人子宫肌瘤相关基因的克隆和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫肌瘤是一种受多基因控制的绝经前妇女生殖道最常见的良性肿瘤
    它是导致育龄期妇女行全子宫切除术的主要病因之一严重危害妇女的身心健
    康本实验室采用了两种技术来克隆肌瘤中有差异表达的基因并对所克隆到
    的部分基因进行了研究以期从分子水平对其发病机理有所了解
    在用mRNA 差异显示法DDPCR 筛选差异基因的过程中我们用了十二对
    引物将人的肌瘤和瘤旁组织进行了比较来获取差异片段并进而用反向
    Northern 的方法排除了假阳性用Northern 对真阳性克隆进行了验证结果
    我们从69 个DD 条带中找到了四个被Northern 所验证的cDNA 片段其中三个
    在肌瘤中高表达叫L1 L2 L3 一个在瘤旁组织中高表达叫M1 L1 经克
    隆并被证明是人核糖体蛋白S19 用13 种组织做Northern 分析发现它在所有
    组织中都有表达且有着不同的大小病理分布提示它在腮腺囊腺癌胰腺癌
    及乳腺癌中都有高表达在6 例病人中都未发现其有突变我们的结果表明它
    的过量表达是组织快速生长的指标
    在用抑制差减杂交法SSH 寻找肌瘤高表达的基因中我们建立了一个肌
    瘤高表达基因的cDNA 片段库这个库最终被证明含有88 个基因的cDNA 片段
    在用两轮反向Northern 筛过之后有二十个基因显示为在肌瘤中高表达我
    们选取了其中三个基因在Northern 分析中得到验证二十个基因中有17 个是
    已知基因3 个是未知功能基因它们都是首次显示出与肌瘤有关联其中一
    个叫磷酯酶A2 PLA2 的基因在6 例病人中的4 例都显示出被上调而在研究
    它的组织分布时发现它在前列腺睾丸心脏和骨骼肌中都有明显表达
    从Genbank 中的人EST 数据库中我们通过电子克隆得到了差减库中一个
    未知基因(061)接近全长的cDNA 序列(4.1kb, 包含整个编码框) 并经克隆测
    序和Northern 所证实利用人类基因组数据库我们将其定位于染色体
    12q24.11 并发现其由7 个外显子所组成序列分析表明它可能有两个不同的
    人子宫肌瘤相关基因的克隆和研究摘要
    
    剪接形式(4.1Kb, 2.7kb) Northern 结果证实了这个推测在16 种人的组织
    中的分布研究表明它的小mRNA 形式在人睾丸中的表达量显著高于其它组织
    在aa 水平上它与人的一个TNF 诱导蛋白的同源性为71 而与小鼠中一个
    未知基因则达到97
As the most common reproductive tract neoplasm in premenopausal women,
    Uterine Leiomyoma (UL) is a multi-gene involved benign tumor. It is the main cause
    of hysterectomy for women at reproductive age, which affects their health greatly. In
    our lab, we used two different techniques to clone differentially expressed genes in
    leiomyoma and studied part of them, which may help us to understand the mechanism
    of UL formation at molecular level.
    In searching of differentially expressed genes in human uterine leiomyomas,
    differential display was used with twelve pairs of primers to compare human uterine
    leiomyomas with matched myometrium. False positives were eliminated by reverse
    Northern analysis. Positives were confirmed by Northern blot analysis. RESULTS: [1]
    Four of 69 cDNA fragments (3 up-regulated named L1, L2 & L3 and 1 downregulated
    named M1 in leiomyoma) were confirmed by Northern analysis. [2]
    Sequence comparison and Northern analysis proved that L1 is exactly the human
    ribosome protein S19. [3] It was present ubiquitously in 13 tissues tested but in
    various levels and even in different size. [4] L1 was highly expressed in parotidean
    cystadenocarcinoma, pancreatic cancer and breast cancer examined. [5] No mutations
    have been found in human uterine leiomyomas (n=6). CONCLUSIONS: hRPS19
    overexpression might be a universal signal in rapid cell growth tissues.
