淡色库蚊核糖体蛋白L22基因(RPL22)克隆及其与溴氰菊酯抗性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊媒病是当今严重危害人类健康的一类常见病,蚊媒的化学防制是控制蚊媒病的一个重要手段。然而随着杀虫剂的大量使用,蚊媒的杀虫剂抗性也随之产生和发展。杀虫剂抗性已成为蚊媒病防治工作中的一大障碍。发现和研究新的抗药性相关基因将有助于阐明抗药性的分子基础和寻找新的治理抗药性的靶标。
     本实验室前期采用抑制性差减杂交(suppression subtractive hybridization, SSH)结合cDNA芯片及Northern blotting发现,核糖体蛋白L22基因(ribosomal protein L22, RPL22)在淡色库蚊(Culex pipiens pallens)溴氰菊酯抗性品系中高表达。在此基础上,本研究采用5’-RACE和3’-RACE法扩增淡色库蚊RPL22的全长序列,并通过实时定量PCR法研究RPL22在淡色库蚊的溴氰菊酯敏感和抗性品系及蚊敏感和抗性细胞中的差异表达;随后在细胞水平,先后通过转染后高表达、干涉后低表达和诱导后适度高表达等方法,研究RPL22对蚊细胞溴氰菊酯敏感性的影响;同时,通过实时定量PCR法检测了相应细胞色素P450 6A1基因(cytochrome P450 6A1, CYP6A1)的表达水平;此外,采用实时定量PCR法检测了淡色库蚊不同发育阶段RPL22的发育表达谱。
     结果显示,本研究获得的淡色库蚊RPL22全长序列为673 bp,开放阅读框为447 bp,编码148个氨基酸(GenBank登录号: EF990190)。用BlastX软件将该基因推导编码的氨基酸序列与蛋白质公共数据库Swissprot进行分析,用ClustalW软件作序列比对,以MEGA 3.1软件进行聚类分析。推导的氨基酸序列与致倦库蚊(Cx. quinquefasciatus),埃及伊蚊(Aedes aegypti)和冈比亚按蚊(Anopheles gambiae)的RPL22分别具有100%,90%和80%同源性。通过MEGA 3.1软件进行聚类分析构建进化树及序列归一化距离分析后发现,淡色库蚊的RPL22同致倦库蚊的距离最接近(0.003),其次为埃及伊蚊(0.273)和冈比亚按蚊(0.472)。
     实时定量PCR结果显示,RPL22在淡色库蚊抗性品系的4龄幼虫和抗药性蚊细胞中的表达水平,分别是淡色库蚊敏感品系4龄幼虫和敏感蚊细胞的2.57倍和1.71倍(p均<0.001)。
     将RPL22转染蚊C6/36细胞,使其在蚊细胞中高表达(23.39倍),结果发现,在溴氰菊酯浓度为100.5μg/mL,101.0μg/mL,101.5μg/mL,102.0μg/mL和102.5μg/mL时,RPL22转染组细胞的存活率分别比对照组下降8.2%,17.1%,12.1%,11.4%和6.4%(p<0.05)。实时定量PCR结果显示在高表达RPL22时,CYP6A1的表达水平降低为对照组的41.8%(p<0.001)。
     采用siRNA技术干涉蚊抗药性细胞的RPL22,通过实时定量PCR实验验证,干涉RPL22的效率为61.9%。结果发现,在溴氰菊酯浓度为400μg/mL和600μg/mL时,干涉组细胞的存活率分别比对照组下降7.6%和9.5%(p均<0.05)。实时定量PCR结果显示,在低表达RPL22时, CYP6A1的表达水平降低为对照组的82.5%(p<0.05)。
     构建RPL22诱导型表达载体,以终浓度为0.5nM CuSO4作为诱导剂,诱导48小时后RPL22的表达量为对照组的7.9倍,为接近生理水平的高表达。结果发现,在溴氰菊酯浓度为100.5μg/mL,101.0μg/mL,101.5μg/mL和102.0μg/mL时,RPL22转染组细胞的存活率分别比对照组提高8.6%,12.7%,9.6%和7.9%(p<均0.05)。
     实时定量PCR结果显示,淡色库蚊RPL22在不同发育阶段中,蛹期表达水平最低,比4龄第2天幼虫降低34.9%(p<0.05),而羽化后第1天的表达水平最高,比蛹期升高95.2%(p<0.001),且在羽化后的第2天RPL22的表达水平降低,接近其他各期表达水平(p>0.05)。
     以上结果表明,RPL22与淡色库蚊溴氰菊酯抗性相关;RPL22在适度高表达的情况下对细胞产生抗溴氰菊酯的保护作用,而过表达RPL22可能引起转录抑制或对细胞产生毒副作用,导致细胞存活率降低;RPL22在淡色库蚊的不同发育阶段存在表达差异。
     本研究首次报告了淡色库蚊RPL22全长序列,并发现RPL22为1个新的昆虫抗药性相关基因,为进一步阐明杀虫剂抗性的分子机制和建立抗药性检测方法提供了新的科学依据,具有重要的理论意义和潜在的实际应用价值。
Many new and reemerging mosquito-borne diseases threaten the public health. Chemical control is a major method to manage mosquito-borne diseases. But under the natural selection, excessive and continuous application of insecticides has caused the development of insecticide resistance, which has become the major obstacle to controlling the mosquito-borne diseases. Identification and characterization of insecticide resistance genes will contribute to clarify the mechanism of insecticide resistance and find the target of insecticide resistance management.
