与蛋白质数据库中的序列存在着显著到极显著的相似性。在这267个ungenes中,232个表现出与已知功能序列的同源性,35个与未知功能序列具同源性。将已知功能的232个unigenes进行功能分类,其中防御相关的基因为第一大类,占已知功能基因的24%,其中胁迫相关的蛋白、病程相关蛋白及一些蛋白激酶出现的频率较高;占第二类的是与能量相关的基因,占15.7%,其中,参与光合作用及叶绿体结构建成的基因最多,如1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco),Rubisco活化酶;蛋白质合成及代谢相关的基因分别占13.1%和8.6%,居第三、四位;信号传导相关的基因占8.2%,膜转运类基因占6.4%,蛋白质修饰和储存类基因占3.4%,其它几类所占比例较小,分别是转录相关基因2.6%,编码次生代谢物质的基因2.2%,细胞生长分化相关基因1.9%,转座子0.7%。通过比较我们的实验结果与前人对小麦高温成株抗锈性及小麦条锈小种专化抗性的研究,我们认为小麦成株抗性的机制不同于小种专化抗性,表现在更多的防御途径参与了成株抗性的反应,并且活性氧相关的基因表达在成株抗性品种中产生较少或者是产生较晚。利用Real Time PCR检测技术,我们分析了一些抗病相关基因在接种后不同时间点的转录变化。结果表明,多数基因在成株期和苗期小麦的表达趋势基本一致,但在成株期的表达呈现诱导表达水平上升快,表达量高的特点。同时我们发现,大多数抗病相关基因在成株期未接种对照中的表达量高于苗期未接种对照。这很有可能是成株抗性产生的原因之一。
     小麦对条锈病的小种专化抗性是小麦抗病性的重要方面,在抗病育种中占有重要的地位。为了解小麦小种专化抗性的分子机制,我们利用寡核苷酸芯片对8个具小种专化抗性的单基因系的基因表达谱进行了分析,以期寻找具有相同遗传背景的单基因系中所共有的抗性机制及各个单基因系所特有的基因表达特征。通过对这八个单基因系的转录分析,我们鉴定了28个转录参与了所有基因型的小种专化抗性,其中19个为非亲和组合较未接种对照所特有的基因,包括假想的抗病蛋白,过氧化物酶、蓝铜结合蛋白、苯丙氨酸解氨酶及细胞色素P450等。另外9个基因为非亲和组合较亲和组合所特有的基因,包括钙调素结合蛋白、蓝铜结合蛋白、过氧化物酶及β-1,3-葡聚糖酶等等。同时我们也鉴定了每个基因型中特有的抗病相关的转录,这表明不同基因型有特定的转录事件产生。结果证实了已知的小种专化抗性中R基因介导的路径,包括氧化爆发,病程相关蛋白的表达及苯丙烷途径的活性。然而,还有几个为未知功能的转录,有待于进一步的研究。
Stripe rust, caused by Puccinia striiformis f. sp. Tritici (Pst), is a destructive disease of wheat (Triticum aestivum) worldwide. Adult plant resistance is relative to the durable resistance to stripe rust in wheat and adult plant resistance might be one of the most important component of durable resistance. To gain a better understanding of the mechanism of adult plant resistance, the suppressive subtractive hybridization (SSH) approach was used to identify wheat genes induced by Pst inoculation at adult plant stage. A total of 1,250 positive cDNA clones were obtained and sequenced. After the contig analysis with the Cap3 assembler, 427 unique sequences were obtained and compared to the NCBI no-redundant protein database using the BlastX program. The sequences were putatively categorized as genes belonging to signal transduction, transcription regulation, protein synthesis and storage, membrane transport, and cell growth and division. Based on the putative functions of the induced genes, we propose a special defense-related pathway that is triggered during the expression of adult-plant resistance in XZ after we compared our results with the research on high-temperature adult-plant (HTAP) resistance and race specific resistance in the literature. The time-course expressions using quantitative RT-PCR confirmed the induction of seven selected genes by Pst infection and determined their expression patterns.The result indicated that the expression pattern in adult plant was roughly similar to that in seedlings except the transcription level was higher and faster increased in adult plants.It is noteworthy that the expression level of most defense-related genes was higher in mock inoculated adult plant than that in mock inoculated seedlings. This might be one of the reasons for APR.
     The race specific resistance of wheat to stripe rust is one of important resistance in wheat breeding. In order to understand the molecular mechanism of race specific resistance, we constructed and used a custom focused oligonucleotide microarray to perform a meta-analysis of the transcriptional response involved in race-specific resistance conferred by Yr1, Yr5, Yr7, Yr8, Yr9, Yr10, Yr15, and Yr17. By profiling the response of the eight resistance genes in a common background genome, we identified 28 transcripts as significantly involved in the race-specific resistance phenotype across all genotypes, in which 19 transcrips, such as putative disease resistance protein, peroxidase, blue copper-binding protein and phenylalanine ammonia-lyase were specific to the uncompatible interaction compared to the uninoculated mock. Nine transcripts were specific to the uncompatible interaction compared to compatible interaction. These tanscripts includes calmodulin-binding protein, blue copper-binding protein, peroxidase and beta-1, 3-glucanase. Unique defense-related transcripts significant in each genotype were also identified, which highlighted some transcriptional events specific to certain genotypes. The results confirm the activity of known R-gene mediated pathways in the race-specific resistance response, including an oxidative burst that likely contributes to a hypersensitive response (HR), as well as pathogenesis-related (PR) protein expression and activity of the phenylpropanoid pathway. However, several identified transcripts remained unknown and may prove interesting candidates for further characterization.