    In searching for differentially expressed genes in human uterine leiomyomas
    (ULs), suppression subtractive hybridization was used to construct an UL up-
    
    regulated library, which turned out to represent 88 genes. After two rounds of
    screening by reverse Northern analysis, twenty genes were proved to be up-regulated,
    three of them were picked up and confirmed by Northern analysis. Among the twenty
    genes, seventeen of them are known genes and the other three are genes with
    unknown function, which were firstly associated with UL. One gene named
    Phospholipase A2 (PLA2) showed up-regulation in 4/6 of the patients and
    investigation of tissue distribution indicated that it had obvious expression in prostate,
    testis, liver, heart and skeletal muscle.
    From human ESTs database at Genbank, we got the nearly full length cDNA
    sequence (4.1Kb, full coding sequence) of a unknown gene (061) derived from
    subtracted library, which is verified by sequencing and Northern results. By
    comparing its sequence with human genome database, we found it having seven
    exons and located it on chromosome 12q24.11. From its sequence, we deduced it had
    two forms of mRNAs because of alternative splicing and Northern results proved it.
    Distribution analysis among 16 human tissues indicated that its mRNA in small form
    was especially abundant in testis. We found it had 71% homology with a TNF -
    induced protein in human at aa level, but 97% with a unknown gene in mouse.
引文
1 曹泽毅主编妇科肿瘤学北京出版社1996 p699-739
    2 Zaloudek CJ, Norris HJ. Mesenchymal tumors of the uterus. in Kuman RJ(ed):Blausterin's Pathology of the Female Genital Tract. 3rd Ed. Springer-Verlag, NewYork, p373-408
    3 Buttram VC, Teiter RC. Uterine leiomyoma: Etiology, symptomatology, and managemnet. Fertil Steril 1981; 36:433-445
    4 Townsend DE, Sparkers RS, Baluda MC, McClelland G. Unicellular histogenesis of uteine leiomyomas as determined by eldctrophoresis of glucose-6-phosphate dehydro genase. Am J Obstet Gyneclo 1970; 107:1168-74
    5 Mashal RD, Fejzo ML, Friedman AJ, Mitchner N, Nowak RA, Rein MS, Morton CC, Sklar J. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer 1994 Sep;11(1):1-6
    6 Fujimoto J, Hirose R, Sakaguchi H, Tamaya T. Expression of size-polymorphic androgen receptor gene in uterine leiomyoma according to the number of cytosine, adenine, and guanine repeats in androgen receptor alleles. Tumour Biol 2000 Jan- Feb;21(1):33-7
    7 Parazzini F, Vecchia CL, Negri E, et al. Epidemiologic characteristics of women with uterin fibroids: a case control study. Obstet Gynecol. 1988; 72:853
    8 Ross RK, Pike MC, Vessey MP, et al. Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br Med J. 1986; 293:359
    9 Kurbanora MKH, Koroleva AG, Sergeer AS. Genetic-epidemiologic analysis of uterine myoma: asessment of repeated risk. Genetika. 1989; 25:1896
    10Vikhlyaeva EM; Khodzhaeva ZS; Fantschenko ND. Familial predisposition to uterine leiomyomas. Int J Gynaecol Obstet. 1995 Nov; 51(2): 127-31
    11 陈贵安张丽珠. 子宫肌瘤与组织胞浆内雌孕激素受体含量及血内雌二醇孕酮水平关系的探讨. 中华妇产科杂志1984 19 88
    12 Otubu JA, Buttram VC, Besch NF, Besch PD. Unconjugated steroids in leiomyomas and tumor-bearing myometrium. Am J Obstet Gynecol 1982;143:130-3
    
    13 李文英江森. 子宫肌瘤的发病机制与非手术治疗. 国外医学妇产科学分册1989 1 18
    14 Sumitani H, Shozu M, Segawa T, Murakami K, Yang HJ, Shimada K, Inoue M. In situ estrogen synthesized by aromatase P450 in uterine leiomyoma cells promotes cell growth probably via an autocrine/intracrine mechanism. Endocrinology 2000 Oct;141(10):3852-61
    15 Yamamoto T, Takamori K, Okada H. Estrogen biosynthesis in leiomyoma and myometrium of the uterus. Horm Metab Res. 1984; 16:678-9
    16 王世阆主编. 子宫肌瘤. 第1 版北京人民卫生出版社1987. 1-58
