稻瘟病菌诱导水稻特异表达EST数据库的建立及相关基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1 本研究对受稻瘟病菌诱导水稻叶组织特异表达cDNA文库进行了大规模测序,共获得有效EST序列15396条,其中14975条EST序列己被国际公共数据库——GenBank数据库接受。对13316条具有Poly(A)尾的序列进行了冗余度分析,共获得5633条独立基因,占全部序列的42.3%。其中低丰度表达基因(表达频率≤2)4503条,中丰度表达基因(2<表达频率<20)1074条,高丰度表达基因(表达频率≥20)56条。
     5633条独立基因与GenBank水稻数据库进行BLASTn比对,首次建立了受稻瘟病菌诱导水稻叶组织特异表达数据库。通过对数据的生物信息学分析发现,未知基因3628条,占64.4%;有功能注释的基因642条,占11.40%;有染色体定位信息的1560条,占27.7%。
     通过对所有已知功能基因的分析发现,数据库中与己知植物抗逆相关的蛋白有66类。涉及苯丙烷类代谢、氧代谢、氧化还原反应、病程相关蛋白以及植物抵御高温胁迫、低温胁迫、光胁迫、水胁迫、植物创伤等相关的蛋白。证实水稻防御稻瘟病菌侵染的抗病过程是涉及众多基因共表达的一个复杂的网络体系,并且与其它生物因子、非生物因子胁迫处理之间存在着密切的联系。
     2 有意思的是:通过与稻瘟病菌全基因组序列数据库和水稻全基因组序列数据库的BLASTn比对,对5633条独立基因进行筛选,共检出来源于稻瘟病菌的基因16条。对这些基因的生物信息学分析结果表明,除3个未知基因外,Mgr003编码的环孢菌素(Cyclophilin)和Mgr011编码的P型ATP酶与稻瘟病菌侵染早期附着孢形成相关;Mgr007编码的半乳糖氧化酶和Mgr016编码的β-葡萄糖苷酶参与识别和降解水稻表皮细胞;C-4甲基固醇氧化酶(Mgr005)和δ-固醇C-甲基转移酶(Mgr009)参与稻瘟病菌致病性相关的膜蛋白——麦角固醇的合成;还有可能与稻瘟病菌侵染过程中信号传导相关的质膜钠离子应答蛋白(Mgr002)和丝氨酸/苏氨酸蛋白激酶(Mgr015);与蛋白合成相关的核糖体L12蛋白(Mgr014)和延伸因子2(Mgr010);与真核细胞细胞体内的蛋白质的运输和分泌相关的外被体蛋白(Mgr006);
    
    参与脂肪酸生物合成的烯酞还原酶(Mgr008)等。从受稻瘟病菌诱导水稻叶组织中筛选到
    的这些基因可能在病原与寄主的相互作用中起重要作用。
     3利用前期大规模测序的表达序列标签,制备完成容量为1106条独立基因的CDNA微阵
    列,对抗瘟性近等基因系H7R和H7S的表达谱分析发现:在水稻样本受到稻瘟病菌侵染8小时
    后,众多的基因表达发生变化,在980组有效数据中,有170个基因的表达发生显著改变,其
    中106个基因上调表达,64个基因下调表达。
     为克隆与抗病相关的新基因,选取10个差异表达明显的未知基因进行了生物信息学分
    折,除氯原酸辅酶A-3-h甲基转移酶和肉桂醇脱氢酶是在木质化过程中参与木质素形成的关
    键基因外,其它基因编码的蛋白也可能参与抗病相关的生理生化反应。
     从10个差异表达基因中选取具有BTB/POZ结构域的J001e09作为候选基因,结合分子生物
    学实验方法,通过电于拼接克隆了一个在稻瘟病菌诱导早期表达的新基因osBTB,并获得该
    基因的全长cDNA序列(974hp)和DNA序列(sl74bp)。Northerll杂交结果显示该基因在水稻受
    稻瘟病菌诱导早期表达,与水稻抵御病原菌侵入密切相关。
     OSBTde因的RNA微阵列分析结果表明:$基因受稻瘟病菌.非生物胁迫和植物激素等诱
    导表达;与9个抗病基因的RNA微阵列聚类分析结果发现,该基因的表达与WK的表达状况类
    似,结合前期的BLASTPLh对结果,推测OSBTds因具有类f叨皿PK的蛋白激酶活性,在植物信
    号传导中发挥重要作用。
Establishment of Oryza sativa Specific ESTs Database Induced by Magnaporthe grisea and Identification of Resistance-related Genes
    Ph. D. Candidate: Zhuang Xiaofeng (Plant pathology and Molecular biology) Directed by Prof. Li Debao
    1 In this study, a cDNA library from rice leaves induced by Magnaporthe grisea
    was sequenced randomly in a large scale. 15 396 ESTs were obtained, of which 14 975 have been released in dbEST (http://www. ncbi. nlm. nih. gov/dbEST). 5633 unique genes (42. 3 %) were identified through redundant analysis within 13 316 ESTs containing Poly (A) tail, among which 4503 genes were low redundancy (single or twice ) , 1074 genes were medium redundancy (3-19), and 56 genes were high redundancy (more than 20).