引文
[1] Chen X M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat [J]. Can.J. Plant Pathol. 2005, 27: 314–337
    [2] Torabi, M.., Nazari, K. Seedling and adult plant resistance to yellow rust in Iranian bread wheat [J]. Euphytica, 1998; 100:51-54
    [3] Ahmad, S., Rodriguez, A., Farid Sabir, G., Roidar Khan, B., Panah, M. Economic losses of wheat crops infected with yellow rust in highland Baluchistan[J], ART/AZRI project research. No.67 .ICARDA, Quetta, 1991, 15
    [4] Line R F .Factors contributing to an epidemic of stripe rust on wheat in the Sacramen to valley of California in 1974[J].Plant Diseases Report, 1976, 60:312-316
    [5]万安民,赵中华,吴立人.2002年我国小麦条锈病发生回顾[J].植物保护,2003 (3): 5-8
    [6]吴立人,杨华安,陶碧华,孟庆玉,谢水仙,宋位中,袁文焕,杨家秀,李艳芳.小麦条锈菌新小种流行预测研究[J].中国农业科学,1991,24 (5): 59-63
    [7]曾士迈,张树榛.植物抗病育种的流行学研究北京[M].科学出版社, 1998, 28, 89-90
    [8]吴立人,杨华安,袁文焕,宋位中,杨家秀,李艳芳,毕云青. 1985-1990年我国小麦条锈菌生理专化研究[J].植物病理学报, 1993;23(3):26 9- 2 73
    [9]王凤乐,吴立人,徐世昌,金社林,贾秋珍,袁文焕,杨家秀.中国条锈菌新小种条中30, 31号的研究[J].植物保护学报, 1996, 23 (1)39 -4 4
    [10]杨作,解超杰,孙其信.后条中32时期我国小麦条锈抗源之现状[J].作物学报, 2003, 29(2), 161-168
    [11] Johnson, R.and Law. Cytogenetic studies on the resistance of the wheat variety Bersee to Pucciniastriiformis [J]. Cereal Rusts Bull, 1973, 1: 38-43.
    [12] Sawhney, R. N., Sharm, J. B., and Sharma, D. N. Genetic diversity for adult plant resistance to leaf rust {Puccinia recondita) in near-isogenic lines and in Indian wheats [J]. Plant Breeding, 1992, 109, 248-254.
    [13] Barcellos, A. L., Roelfs, A. P., Moraes-Fernandes, M. I. B. d. Inheritance of adult plant leaf rust resistance in the Brizilian wheat cultivar Toropi [J],2000, Plant Disease, 84, 90 -93.
    [14] McIntosh R A, Pre-emptive breeding to control wheat rusts [J], Euphytica, 1992, 63:103-113
    [15] Line, R F. and Chen, X M, Successes in breeding for and managing durable resistance to wheat rusts[J], Plant Disease. 1995, 79(12), 1254-1255
    [16] Wallwork, H. and Johnson, R. Transgressive segregation for resistance to yellow rust in wheat [J]. Euphytica, 1984, 33:123–132.
    [17] Bariana, H.S. and McIntosh, R.A. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar‘Hybridede-Bersee’[J], Plant Breeding, 1995, 114, 485-491.
    [18] Singh, R.P., Huerta-Espino J., Rajaram S, Achieving near immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes [J]. Acta Phytopathologica. et Entomol. Hungarica, 2000, 35: 133–139
    [19] Singh, R.P., and Rajaram S. Genetics of adult plant resistance to stripe rust in ten spring bread wheat [J]. Euphytica, 1994, 72:1–7.
    [20] Bariana, H.S., M.J. Hayden, N.U. Ahmed, J.A. Bell, P.J. Sharp, and R.A. McIntosh. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat [J]. Aust. J. Agric. Res. 2001, 52:1247–1255.
    [21] Singh, R. P., Huerta-Espino, J., and William, H. M. Genetics and breeding for durable resistance to leaf and Stripe Rusts in Wheat [J]. Turk J Agric For, 2005, 29, 121-127.