    17 Rein MS, Friedman AJ, Stuart JM, MacLaughlin DT. Fibroid and myometrial steroid receptors in women treated with gonadotropin-releasing hormone agonist leuprolide acetate. Fertil Steril. 1990; 53:1018-23
    18 Brandon DD, Erickson TE, Keenan EJ, Strawn EY, Novy MJ, Burry KA, Warner C,Clinton GM. Estrogen receptor gene expression in human uterine leiomyomata. J Clin Endocrinol Metab. 1995;80(6):1876-81
    19 Sadan O, van Iddekinge B, van Gelderen CJ, Savage N, Becker PJ, van der Walt LA, Robinson M. Oestrogen and progesterone receptor concertrations in leiomyoma and normal myometrium. Ann Clin Biochem 1987;24(Pt 3):263-7
    20 Vij U, Murrugesan K, Laumas KR, et al. Progestin and antiprogestin interactions with progesterone receptors in human myomas. J Gynecol Obstet. 1990;31:347
    21 Sadovsky Y, Kushner PJ, Roberts JM, Riemer RK. Restoration of estrogendependent progesterone receptor expression in a uterine myocyte cellline. Endocrinology 1993; 132:1609-13
    22 Adams AD, Held-Petito S, Donnelly K , Fazleabas AT. Regulation of estrogen (E)and progestin (P) receptors (R) in leiomyomas during the cycle and leuprolide acetatetreatment. In: Proceedings of the forty-ninth annual meetng of the American FertilttySociety. Montreal, Quebec, Canda, October 11-14, 1993. Mongtreal:American Fertility Society, 1993
    23 Yeh J, Rein M, Nowak R. Presence of messenger ribonucleic acid for epidermal growth factor (EGF) and EGF receptor demonstrable in monolayer cell cultures of myometria and leiomyomata. Fertel Steril 1991; 56:997-1000
    24 Guidice LC, Irwin JC, Dsupin BA, et al. Insulin-like growth facotr (IGF), IGF binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod 1993; 8:1796-806
    
    25 Stewart EA, Peck K, Friedman AJ, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger RNAs by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 1994;79:900-
    
    26 Andersen J, Grine E, Eng CLY, et al. Expressin of connexin-43 inhuman myometrium and leiomyoma. Am J Obstet Gynecol. 1993;169:1266-76
    27 Weir EG, Goad DT, Daifotis AG, et al. Relative overexpression of the parathyroid bormone-related protein gene in human leiomyomas. J Cli Endocrinol Metab 1994;78:784-9
    28 Gesenhues T; Hackenberg R; Diechert U; Duda V; Sturm G; Schulz KD. New possibilities for differentiated therapy of leiomyoma of the uterus using the GnRH agonist zoladex. Geburtshilfe. Frauenheilkd. 1989 Feb; 49 Suppl 1: 96-8
    29 Tanbo T; Abyholm T; Skjaeraasen J. Gonadotropin--releasing hormone agonist as an adjunct in conservative surgery for uterine leiomyomas. Acta Obstet Gynecol Scand 1989; 68(3): 265-6
    30 Hackenberg R; Gesenhues T; Deichert U; Duda V; Sturm G; Schulz KD.Preoperative reduction of uterine leiomyoma by the GnRH-analog goserelin (zoladex)]. Geburtshilfe Frauenheilkd 1990 Feb; 50(2): 136-9
    31 Kurose T; Hando T; Shiota A. Clinical usefulness of GnRH agonist therapy for premenopausal women with uterine leiomyoma. Nippon Sanka Fujinka GakkaiZasshi. 1995 Jan; 47(1): 35-41
    32 Stolz W; Pfutzenreuter N. Treatment of uterine leiomyoma with depot leuprorelin acetate (Enantone Gyn monthly depot). Effect on leiomyoma volume and operability. Zentralbl Gynakol. 1997; 119(10): 468-75
    33 Maheux R, Guilloteau C, Lemay A, Bastide A, Fazekas AT. Luteinizing hormonereleasing hormone agonist and uterine leiomyoma: a pilot study. Am J Obstet Gynecol 1985 Aug 15;152(8):1034-8
    34 Tiltman AJ. The effect of progestins on the miotic activity of uterin fibromyomas. Int J Gynecol Pathol 1985;:89-96
    35 Kawaguchi D, Fujii S, Konishi I, Nanbu Y, Nonagaki H, Mori T. Mitotic activity in uterine leiomyoma during the mestrual cycle. Am J Obstet Gynecol. 1989;160:637-
    
    