    The database of specific ESTs expressed in rice leaves induced by M. grisea was constructed for the first time by searching against Oryza sativa database in NCBI. In this database, 642 (11.4 %) were function annotated, 3628 unique genes (64.4%) were unknown, and other 1560 genes (27. 7%) were located in different chromosomes.
    It was found that 66 proteins were associated with plant resistance. Proteins were related to phenylpropanoid biosynthesis, oxygen metabolism, redox reaction, or belonged to pathogenesis-related protein, and some were resistant to stresses such as high temperature, chilling, light and wounding, etc. Therefore, it was concluded that rice defense response to disease was an complicated gene network, and closely related to biotic stress and abiotic stress.
    2 Interestingly, while compared to rice blast fungus genomic database and rice
    genomic database, 16 genes originating from M. grisea were found from 5633 unique genes and picked out for further analysis. Bioinformatics analysis suggested that these gene were imported to pathogenesis-related development. Some of these genes, such as Cyclophilin (MgrOOS) and P-tpye ATPase(MgrOll), were involved in appressori urn formation. Galactose oxidase (Mgr007) and beta-glucosidase (Mgr016) were associated with recognizing host and decomposing host cell wall. C-4 methyl sterol oxidase(Mgr005) and delta(24)-sterol Omethyltransferase(Mgr009) were involved in the synthesis of ergosterol which is essential for pathogenicity of M. grisea. Plasma membrane sodium response 2(Mgr002) and serine/threonine kinase (Mgr015) may be involved in signal transduction during the infection. Ribosomal
    
    
    
    protein L12 (Mgr014) and elongation factor 2(Mgr010) were important to protein synthesis. Coatomer (Mgr006) was attached to the trafficking of proteins and secretion within eukaryotic cells. CipB protein (MgrOOS) was involved in fatty acid biosynthesis. All the above genes may be involved in host-pathogen interaction in rice tissue.
    3 A cDNA array containing 1106 unique genes from 3 cDNA libraries was prepared
    to analyze the expression patterns of rice near iso-genic lines H7R (resistant) and H7S (susceptible). The results showed that 170 genes changed remarkably in 980 valid hybridization data, in which 106 genes were up-regulated and 64 were down-regulated after the rice samples induced by M. grisea for 8 h.
    In order to clone the new genes related to plant resistance to pathogen, ten genes up-regulated in cDNA array were analyzed further by bioinformatics. Except for caffeoyl-CoA 3-Q-methyltransferase (CCoAOMT) and cinnamyl alcohol dehydrogenase CAD), which were essential to lignin formation during lignif ication, all others may be participated in rice defense to disease. One clone CjOOleOQ) containing POZ/BTB domain was screened out for electronic cloning. By cloning in silico, a full-length cDNA sequence (1974bp) named OsBTByas cloned. A DNA sequence about 5174 bp was found through BLASTn to rice genome sequence. Northern hybridization confirmed that OsBTB was expressed at the early stages in response to pathogen infection.