    [22] McIntosh, R.A., Wellings, C.R., Park, R.F. Wheat Rusts: An Atlas of Resistance Genes [M]. Melbourne: CSIRO Publications, 1995
    [23] Spielmeyer, W., McIntosh, R. A. , Kolmer, J., Lagudah, E. S., Powdery mildew resistance and Lr34 / Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat[J], Theor Appl Genet,2005, 111: 731–735
    [24] Leonard, K. J., Oat Lines with effective adult plant resistance to crown rust[J], Plant Disease, 2002, 86 (6):593-598
    [25] Chandrashekar, M and Halloran, G M, Variation in, and inheritance of seedling and adult-plant resistance in subterranean clover (Trifolium subterraneum L.) to leaf scorch (Kabatiella caulivora) (Kirch.) Karak [J], Australian Journal of Agricultural Research, 1990, 41(1) 115 - 120
    [26] Sha Aihua, Lin Xinghua, Huang Junbin, Zhang Duanpin, Expression profiling of genes related to adult plant resistance to bacterial blight of rice[J], Molecular Plant Breeding, 2006, 4(4), 469-476
    [27] Bansal, U. K., Hayden, M. J., Venkata, B. P., Khanna, R., Saini, R. G., Bariana, H. S., Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat[J], Theor Appl Genet , 2008, 117:307–312
    [28] Prell, H H, Day, P R, Plant-fungal pathogen interaction [M]. Berlin: Springer.2001
    [29] Mysore, K S. and Ryu, Choong-Min: Nonhost resistance: how do we know? [J], Trends in Plant Science, 2004, 9 (2): 97-104
    [30] Flor H H: The complementary genic systems in flax and flax rust [J]. Adv.Genet. 1956, 8: 29-54
    [31] Flor H H: Current status of the gene-for-gene concept [J]. Annu Rev Phytopathol 1971, 9: 275-296
    [32] Gabriel, D.W. and Rolfe, B.G.: Working models of specific recognition in plant microbe interactions [J]. Annu. Rev. Phytopathol. 1990, 28: 365-391
    [33] Collmer, A: Determinants of pathogenicity and avirulence in plant pathogenic bacteria [J]. Current Opinion in Plant Biology. 1998, 1:329-335
    [34] Jia, Y L, McAdams, S A., Bryan, G T., Hershey, H P. and Valent Barbara, Direct interaction of resistance gene and avirulence gene products confers rice blast resistance [J]. The EMBO journal. 2000, 19: 4004-4014
    [35]高必达,陈捷.生物植物病理学[M].北京,科学出版社,2006
    [36] Bisgrove, S R, Simonich, M T, Smith, N M, Sattler, A and Innes, R W, A disease resistance in arabidopsis with specificity for two different pathogen avirulence [J]. Genes Plant Cell, 1994,6: 927-933
    [37] Salmeron, J M., Oldroyd, G E., Rommens, C M., Scofield, S R., Kim, H S., Lavelle, D T., Dahlbeck, D. and Staskawicz, B J. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embeddedwithin the Pto kinase gene-cluster [J]. Cell, 1996, 86: 123-133
    [38] Van der Biezen, E.A. and Jones, J.D.G: Plant disease-resistance proteins and the gene-for-gene concept [J]. Trends Biochem. Sci. 1998, 23: 54-456
    [39] Dangl, J.L. and Jones, J.D.G.: Plant pathogens and integrated defence responses to infection [J]. Nature, 2001, 411: 826-833
    [40] Mackey, D., Holt, B.F., Wiig, A. and Dangl, J.L., RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis [J]. Cell 2002, 108: 743-754
    [41] Axtell, M.J. and Staskawicz, B.J: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed etimination of RIN4 [J]. Ce11, 2003, 112: 369-377
    [42] Mackey, D., Belkhadir, Y., Alonso, J M., Ecker, J R., and Dangl, J L., Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance[J]. Cell, 2003, 112: 379-389
    [43] Belkhadir, Y., Subramaniam, R., and Dangl, J L., Plant disease resistance protein signaling: NBS-LRR proteins and their partners[J]. Current Opinion in Plant Biology, 2004, 7: 391-399
    [44]何华纲.白粉菌诱导的簇毛麦叶片SSH文库的构建及抗白粉病相关基因的克隆与分析[D].2004
    [45] Van, L L C., Rep M., Pieterse, C M J. Significance of inducible defense-related proteins in infected plants [J]. Annual Review of Phvtopathologv, 2006, 44: 135-162
    [46] Liu, J J., Ekramoddoullah, A K M. The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses [J]. Physiological and molecular plant pathologv, 2006, 68: 3-13.
    [47]马建平,牟志美.植物蛋白酶抑制剂的研究进展[J].中国蚕业,2006,27(3),4-7
    [48] Huang, J C., Chang, F C., Wang, C S. Characterization of a lily tapetal transcript that shares sequence similarity with a class of intracellular pathogenesis-related (IPR) proteins[J]. Plant Mol Biol, 1997, 34: 6R1-6R6
    [49] Esnault, R., Buffard, D., Breda, C., Sallaud, C E., Turk, Z J., and Iaondorosi, A. Pathological andmolecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas svringae pv. Pisi [J]. Mol. Plant-Microbelnteractions, 1993, 6: 655-664.
    [50] Kim, S T., Yu, S., Kang, Y H., Kim, S G., Kim, J Y., Kim, S H., Kang, K Y. The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity [J]. Plant Cell Reports, 2008, 27: 593-603.
    [51] Lo, S C., Hipskind, J D., Nicholson, R L. cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum[J]. Mol. Plant-Microbe Interactions, 1999, 12: 479-489.