     To investigate the insecticide resistance in mosquitoes, we had employed suppression subtractive hybridization (SSH) and cDNA microarray to identify differentially expressed genes between deltamethrin-susceptible and -resistant strains of Cx. pipiens pallens in our previous experiments, and some deltamethrin resistance related genes were isolated. One of the highly expressed genes in deltamethrin-resistant strain was a RPL22-homolog. In this study, we acquired the full length sequence of RPL22 by 5’-RACE and 3’-RACE methods, detected the differential expression by realtime PCR between deltamethrin-susceptible and -resistant strains of Cx. pipiens pallens and mosquito cells, and explored the relationship between RPL22 and deltamethrin resistance in mosquito cell line by overexpression, RNA interference and inducible higher-expression methods. At the same time, we also detected the mRNA level of CYP6A1 which is an important insecticide resistance gene, and measured the mRNA level of RPL22 in different development stages of the Culex mosquito.
     RPL22 (GenBank accession no. EF990190) was cloned from Cx. pipiens pallens. An open reading frame (ORF) of 447 bps was found to encode a putative 148 amino acids protein which shares 90% and 80% identity with RPL22 proteins from Aedes aegypti and Anopheles gambiae respectively.
     Real-time quantitative PCR analysis demonstrated that the transcription level of RPL22 in deltamethrin-resistant strain was 2.57 folds as high as that in deltamethrin-susceptible strain of Cx. pipiens pallens (p<0.001). And the transcription level of RPL22 in deltamethrin-resistant mosquito cells was 1.71 folds as high as that in deltamethrin-susceptible mosquito cells (p<0.001).
     The expression plasmid of RPL22 was constructed and RPL22 was overexpressed in C6/36 cells. Viability of C6/36-RPL22 cells in the presence of deltamethrin was compared with control cells to observe variance of deltamethrin resistance of these cells. The results showed that C6/36-RPL22 cells are relatively more susceptible to deltamethrin compared with the control. And the mRNA level of CYP6A1was decreased to 41.8% when RPL22 was overexpressed (p<0.001).
     RPL22 expression in resistant mosquito cells was knocked down by RNA interference, and the results showed that the resistant cell became more susceptible to deltamethrin compared with the control. At the same time, the mRNA level of CYP6A1 was also decreased to 82.5% when RPL22 was down-regulated.