    RNA array containing 755 rice samples was prepared to detect the expressions of
    OsBTB and 9 resistance-related genes (PAL, P-1, 3-glucanasc, polyubiquitin, SAM,
    SOD, phospholipase C, MARK, Pib, glycine-
引文
1.董继新,董海涛,吴玉良.用PCR-差别筛选法分离和克隆水稻受稻瘟病诱导的cDNA片段.中国农业科学,1999,32(3):8-13
    2.黄骥,张红土,曹雅君等,水稻功能基因的电子克隆策略,中国水稻科学,2000,16 (4):295-298
    3.李尉民,岳宁.《卡塔赫纳生物安全议定书》及其对转基因农产品国际贸易和生物技术发展的影响和对策.生物技术通报,2000,(5):7-10
    4.林慧贤,刘筱斌,李发强等,水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定,高技术通讯,2001,3:9-14
    5.徐景升,张木清,陈如凯,DNA微阵列技术及其在农业上的应用,福建农林大学学报(自然科学版),2002,31(1):62-66
    6. Aharoni A, Keizer LC, Bouwmeester HJ, et al. Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell, 2000, 12(5): 647-662.
    7. Aharoni A, Vorst O. DNA mieroarrays for functional plant genomics. Plant Mol Biol, 2002, 48(1-2): 99-118
    8. Baldwin D, Crane V, Rice D. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol. 1999, 2(2): 96-103.
    9. Barker WC, Garavelli JS, Huang H, et al. The protein information resource (PIR). Nucleic Acids Res, 2000, 28(1): 41-44.
    10. Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 1993, 21(18): 4272-4280
    11. Baxevanis AD. The Molecular Biology Database Collection: 2003 update. Nucleic Acids Res, 2003, 31(1): 1-12
    12. Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res, 2003, 31(1): 23-7.
    13. Bent AF, Kunkel BN, Dahlbeck D, et al. RPs2of Arabidopsis thaliana: a leucine-rich repeat class of plant disease genes. Science, 1994, 265:1856—1870
    14. Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 2003, 31(1): 365-370.
    15. Bryan GT, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12:2033-2045
    16. Callard D, Lescure B, Mazzolini L. A method for the elimination of false positives generated by the mRNA differential display technique. Biotechniques. 1994, 16(6): 1096-1097, 1100-1103
    17. Chang MM, Horovitz D, Culley D, et al. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungal infection and
    
    the elicitor chitosan. Plant Mol. Biol, 1995, 28:105-111
    18. Chee M, Yang R, Hubbell E, et al. Accessing genetic information with high-density DNA arrays. Science, 1996, 274(5287): 610-614
    19. Cheng VG, Morley M, Aguilar F, et al. Making and reading microarrays. Natures Genetics Supplment, 1999,21:15-19
    20. Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell, 1999, 11(7):1365-1376.
    21. Cronin MT, Fucini RV, Kim SM, et al. Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays. Hum Mutat, 1996, 7(3) 244-255.
    22. David SR, Bioinformatics-Trying to Swim in a Sea of Data. Science, 2001, 291 1260-1261
    23. Dayhoff MO. Computer analysis of protein evolution. Sci. Am., 1969, 221(1) 86-95
    24. Dellaire G, Farrall R, Bickmore WA. The Nuclear Protein Database (NPD) sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic Acids Res, 2003, 31(1): 328-330.
    25. DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 1997, 278(5338): 680-686
    26. Desprez T, Amselem J, Caboche M, et al. Differential gene expression in Arabidopsis monitored using cDNA arrays, Plant J, 1998, (14):643-652.