    36 Lamminen S, Rantala I, Helin H, Rorarius M, Tuimals R. Proliferative activity of human uterine leiomoma cells as measured by automatic image analysis. Gynecol Obstet Invest 1992;34:111-4
    37 Kawaguci K, Fujii S, Konishi I, Okamura H, Mori T. Ultrastructural study of cultured smooth muscle cells from uterine leiomyoma and myometrium under the influence of sex steroids. Gyneclo Oncol 1985;21:32-41
    38 Brandon DD, Bethea CL, Strawn EY, et al. Progesterone receptor messenger ribonucleic acid and protern are overexpressed in human uterine leiomyomas. Am J Obstet Gynecol 1993;169:78-85
    39 Harrison Woohych ML, Chamock Jones DS, Smith SK. Quantification of messenger ribonucleic acid for epidermal growth factor in human myometrium and leiomyomata using reverse transcriptase ploymerase chain reaction. J Clin Endocrinol Metab 1994;78:1179-84
    40 Mixson WT, Hammond DO. Response of fibromyomas to a progestin. Am J Obstet Gynecol 1961;82:754-60
    41 Friedman AJ, Barbieri RL, Doubiler PM, Fine C, Schiff I. A randomized, doubleblind trial of a gonadotropin releasing-hormone agonist (leuprolide) with or without medroxyprogesterone acetate in the treatment of leiomomata uteri. Fertil Steril 1988;49:404-9
    42 Carr BR, Marshburn PT, Weatherall PT, et al. An evaluation of the effect of gonadotropin-releasing hormone analogs and medroxyprogesterone acetate on uterine leiomyomata volume by magnetic resonance imaging: a prospective, randomezed, double blind, placebo-controlled crossover trial. J Clin Endocrinol Metab 1993;76:1217-23
    43 Friedman AJ, Daly M, Juneau-Norcross M, et al. A prospective, randomized trial of gonadotropin-releasing hormone agonist plus estrogen-progestin or progestin "add-back" regimens for women with leiomyomata uteri. J Clin Endocrinol Metab 1993;76:439-45
    44 Murphy AA, Kettel LM, Morales AJ, Roberts VJ, Yen SSc. Regression of uterine leiomyomata in response to the antiprogesterone RU 486. J Clin Endocrinol Metab 1993;76:513-7
    45 Rein MS, Barbieri RL, Friedman AJ. Progesterone: a critical role in thebinding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod 1993; 8:1796-806
    
    46 Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83(6):2192-8
    47 Strawn EY Jr, Novy MJ, Burry KA, Bethea CL. Insulin-like growth factor Ipromotes leiomyoma cell growth in vitro. Am J Obstet Gynecol.1995;172(6):1837-43
    48 Nibert M, Heim S. Uterine leiomyoma cytogenetics. Genes Chromosones Cancer 1990;2:3-13
    49 Rein MS, Friedman AJ, Barbieri RL, Pavelka K, Flectcher JA, Morton CC.Cytogenetic abnormalities in uterine leiomomata. Obstet Gynecol 1991;77:923-6
    50 Meloni AM, Surti U, Contento AM, Davar J, Sandberg AA. Uterine leiomyomas:cytgenetic and histoogic progile. Obstet Gynicol 1992:80:209-17
    51 Ozisik YY, Meloni AM, Surti U, Sandberg AA. Deletion 7q22 in uterine leiomyomata: a cytogenetic review. Cancer Genet Cytogenet 1993;23:305-13
    52 Sargent MS, Weremowicz S, Rein MS, Morton CC. Translocations in 7q22 define a critical region in uterine leiomyomata. Cancer Genet Cytogenet 1994;77:65-8
    53 Ishwad CS, Ferrell RE, Davare J, Meloni AM, Sandberg AA, Surti U. Molecular and cytogenetic analysis of chromosome 7 in uterine leiomyomas. Genes Chromosomes Cancer 1995;14:51-5
    54 Pandis N, Heim S, Willen H, Bardi G, Floderus UM, Mandahl N, Mitelman F.Histologic-cytogenetic correlations in uterine leiomyomas. Int J Gynecol Cancer1991;1:163-8
    55 Brosens I, Deprest J, Dal Cin P, Van den Berghc H. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril 1998;69:232-5
    56 Rein MS, Power WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL,Morton CC. Cytogenetic abnormalities in uteine myomas are associated with myomasize. Mol Hum Reprod 1998;4:83-6