    [52]王萱.辣椒白粉病抗性与苯丙氨酸解氨酶活性的关系[J].中国农学通报,2009,25(03):193-196
    [53]李丽,刘峥,杨秀芬,邱德文.植物激活蛋白对番茄防御酶活性的影响[J].湖南农业大学学报,2008, 34(5), 534-537
    [54]赵华燕,魏建华,宋艳茹.木质索生物合成及其基因工程研究进展[J].植物生理与分子生物学学报,2004,30:361-370
    [55] Chen XM, Line RF, Leung H, Genome scanning for resistancegene analogs in rice, barley, and wheat by high-resolution electrophoresis[J]. Theor Appl Genet, 1998, 97:345–355
    [56] Liang, P and Pardee, A B: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [J]. Science, 1992, 257: 967-971
    [57] Bauer, D., Müller, H., Reich ,J., Riedel, H., Ahrenkiel, V., Warthoe, P., Strauss, M.: Identification of differentially expressed species by an displa:technique[J]. Nucleic Acid Research, 1993, 21(18): 4272-4280
    [58] Bacbem, C.W.B, Hoeven R.S., Bruijn S.M. de, Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development [J]. Plant J, 1996, 9: 745-753
    [59] Dellagi, A., Bitch, P R J., Heilbronn, J., Lyon, G D., cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia-Carotovota [J]. Microbiology, 2000, 146:165-171
    [60] Boventius, H., We11er, J I. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood mtthodology using milk protein gene as genetic markers [J]. Genetics, 1994, 137: 267-280
    [61] Money, T., Reader, S., Qu, L.J., Dunford, R P., Moore, G, AFLP-based mRNA fingerprinting [J]. Nucleic Acids Research, 1996, 24: 2616-2617
    [62] Habu, Y., Fukada, Tanaka S., Hisatomi Y, Lida S. Amplified restriction fragment length polymotphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence[J]. Biochemical and Biophysical Research Communications, 1997, 234: 516-521
    [63] Gurskaya, N.G., Diachenko, L., Chenchik, A., Siebert, P D., Khaspekov, CxL., Lukyanov, K.A., Vagner, L.L., Ermolaeva, O.D., Lukyanov, S.A. and Sverdlov, E.D. Equalizing cDNA subtraction based on selective suppression of polymerise chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorboll myristate 13-acetate [J]. Anal. Biochem., 1996, 240:90-97.
    [64]于秀梅,喻修道,屈志鹏,韩青梅,郭军,黄丽丽,康振生.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究[J].植物病理学报,2007,37( 1) 50-55
    [65]喻修道,屈志鹏,郭军,于秀梅,黄雪玲,韩青梅,黄丽丽,康振生.小麦与条锈菌亲和互作的差减文库构建及初步分析[J].中国农业科学,2008,41(5):1267-1273
    [66]汤华,郑用琏,贺立源,李建生.玉米耐铝毒基因的分离[J].植物生理与分子生物学学报, 2005, 31 (5): 507-514
    [67]李会勇,黄素华,赵久然,王凤格,张中保,毛毅辉,王秀堂等.应用抑制差减杂交法分离玉米幼苗期叶片土壤干旱诱导的基因[J].中国农业科学,2007,40 (5): 882-888
    [68]熊杰,韩玲,朱丹,高建国.抑制差减杂交筛选辐射致癌差异表达基因[J].中华放射医学与防护杂志,2005,25(4),322-324
    [1]李刚,程度,李宝健等.利用高效CaCl2转化法实现质粒的共转化[J],生物技术,2003,13(6):31
    [2] Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Staveren, M. V., Stiekema, W., Drost, L., Ridley, P., Hudson, S.-A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T. M., Terryn, N. and Gielen, J. Analysis of 1.9Mbof contiguous sequence fromchromosome4 of Arabidopsis thaliana[J]. Nature, 1998, 391, 485-488.
    [3]郭娴.小麦白粉菌诱导早期的基因表达分析[D],2005
    [4]康振生,王瑶,黄丽丽,魏国荣,赵杰.小麦品种对条锈病低反应型抗性的组织学和超微结构研究,中国农业科学,2003,36(9):1026-1031
    [5] Leal, G. A., Albuquerque, P. S. B. and Figueira, A. Genes differentially expressed in theobroma cacao associated with resistance to witches’broom disease caused by Crinipellis perniciosa [J]. Molecular Plant Pathology, 2007, 8, 279-292.
    [6] Asiegbu, F. O., Nahalkova, J. and Li, G. Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.) [J]. Plant Sci, 2005, 168, 365-372.
    [7] Verica, J. A., Maximova, S. N., Strem, M. D., Carlson, J. E., Bailey, B. A. and Guiltinan, M. J. Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response [J]. Plant Cell Rep, 2004, 23, 404-413.