    27. Diatchenko L, Lau Y-FC, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci, 1996, 93: 6025-6030
    28. Dixon MS, Jones DA, Keddie JS, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84:451-459
    29. Dong Y, Glasner JD, Blattner FR, et al. Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol, 2001, 67(4): 1911-1921
    30. Duggan DJ, Bittner M, Chen Y, et al. Exprssion profiling using DNA microarrays. Nature Genetics, 1999,21:10-14
    31. DuniganDD, Madlener JC. Serine/threonine protein phosphatase is required for tobacoo mosaic virus-mediated programmed cell death. Virology, 1995, 297: 460-466
    32. Flor HH. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol., 1971, 9:275-296
    
    
    33. Fodor SP, Read JL, Pirrung M C, et al. Light-directed, spatially addressablse parallel chemical synthesis. Science, 1991, 251:767-773
    34. Gabriel DW, Rolfe BG. Working models of specific recognition in plant-microbe interactions. Ann Rev. Phytopathol, 1990, 28:365-391
    35. Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags(ESTs). Biotech Ann Rev., 2000,5:25-44
    36. Grant MR, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1994, 269:843—846
    37. Johal GS, Briggs SP. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 288:985-987
    38. Jones DA, Thomas CM, Hammond-Kosack RE, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvumby transposon tagging. Science, 1994, 266: 789-793
    39. Kehoe DM, Villand P, Somerville S. DNA microarrays for studies of higher plants and other photosynthetic organisms, Trends Plant Sci, 1999, (4): 38-41
    40. Lawrence GJ, Finnegen EJ, Ayliffe MA, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995, 7:1195-1206
    41. Liang P, Averboukh L, Pardee AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):2269-3275
    42. Liang P, Pardee AB. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257:967-971
    43. Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259:946-957
    44. Maleck K, Levine A, Eulgem T, et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26(4):403-410
    45. Martin GB,Brommonscbenkel SH, Chunwongse J, et al. MaP-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993,262:1432-1436
    46. Masys DR, New Directions in Bioinformatics, Journal of research of the national institute of standards and technology, 1989, 94(1): 59-63
    47. McGall G, Labadie J, Brock P, et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc Natl Acad Sci, 1996,93:13555-13560
    48. McGall GH, Fidanza JA. Photolithographic synthesis of high-density oligonucleotide arrays. Methods Mol Biol., 2001, 170: 71-101.
    49. Michael KL, Taylor LC, Schultz SL, et al. Randomly ordered addressable high-density optical sensor arrays. Anal Chem., 1998, 70(7): 1242-1248.
    50. Mindrinos M, Katagiri F, Yu GL, et al. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and
    
    leucine-rich repeats. Cell, 1994, 78:1089-1099
    51. Miyazaki S, Sugawara H, Gojobori T, et al. DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res, 2003, 31(1): 13-16.
    52. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol. Biol., 1970, 48(3): 443-453
    53. Negishi T, Nakanishi H, Yazaki J, et al. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J, 2002, 30(1): 83-94.
    54. Noguchi T, Akiyama Y. PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003. Nucleic Acids Res, 2003, 31(1): 492-3.
    55. O' Brien KP, Tapia-Paez I, Stahle-Backdahl M, et al. Characterization of five novel human genes in the 11q13-q22 region. Biochem Biophy Res Comm, 2000, 273: 90-94
    56. Ori N, Eshed Y, Paran I, et al. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotlde binding, leucine-rich repeat superfamily of Plant resistance genes. Plant Cell, 1997, 9: 521-532.
    57. Parker JE, Coleman MJ, Szabo V, et al. The Arabidopsis downy mildew resistance gene RPP5 share similarity to the Toll and interleukin-1 receptor with N and L6. Plant Cell, 1997, 9:879-894
    58. Pattabiraman N, Namboodiri K, Lowrey A, et al. NRL-3D: a sequence-structure database derived from the protein data bank (PDB) and searchable within the PIR environment. Protein Seq Data Anal, 1990, 3(5): 387-405.
    59. Pease AC, Solas D, Sullivan EJ, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci, 1994, 91(11): 5022-5026.
    60. Pipas JM, McMahon JE. Method for predicting RNA secondary structure. Proc Natl Acad Sci, 1975, 72(6):2017-21.
    61. Pontier D, Balague C, Roby D. The hypersensitive response. A programmed cell death associated with plant resistance. C R Acad Sci Ⅲ, 1998, 321(9): 721-734.
    62. Ratner VA, Rodin SN. Computer drawing of interallelic complementation maps (critical analysis of the problem and some preliminary results). Sov Genet., 1974,7(11): 1495-1506.