    57 Cotran RS, Kumar V, Robbins SL. Robbins Pathoogic Basis of Disease.Philadelphia: W.B. Saunders Comany. 1989
    58 Nilbert M. 1991. Uterine Leiomyomas Cytogenetics. PhD thesis. University of Lund, Sweden
    
    59 Ashar HR, Schoenberg Fejzo M, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC, Chada K. Disruption of the architectural factor HMGI-C: DNAbindingAT book motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 1995;82:57-65
    60 Schoenberg Fejzo M, Yoon S-J, Montgomery KT, Rein MS, Weremowicz S,Krauter KS, Dorman TE, Fletcher JA, Mao J-I, MoriDt, Kuchelapati RS, Morton CC.Identification of aYAC spanning the translocation breakpoints in uterineleiomyomata pulmonary chondroid hamartoma, and lipoma: physical mapping of the 12q14-15 breakpoint region in uterine leiomyomata. Genomics 1995;26:265-71
    61 Schoenberg Fejzo M, Ashar HR, Krauter KS,, Powell WL, Rein MS, Weremowicz S, Yoon S-J, Kucherlapati RS, Chada K, Morton CC. Translocation breakpoints upstream of the HMGIC gene in uterine leiomyomata suggest dysregulation of this gene by a mechanism different from that in lipomas. Genes Chromosomes Cancer 1996;17:1-6
    62 Schoenmakers EF, Wanschara S,Mols R, Bullerdiek J, Van den Beghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumors. Nat Genet 1995;10:436-44
    63 Dong S-Y, Morgan R, Stone J, Meloni-Ehrig AM, Chen Z, Malawer MM,Sandberg AS. Translocation (12;14) in lipoma: a case report and review of theliterature. Cancer Genet Cytogenet 1998;103:59-61
    64 Kazmierczak B, Blo S, Wanschura S, Bartnitzke S, Bullerdiek J. PAC clone containing the HMGI(Y) gene spans the breakpoint of a 6p21 translocation in uterine leiomyoma cell line. Genes Chromosomes Cancer 1996;17:191-3
    65 Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, Bianchi ME.The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 1999;22:276-80
    66 Wolffe AP. Architectural regulations and HMG1. Nat Genet 1999;22:215-7 67 Wang H, Bloom O, Zhang M, Vishnbhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. MG-1 as a late mediator of endotoxin lethality in mice. Science 1999;285:248-51
    68 Bauer K, Muller H, Reich J, et al. Identificatin of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res, binding protein (IGFBP), and IGF receptor gene expression and IGFBP synthesis in human uterine leiomyomata. Hum Reprod 1993; 8:1796-806
    
    69 Adati N, Ito Takashi, Koya C, et al. Differential display analysis of gene expression in developing embryos of Xenopus Laevis. Biochmia et Biophyisca Acta, 1995;1262:43-51
    70 Nishio Y, Aiello LP, King GL, et al. Glucose induce genes in bovine aortic smooth muscle cells identified by mRNA differential display. FASEB J,1994;8:106-8
    71 Utans U, Liang P, Wyner LR, et al. Chronic cardiac rejection: identification of five upregulated genes in transplanted hearts by differential mRNA display. Proc Natl Acad Sci USA, 1994; 91: 6463-7
    72 Wang XK, Yue TL, Barone FC, et al. Discovery of adrenomedulilion in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage. Proc Natl Acad Sci USA, 1995; 92:11484-9
    73 Uchiyama CM, Zhu JG, Carroll RS, et al. Differential display of messenger ribonucleic acid: a useful technique for analyzing diffeential gene expression in human brain tumors. Neurosurgery, 1995; 37:464-70
    74 Kiryu S, Yao GL, Morita N, et al. Nerve injury enhances rat neuronal glutamate transportor expression: identification by differential display PCR. J Neurosci. 1995; 15(12):7872-8
    75 Sompayrac L, Jane S, Burn TC, et al. Overexpression of myotonic dystrophy kinase in BC3H1 cells induces the skeletal muscle phenotype. J Bio Chem. 1996; 271(1):548-52
    76 Chomezynski P,Sacchi N. Single-step method of RNA Isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem 1987; 162:156-9.