    [8] Armstrong J, How do Rab proteins function in membrane traffic? [J], Int J Biochem Cell Biol, 2000, 32 (3): 303 - 307
    [9] Bischoff, F., Molendijk, A., Rajenddrakumar, C S., Palme, K. GTP-binding proteins in plants [J], Cell Mol Life Sci, 1999, 55: 233-256
    [10] Takai, Y., Sasaki, T., Matozaki, T. Small GTP-binding proteins [J], Physiol Rev, 2001, 81:153-208
    [11] Chavrier P, Gound B. The role of ARF and Rab GTPase in membrane transport [J], Curr Opin Cell Biol, 1999, 11: 466 - 475
    [12] Ma H GTP-binding proteins in plants: new members of old family [J], Plant Mol Biol, 1994, 26:1611-1636
    [13] Verma D P S, Cheon C I, Hong Z, Small GTP-binding proteins and membrane biogenesis in plants [J], Plant Physiol, 1994, 106: 1-6
    [14] Vanessa Vernoud, Amy C Horton , Zhenbiao Yang , Erik Nielsen, Analysis of the small GTPase gene super family of Arabidopsis[J], Plant Physiol, 2003, 131: 1191-1208
    [15] Borg S , Brandstrup B , Jenssen T J , Poulsen C. Identification of new protein species among 33 different small GTP binding proteins encoded by cDNAs from Lotus japonicus and expression of corresponding mRNAs in developing root nodules[J], Plant J, 1997,11(2):237-250
    [16] Bolte S, Schiene K, Dietz K J. Characterization of a small GTP-binding protein of the rab5 family in Mesembryanthemum crystallinum with in2 creased level of expression during early salt stress [J], Plant Mol Biol, 2000, 42(6): 923-936
    [17] Ueda T, Yamaguchi M, Uchimiya H, Nakano A, Ara6 , a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana[J], The EMBO Journal, 2001, 20, (17): 4730-4741
    [18]林慧贤,刘筱斌,李发强,罗文勇,刘良式.水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定[J].高技术通讯,2001,3:9-14
    [19] Mazel A, Leshem Y, Tiwari B S, Levine A, Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7(AtRabG3e) [J],Plant Physiol, 2004, 134: 118-128
    [20]郭启芳,邹琦,王玮.植物泛素/26S蛋白酶体通路的生理功能和分子生物学[J].植物生理学通讯,2004,40 ( 5):533-539
    [21]王亚玲,胡国富,李群,胡宝忠.水稻抗病调控因子OsSGT1原核表达载体构建和表达蛋白纯化[J] .东北农业大学学报,2004,35(3):285-289
    [22] Azevedo C, Sadanandom A, Kitagawa K Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].Science, 2002, 295:2073-2076
    [23] Peart J R, Lu R, Sadanandom A, Malcuit I, Moffett P, et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants[J] . Proc. Natl. Acad. Sci. U.S.A., 2002, 99(16):10865-10869
    [24]王振海,孙野青.Clp蛋白酶研究进展[J] .药物生物技术,2005,12 (6):412-415
    [25] Kerk, D., Bulgrien, J., Smith, D W., Barsam, B., Veretnik, S., Gribskov, M. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis [J].Plant Physiol, 2002, 129(2):908-925.
    [26]胡学博,宋凤鸣,郑重.高等植物中蛋白磷酸酶2C的结构与功能[J] .细胞生物学杂志,2005,27:29-34
    [27]翁华,冉亮,魏群.植物蛋白磷酸酶及其在植物抗逆中的作用[J] .植物学通报,2003,20(5):609-615
    [28] Carter, C., Thornburg, R W. Germin-like proteins: structure, phyologeny, and function [J]. Journal of Plant Biology, 1999, 42, 97–108.
    [29] Bernier F, Berna A. Germins and germin-like proteins: plant do-all proteins. But what do they doexactly? [J], Plant Physiology and Biochemistry, 2001, 39, 545–554.
    [30] Dumas B, Sailland A, Cheviet JP, Freyssinet G, Pallett K.Identification of barley oxalate oxidase as a germin-like protein. C. R. Acad. Sci. Paris, Life Sci. 1993, 316, 793-798.
    [31] Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC.Germin, a protein marker of early plant development, is an oxalate oxidase [J]. Journal of Biological Chemistry, 1993, 268, 12239–12242.
    [32] Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K,Yamazaki S, Satoh T.. Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata [J]. Journal of Biological Chemistry, 1999, 274, 33274–33278.
    [33] Rodriguez-Lopez M, Baroja-Fernandez E, Zandueta-Criado A,Moreno-Bruna B, Munoz FJ, Akazawa T, Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/ phosphodiesterase from barley leaves (Hordeum vulgare L.) aredistinct oligomers of HvGLP1, a germin-like protein [J]. FEBS Letters, 2001, 490, 44-48.
    [34] Segarra C I, Casalongue C A, Pinedo M L, Ronchi V P, Conde R D. A germin-like protein of wheat leaf apoplast inhibits serine proteases [J]. Journal of Experimental Botany, 2003, 54, 1335–1341.
    [35] Zimmermann G, Ba¨umlein H, Mock HP, Himmelbach A, Schweizer P. The multigene family encoding germin-like proteins of barley: regulation and function in basal host resistance [J]. Plant Physiol, 2006, 142, 181–192.
    [36] Christensen A B, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P. The germin-like protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley [J].Mol. Plant–Microbe Interactions, 2004, 17, 109-117.
    [37]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001,138-155
    [38] Rachel D, Isaac J, Aldo F et al. Isolation and analysis of cDNA encoding tomato cysteine proteases expressed during leaf senescence [J].Plant Mol Biol, 1996, 30:755-767
    [39] Krattinger S G, Lagudah E S., Spielmeyer W, Singh R P. et al, A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat[J], Science, 2009, 323:1360 - 1363.