    63. Reymond P. DNA microarrays and plant defence. Plant Physiol. Biochem. 2001, 39: 313-321
    64. Roberts L, Davenport RJ, Pennisi E, et al. A history of the Human Genome Project. Science, 2001, 291(5507): 1195.
    65. Ruan Y, Gilmore J, Conner T. Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays, Plant J, I 1998, (5):821-833.
    
    
    66. Ryals J, Uknes S, Ward E. Systemic acquired resistance. Plant Physiol, 1994, 104:1109-1112
    67. Salmerson JM, Oldroyed GED, Rommens CMT, et al. Tomato Prf is a member of the leucine-rich repeat class of plantdisease resistancegenes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86:123—133
    68. Sapolsky RJ, hipshutz RJ. Mapping genomic library clones using oligonucleotide arrays. Genomics. 1996, 33(3): 445-456.
    69. Schaffer R, Landgraf J, Perez-Amader M, et al. Monitoring genome-wide expression in Plants. Current Opinion in Biotechnology, 2000,11:162-167
    70. Schena M, Shalon D, Davis S, et al. Quantitative monitoring of gene expression pattern with a complementary DNA microarray. Science, 1995,270:467-470
    71. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci, 1996, 93(20): 10614-10619
    72. Schenk PM, Kazan K, Wilson L, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. PNAS, 2000, 97:11655-11660
    73. Shah N, Guevara-Garcia A, Day P, et al. Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol, 2003,4(3):R20
    74. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res., 1996, 6(7): 639-645.
    75. Shoemaker DD, Lashkari DA, Morris D, et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet, 1996, 14(4): 450-456.
    76. Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270:1804-1806
    77. Staskawicz BJ, Ausubel FM, Barker BJ, et al. Moleculargenetics of plant disease resistance. Science, 1995,268:661~667
    78. Stein ODV, Thies WG, Hofmann M. A high throughout screening for rarely transcripted differentially expressed genet. Nucleic. Acids. Res. 1997, 25: 2598-2602
    79. Stoesser G, Baker W, van den Broek A, et al. The EMBL Nucleotide Sequence Database: major new developments. Nucleic Acids Res, 2003, 31(1): 17-22
    80. Takemoto D, Hayashi M, Doke N, Mishimura M, et al. Isolation of the gene for EILP, an elicitor-inducible LRR receptor-like protein, from tobacco by differential display. Plant Cell Physiol. 2000, 41(4): 458-464
    81. Thomas CM, Jones DA, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognition specificity in Cf-4 and Cf-9. Plant Cell, 1997, 9:2209—2224
    82. Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and
    
    genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082.
    83. Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell, 1994, 78(6): 1101-1115
    84. Winzeler EA, Richards DR, Conway AR, et al. Direct allelic variation scanning of the yeast genome. Science, 1998, 281(5380):1194-1197
    85. Xiao F, Tang X, Zhou JM. Expression of 35S: Pto globally activates defense-related genes in tomato plants. Plant Physiol, 2001, 126(4): 1637-1645
    86. Xu Y, Zhu Q, Panbangred W, et al. Regulation, expression and function of a new basic chitinase gene inrice (Oryza sativa L.). Plant Mol. Biol. 1996,30:387-401
    87. Yazaki J, Kishimoto N, Nakamura K, et al. Embarking on rice functional genomics via cDNA microarray: use of 3' UTR probes for specific gene expression analysis. DNA Res, 2000, 7(6): 367-370
    88. Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci, 1998, 95:1663-1668
    89. Zhou J, Loh YT, Bressan RA, et al. The tomato gene Pt-1 encodes a serine/threonine kinase that is phosphorylated by Pto and involved in the hypersensitive response. Cell, 1995, 83:925-935
    90. Zhu Q, Dabi T, Beeche A, et al. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol. Biol. 1995, 29:535-550
    91. Zuckerkandl E and Pauling L, Molecular Disease, Evolution, and Genetic Heterogeneity, Horizons in Biochemistry(ed. by Kash & Pullman, Academic Press, USA), 1962, 189-225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700