    77 Liang P, Averboukh L,Parade AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 1993; 21:3269-75.
    78 Mager WH. Control of ribosomal protein gene expression. Biochim Biophys Acta 1988; 949(1):1-15.
    79 Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T,Page DC. A map of 75 human ribosomal protein genes. Genome Res 1998; 8(5):509-23.
    80 Kondoh N, Schweinfest CW, Henderson KW,Papas TS. Differential expression of S19 ribosomal protein, laminin-binding protein, and human lymphocyte antigen class I messenger RNAs associated with colon carcinoma progression and differentiation.Cancer Res 1992; 52(4):791-6.
    
    81 Suzuki K, Olvera J,Wool IG. The primary structure of rat ribosomal protein S19.Biochimie 1990; 72(4):299-302.
    82 Shim C, Zhang W, Rhee CH,Lee JH. Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin.Cancer Res 1998; 4(12):3045-50.
    83 Rhodes LD,Van-Beneden RJ. Isolation of the cDNA and characterization of mRNA expression of ribosomal protein S19 from the soft-shell clam, Mya arenaria. Gene 1997; 197(1-2):295-304.
    84 Kenmochi N, Kawaguchi T, Rozen S, Davis E, Goodman N, Hudson TJ, Tanaka T,Page DC. A map of 75 human ribosomal protein genes. Genome Res 1998; 8:509- 23.
    85 Nishiura H, Tanase S, Sibuya Y, Nishimura T,Yamamoto T. Determination of the cross-linked residues in homo-dimerization of S19 ribosomal protein concomitant with exhibition of monocyte chemotactic activity. Lab. Invest 1999; 79(8):915-23.
    86 Shrestha A, Horino K, Nishiura H,Yamamoto T. cquired immune response as a consequence of the macrophage-dependent apoptotic cell clearance and role of the monocyte chemotactic S19 ribosomal protein dimer in this connection. Lab. Invest1999; 79(12):1629-42.
    87 Willig TN, Draptchinskaia N, Dianzani I, Ball S, Niemeyer C, Ramenghi U, Orfali K, Gustavsson P, Garelli E, Brusco A, Tiemann C, Perignon JL, Bouchier C, Cicchiello L, Dahl N, Mohandas N,Tchernia G. Mutations in ribosomal protein S19 gene and diamond blackfan anemia: wide variations in phenotypic expression. Blood 1999; 94(12):4294-306.