    [40] Dixon R A and Paiva N L, Stress-induced phenylropanoid metabolism [J].Plant Cell, 1995, 7(7): 1085-1097
    [41] Bowles D J: Defense-related proteins in higher plants. Annu Biochem, 1990, 59, 873-907
    [42] Pallas A, Paiva NL, Lamb C, Dixon RA: Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus [J].Plant J. 1996, 10(2): 28I-293
    [43] Trognitz F, Manosalva P, Gysin R, Ninio-Liu D, Simon R, del Herrera MR, Trognitz H, Ghislain M,Nelson R: Plant defense genes associated with quantitative resistance to potato late blight in Solanum phureja x dihaploid s.tuberosum hybrids[J]. Mol. Plant Microbe Interact. 2002, 15(6): 587-597
    [44] Taylor I B. Genetics of ABA synthesise [A].In: Davies W J. Jones H G, eds. Abscisic acid, Physiology and biochemistry[C].Oxford: Bios Scientific, 1991, 23-25.
    [45] Gogdell R J, Howard T D, Bittl R, Schlodder E, et al. How carotenoid protect bacterial photosynthesis [J], London Ser B, 2000, 355, 1345-1349.
    [46] B. Markus Lange, Majid Ghassemian. Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism [J].Plant Mol Biol, 2003, 51: 925-948.
    [47] Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involed in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J].The EMBO Journal, 1996, 15: 2331-2342
    [48] Burbidge A, Grieve T, Terry C, et al.Structure and expression of a cDNA encoding zeaxanthin epoxidase, isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) [J], Journal of Experimental Botany, 1997, 48(314): 1749-1750.
    [49] Bouvier F, d Harlingue A , Hugueney P ,et al. Xanthophyll biosynthesis, cloning , expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum) [J ]. J. Biol.Chem, 1996, 271(46): 28861-288671
    [50] Agrawal G K, Yamazaki M, Kobayashi M, et al., Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene[J]. Plant Physiol, 2001, 125 (3): 1248 - 12571
    [51] Karina Kitzing, Sigrid Auweter, Nikolaus Amrhein, and Peter Macheroux, Mechanism of chorismate synthase, Role of the two invariant histidine residues in the active site[J]. The journal of biological chemistry, 2004, 279(10): 9451–9461,
    [52] Hu P S, Meng Y, Wise R P. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions[J].Mol Plant Microbe Interact. 2009, 22(3):311-20
    [53] Wool L G., Chan Y L., Gluck A. Structure and evolution of mammalian ribosomal proteins[J]. Biochem Cell Biol. 1995, 73: 933-947
    [54] Moore P B. The three-dimensional structure of the ribosome and its components [J], Annu. ev.Biophys. Biomol. Struct. 1998, 27:35-58.
    [55] Mager W H., Control of ribosomal protein gene expression[J], Biochim. biophys. Acts, 1988, 949:1-15.
    [56] Balzi E, Goffeau A. Genetics and biochemistry of yeast multidrug resistance [J]. Biochim. Biophys. Acta, 1994, 1187: 152-162.
    [57] Anderson M P, Rich D P, Gregory R J, et al. Generation of cAMP activated chloride currents by expression of CFTR [J]. Science, 1991, 251: 679-682.
    [58] Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use [J]. Plant J, 2003, 33(1):119-29
    [59] Moldenhauer J, Moerschbacher B M., Westhuizen A J V D, Histological investigation of stripe rust (Puccinia striiformis f.sp.tritici ) development in resistant and susceptible wheat cultivars[J], Plant Pathology, 2006,55, 469–474
    [60] Moldenhauer J, Pretorius Z A., Moerschbacher B M., Prins R and Westhuizen A. J. V. D. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat [J]. Molecular Plant Pathology, 2008, 9, 137-145.
    [61] Coram T E, Settles M and Chen X M. Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat–Puccinia striiformis f. sp.tritici interaction [J]. Molecular Plant Pathology, 2008, 9, 479–493.
    [62] Hulbert S H, Bai J F, Fellers J P, Pacheco M G and Bowden R L. Gene expression patterns in near isogenic lines for wheat rust resistance gene Lr34/Yr18 [J]. Pytopathology, 2007, 97, 1083-1093.
    [63] Coram T E, Wang M N and Chen X M. Transcriptome analysis of the wheat–Puccinia striiformis f. sp. tritici interaction [J]. Molecular Plant Pathology, 2008, 9, 157-169.
    [64] Dhugga K S., Tiwari S C, Ray P M. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: Purification, gene cloning, and trans-Golgi localization[J].Proc. Natl. Acad. Sci, 1997, 94, 7679–7684
    [65] Delgado I J, Wang Z H, Rocher A D, Keegstra K, Raikhe N V. Cloning and Characterization of AtRGP11 A Reversibly Autoglycosylated Arabidopsis Protein Implicated in Cell Wall Biosynthesis[J], Plant Physiol, 1998, 116: 1339-1349
    [66] Wu A M, Ling C, Liu J Y, Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco [J], Journal of Plant Physiology, 2006, 163, 426-435
    [67] Selth L A, Dogra1 S C, Rasheed M S, Randles J W, Rezaian M A, Identification and characterization of a host reversibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein[J], Plant Mol Biol, 2006, 61:297-310
    [68] Romeis T, Ludwig A A, Martin R, Jones J D G. Calciumdependent protein kinases play an essential role in a plant defence response [J]. The EMBO Journal, 2001, 20:5556-5567.