     To exclude the side-effect of RPL22 overpression, we constructed the inducible expression vector of RPL22 and empty vector. Inducible expression experiment showed that transcription level of RPL22 was 7.9 folds as high as that in the control. And deltamethrin cytotoxicity assay demonstrated that RPL22 could promote the deltamethrin resistance, when the expression level of RPL22 was close to its natural higher expression levels.
     In this study, we cloned the full length of RPL22, and presented the first evidence that RPL22 confer the deltamethrin resistance in mosquito. And our results provided new evidence for clarifying the molecular mechanisms of insecticide resistance and establishing the new resistance testing methods. It has important theoretical value and potentially practical application .
引文
[1] Boatin BA, Richards FO, Jr. Control of onchocerciasis. Adv Parasitol. 2006;61:349-94.
    [2] Gemperli A, Sogoba N, Fondjo E, et al. Mapping malaria transmission in West and Central Africa. Trop Med Int Health. 2006;11:1032-46.
    [3] Hoey J. West Nile fever in New York City. CMAJ. 2000;162:1036.
    [4] Kostiukov MA, Alekseev AN, Bulychev VP, Gordeeva ZE. [Experimental evidence for infection of Culex pipiens L. mosquitoes by West Nile fever virus from Rana ridibunda Pallas and its transmission by bites]. Med Parazitol (Mosk). 1986:76-8.
    [5] Kumar S, Thomas A, Sahgal A, Verma A, Samuel T, Pillai MK. Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Arch Insect Biochem Physiol. 2002;50:1-8.
    [6] Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:861-71.
    [7] Paz S, Albersheim I. Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile fever outbreaks (Israeli Case Study: 2001-2005). Ecohealth. 2008;5:40-8.
    [8] Zayed AB, Szumlas DE, Hanafi HA, et al. Use of bioassay and microplate assay to detect and measure insecticide resistance in field populations of Culex pipiens from filariasis endemic areas of Egypt. J Am Mosq Control Assoc. 2006;22:473-82.
    [9]李朝品.医学昆虫学.北京:人民军医出版社. 2007:62-73.
    [10] Coleman M, Sharp B, Seocharan I, Hemingway J. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors. J Med Entomol. 2006;43:663-8.
    [11] Crowder DW, Onstad DW, Gray ME. Planting transgenic insecticidal corn based on economic thresholds: consequences for integrated pest managementand insect resistance management. J Econ Entomol. 2006;99:899-907.
    [12] Humeres EC, Morse JG. Resistance of avocado thrips (Thysanoptera: Thripidae) to sabadilla, a botanically derived bait. Pest Manag Sci. 2006;62:886-9.
    [13] Cutler GC, Tolman JH, Scott-Dupree CD, Harris CR. Resistance potential of colorado potato beetle (Coleoptera: Chrysomelidae) to novaluron. J Econ Entomol. 2005;98:1685-93.
    [14] Mougabure Cueto G, Zerba EN, Picollo MI. Permethrin-resistant head lice (Anoplura: Pediculidae) in Argentina are susceptible to spinosad. J Med Entomol. 2006;43:634-5.
    [15] Picollo MI, Vassena C, Santo Orihuela P, Barrios S, Zaidemberg M, Zerba E. High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. J Med Entomol. 2005;42:637-42.
    [16] Rinkevich FD, Zhang L, Hamm RL, Brady SG, Lazzaro BP, Scott JG. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Mol Biol. 2006;15:157-67.
    [17] Carle P-R. The Path to Deltamethrin. In: Deltamethrin. Roussel UCLAF. 1982:25-36.
    [18] Georghiou G. The magnitude of the resistance problem. In: National Academy of Sciences ed. Pest Resistance Strategies and Tactics for Management. Washington, DC : National Academy Press. 1986.
    [19] World Health Organization: Expert Committee on Insecticides. WHO Tech Rpt Ser 7th Rpt. 1957:1251.
    [20] Brown AW. Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc. 1986;2:123-40.