    88 Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B,Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization: a method for generating differentially regulated or tissuespecific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025-30
    89 Simons M, Wang M, McBride OW, Kawamoto S, Yamakawa K, Gdula D,Adelstein RS, Weir L. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res. 1991 Aug;69(2):530-9
    
    90 Yang DC, Wang F, Elliott RL, Head JF. Expression of transferrin receptor and ferritin H-chain mRNA are associated with clinical and histopathological prognostic indicators in breast cancer. Anticancer Res. 2001 Jan-Feb;21(1B):541-9
    91 Woodman P. Vesicle transport: more work for the Rabs? Curr Biol. 1998 Mar12;8(6):R199-201. Review
    92 Gerdes HH, Rosa P, Phillips E, Baeuerle PA, Frank R, Argos P, Huttner WB. The primary structure of human secretogranin II, a widespread tyrosine-sulfated secretory granule protein that exhibits low pH- and calcium-induced aggregation. J Biol Chem 1989 Jul 15;264(20):12009-12015
    93 Leitner B, Schneitler C, Klocker H, Volknandt W, Zimmermann H, Winkler H,Fischer-Colbrie R. Formation and sequence analysis of secretoneurin, a neuropeptide derived from secretogranin II, in mammalian, bird, reptile, amphibian and fish brains. Neurosci Lett 1998 May 29;248(2):105-108
    94 kobayashi S, Kohda T, Miyoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, Kaneko-Ishino T, Ishino F. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum. Mol. Genet 1997;6:781-6
    95 Pedersen IS, Dervan PA, Broderick D, Harrison M, Miller N, Delany E, O'Shea D,Costello P, McGoldrick A, Keating G, Tobin B, Gorey T, McCann A. Frequent loss of imprinting of PEG1/MEST in invasive breast cancer. Cancer Res 1999 Nov 1;59(21):5449-5451
    96 Billin AN, Eilers AL, Queva C, Ayer DE. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J Biol Chem 1999 Dec 17;274(51):36344-36350
    97 Roshak AK, Capper EA, Stevenson C, Eichman C, Marshall LA. Human calciumindependent phospholipase A2 mediates lymphocyte proliferation. J Biol Chem. 2000 Nov 17;275(46):35692-8
    98 Engel H, Kleespies C, Friedrich J, Breidenbach M, Kallenborn A, Schondorf T,Kolhagen H, Mallmann P. Detection of circulating tumour cells in patients with breast or ovarian cancer by molecular cytogenetics. Br J Cancer. 1999;81(7):1165-73
    99 Boguski MS. Bioinformatics. Curr Opin Genet Dev 1994 Jun;4(3):383-8100 Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposeddefinition and overview of the field. Methods Inf Med 2001;40(4):346-58
    
    101 Spengler SJ. Techview: computers and biology. Bioinformatics in the information age. Science 2000 Feb 18;287(5456):1221- 1223
    102 Sugawara H, Miyazaki S. Towards the Asia-Pacific Bioinformatics Network.. Pac Symp Biocomput 1998;:759-64
    103 Kolatkar PR, Sakharkar MK, Tse CR, Kiong BK, Wong L, Tan TW, Subbiah S. Development of software tools at BioInformatics Centre (BIC) at the National University of Singapore (NUS). Pac Symp Biocomput 1998;:735-46
    104 Edwards YJ, Brocklehurst SM. Finding genes in genomic nucleotide sequences by using bioinformatics. Methods Mol Biol 2001;175:235-47
    105 Searls DB. Bioinformatics tools for whole genomes. Annu Rev Genomics Hum Genet 2000;1:251-79
    106 Vihinen M. Bioinformatics in proteomics. : Biomol Eng 2001 Nov;18(5):241-8
    107 Capone MC, Gorman DM, Ching EP, Zlotnik A. Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J Immunol 1996 Aug 1;157(3):969-73
    108 Rossi DL, Vicari AP, Franz-Bacon K, McClanahan TK, Zlotnik A. Identification through bioinformatics of two new macrophage proinflammatory human chemokines: MIP-3alpha and MIP-3beta. J Immunol 1997 Feb 1;158(3):1033-6
    109 Liu S, Stoesz SP, Pickett CB. Identification of a novel human glutathione Stransferase using bioinformatics. Arch Biochem Biophys 1998 Apr 15;352(2):306-13
    110 Frederick WW, Rory MM, Vieya S, Mary GB, Ronald WK, Thomas BS, Vishva MD. Characterization of a nNovel Tumor Necrosisi Factor- -induced endothelial primary response gene. J Biol Chem. 1992 Jan 15;267(2):1317-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700