    [69] Andrea A. Ludwig, Tina Romeis and Jonathan D. G. Jones, CDPK-mediated signalling pathways: speci?city and cross-talk [J]. Journal of Experimental Botany, 2004, 55, 395, 181-188,
    [70] Berberich T, Kusano T. Cycloheximide induces a subset of low temperature-inducible genes in maize [J]. Molecular Genetics and Genomics, 1997, 254, 275-283.
    [71] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants [J]. The Plant J, 2000, 23, 319-327.
    [72] Botella J R, Arteca J M, Somodevilla M, Arteca R N. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata) [J]. Plant Mol Biol, 1996, 30, 1129-1137.
    [73] Ullanat R, Jayabskaran C. Distinct light-, cytokinin- and tissue-specific regulation of calcium-dependent protein kinase gene expression in cucumer (Cucumis sativus) [J]. Plant Sci, 2002, 162, 153-163.
    [74] Yoon G M, Cho H S, Ha H J, Liu J R, Lee H S P. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein[J]. Plant Mol Biol, 1999, 39:991-1001.
    [75] Murillo I, Jaeck E, Cordero MJ, San SB. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection[J]. Plant Mol Biol, 2001, 45:145- 158.
    [76] Li A L, Zhu YF, Tan X M, Wang X, Wei B, Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.) [J].Plant Mol Biol, 2008, 66:429–443
    [77]张宏昌,韩青梅,王晨芳,黄丽丽,张庆勤,康振生.小麦新抗源一粒葡抗条锈病的组织学和超微结构研究[J].植物病理学报,2008,38(2):153-164
    [78] The rice chromosomes 11 and 12 sequencing consortia, The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications [J]. BMC Biology, 2005, 3
    [79] Ghelardi E, Celandroni F, Salvetti S, Beecher D J, Gominet M, Lereclus D, Wong A C L and Senesi S. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in bacillus thuringiensis[J]. Journal of Bacteriology, 2002, 184, 6424-6433.
    [80] Yu T, Li Y S, Chen X F, Hu J, Chang X and Zhu Y G: Transgenic tobacco plants overexpressing cotton glutathione S-transferase show enhanced resistance to methyl viologen [J]. Plant Physiol, 2003, 106: 1305-1311
    [81] Kanzaki H, Saitoh H, To A, Fujisawa S, Kamoun S, Katou S, Yoshioka H and Terauchi R. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana [J], Molecular Plant Pathology, 2003,4(5): 383–391
    [82] Stone J M, Walker J C, Plant protein kinase families and signal transduction [J], Plant Physiol. 1995, 108,451–457.
    [83] Wellings C, Singh R, McIntosh R and Pretorius Z. The development and application of nearisogenic lines for the wheat stripe (yellow) rust pathosystem. In: 11th international cereal rusts and powdery mildew conference [A]. John Innes Centre, Norwich, UK, 2004, pp. 39.
    [84] Chen X M. Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat [J]. Can.J.Plant Pathol, 2005, 27, 314-337.
    [85] Buckley M. The Spot user's guide. CSIRO Mathematical and Information [J], Sciences, 2002 http://www.cmis.csiro.au/IAP/Spot/spotmanual.htm.
    [86] Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: Open software development for computational biology and bioinformatics [J]. Genome biol, 2004, 5, 10:R80.
    [87] Gautier L, Cope L, Bolstad B and Irizarry R A affy-analysis of affymetrix gene chip data at the probe level [J]. Bioinformatics, 2004, 20, 307-315.
    [88] Smyth G. Limma: linear models for microarray data. In: Bioinformatics and computational biology solutions using R and Bioconductor, 2005, New York: Springer, 397-420.
    [89] R Development Core Team R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2006
    [90] Richards K, Schott E, Sharma Y, Davis K and Gardner R. Aluminum induces oxidative stress genes in arabidopsis thaliana [J]. Plant Physiol., 1998, 116, 409-418.
    [91] Yang K Y, Im Y J, Chung G C and Cho B H. Activity of the arabidopsis blue copper-binding protein gene promoter in transgenic tobacco plants upon wounding [J]. Plant Cell Rep, 2002, 20, 987-991.
    [92] Gjetting T, Hagedorn P, Schweizer P, Thordal-Christensen H, Carver T and Lyngkj?r M.Single-cell transcript profiling of barley attacked by the powdery mildew fungus [J]. Mol. Plant-Microbe Interact, 2007, 20, 235-246.
    [93] Bindschedler L, Dewdney J, Blee K, Stone J, Asai T, Plotnikov J, et al. Peroxidase-dependent poplastic oxidative burst in Arabidopsis required for pathogen resistance[J]. Plant J, 2006, 47, 851-863.
    [94] Mohammadi M and Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance [J]. Plant Sci, 2002, 162, 491-498.
    [95] Pritsch C, Muehlbauer G, Bushnell W, Somers D and Vance C. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum [J]. Mol.Plant-Microbe Interact, 2000, 13, 159-169.
    [96] Bull J, Mauch F, Hertig C, Rebmann G and Dudler R. Sequence and expression of a wheat gene that encodes a novel protein associated with pathogen defense [J]. Mol. Plant-Microbe Interact, 1992, 5, 516-519.
    [97] Jansen C, Korell M, Eckey C, Biedenkopf D and KogelK. Identification and transcriptional analysis of powdery-mildew induced barley genes [J]. Plant Sci, 2005, 168, 373-380.
    [98] Neu C, Keller B and Feuillet C. Cytological and molecular analysis of the Hordeum vulgare-Puccinia triticina nonhost interaction [J]. Mol.Plant-Microbe Interact, 2003, 16, 626-633.
    [99] Dixon R, Achnine L, Kota P, Lui C, Reddy M and Wang L. The phenylpropanoid pathway and plant defence - a genomics perspective [J]. Mol. Plant Pathol, 2002, 3, 371-390.
    [100] Dittrich H and Kutchan T. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack [J]. Proc. Natl. Acad. Sci. U.S.A., 1991, 88, 9969-9973.
    [101] Bethke P C, Fath A, Spiegel Y N, Hwang Y S and Jones R L. Abscisic acid, gibberellin and cell viability in cereal aleurone[J]. Euphytica, 2002, 126, 3-11.
    [102] Hedden P, Phillips A L, Rojas M C, Carrera E, Tudzynski B. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? [J] J Plant Growth Regul 2001, 20, 319-331.
    [103] Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms [J]. Plant Physiol, 2005, 139:1935-1945.
    [104] Sculer M and Werck-Reichhart D. Functional genomics of P450s [J]. Annu. Rev. Plant Biol, 2003, 54, 629-667.
    [105] Kong L, Anderson J and Ohm H. Induction of wheat defense and stress-related genes in response to Fusarium graminearum [J]. Genome, 2005, 48, 29-40.
    [106] Boddu J, Cho S, Kruger W and Muehlbauer G. Transcriptome analysis of the barley-Fusarium graminearum interaction [J]. Mol. Plant-Microbe Interact, 2006, 19, 407-417.
    [107] Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, et al. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray [J]. Plant Mol. Biol, 2004, 55, 327-342.
    [108] L?pez M A, Bannenberg G and Castresana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival [J], Current Opinion in Plant Biology, 2008, 11,420–427
    [109] Gomez-Gomez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis [J]. Mol Cell, 2000, 5:1003-1011.
    [110] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation [J]. Cell, 2006, 125:749-760.
    [111] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis [J]. Proc Natl Acad Sci USA 2007, 104:19613-19618.
    [112] Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G,Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428:764-767.
    [113] Lint horst H J M, Melchers L S, Mayer A, et al. Analysis of gene families encoding acidic and basic beta -1 ,3-glucanases of tobacco [J]. Proc Natl Acad Sci USA, 1990, 87, 8756-8760.
    [114] Domingo C, Conejero V, Vera P. Genes encoding acidic and basic classⅢbeta-1, 3-glucanases are expressed in tomato plants upon viroid infection [J]. Plant Mol. Biol 1994, 24, 725-732.
    [115] Dong X, Mindrinos M, Davis K R, et al. Induction of arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulent gene [J]. Plant Cell, 1991, 3, 61-72.
    [116] Kemp G, Bot ha A M, Kloppers F J, et al. Disease development andβ-1,3-glucanases expression following leaf rust infection in resistant and susceptible near-isogenic wheat seedlings [J] .Physiological and Molecular Plant Pathology, 1999, 55, 45-52.
    [117] Anguelova V S, West huizen A J. Intercellular proteins and beta-1, 3-glucanase activity associated with leaf rust resistance in wheat [J]. Physiologia Plantarum, 1999, 106 (4): 393-401.
    [118] Anguelova-Merhar V S, Van der West huizen A J, Pretorius Z A. Beta-1, 3-glucanase and chitinase activities and the resistance response of wheat to leaf rust [J]. Journal of phytopathology, 2001, 149 (7/8):381-384.
    [119] Sock J, Rohringer R, Kang Z. Extracellularβ-1, 3-glucanases in stem rust-affected and abiotically stressed wheat leaves: Immunocytochemical localization of the enzyme and detection of multiple forms in gels by activity staining with dye labeled laminarin [J] . Plant Physiol, 1990, 94: 1376-1389.
    [120] Jasinski M, Ducos E, Martinoia E, Boutry M. The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis [J]. Plant Physiol, 2003, 131, 1169-1177
    [121] Boddu J, Cho S, Muehlbauer G. Transcriptome analysis of trichothecene-induced gene expression in barley [J]. Mol. Plant-Microbe Interact, 2007, 20, 1364-1375.
    [122] Cliftona R, Millara A and Whelan J. Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses [J]. BBA-Bioenergetics, 2006, 1757, 730-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700