    [21]唐振华,吴士雄.昆虫抗药性分子遗传学.昆虫抗药性的遗传与进化上海:上海科学技术文献出版社. 2000:99-282.
    [22] Georghiou G. Implication of agricultural pesticide used in relation to the development of resistance in desease vectors. Geneva, WHO. 1990.
    [23]苏寿汦,叶炳辉.现代医学昆虫学.第一版. .北京:高等教育出版社1996:170-5.
    [24] WHO. Vector resistance to pesticides. Fifteenth report of the expert committee on vector biology and control. In WHO Tech. Rep. Ser. 818:. 1992:1–55.
    [25] Morse JG, Hoddle MS. Invasion biology of thrips. Annu Rev Entomol. 2006;51:67-89.
    [26] Dong K. Insect sodium channels and insecticide resistance. Invert Neurosci. 2007;7:17-30.
    [27]刘喃喃,朱芳,徐强, Pridgeon JW,高希武. Behavioral Change, Physiological Modification, and Metabolic Detoxification: Mechanisms of Insecticide Resistance.昆虫学报. 2006;46:671-9.
    [28]胡小邦,朱昌亮.昆虫抗药性机制研究进展.国外医学寄生虫病分册. 2004;31:18-23.
    [29] Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91.
    [30] Turell MJ, Mores CN, Dohm DJ, et al. Laboratory transmission of Japanese encephalitis and West Nile viruses by molestus form of Culex pipiens (Diptera: Culicidae) collected in Uzbekistan in 2004. J Med Entomol. 2006;43:296-300.
    [31] Weng MH, Lien JC, Lin CC, Yao CW. Vector competence of Culex pipiens molestus (Diptera: Culicidae) from Taiwan for a sympatric strain of Japanese encephalitis virus. J Med Entomol. 2000;37:780-3.
    [32] Zhang YZ, Zhang HL, Yu YX, et al. [Research on Culex tritaeniorhynchus and Culex pipiens quinquefasciatus intrathoracically infected with attenuated Japanese encephalitis virus SA14-14-2 vaccine strain]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2005;19:344-6.
    [33] Eritja R, Chevillon C. Interruption of chemical mosquito control and evolution of insecticide resistance genes in Culex pipiens (Diptera: Culicidae). J Med Entomol. 1999;36:41-9.
    [34]褚宏亮,周明浩,刘大鹏,陈志龙,吴健.江苏省淡色库蚊对常用杀虫剂的抗性研究.中华卫生杀虫药械. 2005;11:180-1.
    [35]顾振国,孙伯超,王信宏,朱根忠.淡色库蚊对常用杀虫剂抗性现状的调查研究.中华卫生杀虫药械. 2007;13:333-5.
    [36]孔庆鑫,倪晓平,邱丽华,徐虹.安阳市淡色库蚊的抗药性调查研究.中华卫生杀虫药械. 2008;14:199-200.
    [37]刘洪霞,冷培恩,徐仁权,王士珍.上海地区流行性乙型脑炎媒介对常用杀虫剂的抗性研究.上海预防医学杂志. 2008;20:209-10,18.
    [38] Wu H, Tian H, Wu G, et al. Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and -susceptible strains. Pestic Biochem Phys. 2004;79:75-83.
    [39] Berisio R, Schluenzen F, Harms J, et al. Structural insight into the role of the ribosomal tunnel in cellular regulation. Nat Struct Biol. 2003;10:366-70.
    [40] Gabashvili IS, Gregory ST, Valle M, et al. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell. 2001;8:181-8.
    [41] Lawrence MG, Lindahl L, Zengel JM. Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel. J Bacteriol. 2008;190:5862-9.
    [42] Nakatogawa H, Ito K. The ribosomal exit tunnel functions as a discriminating gate. Cell. 2002;108:629-36.
    [43] Corcoran D, Quinn T, Cotter L, Fanning S. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents. 2006;27:40-5.
    [44] Davydova N, Streltsov V, Wilce M, Liljas A, Garber M. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J Mol Biol. 2002;322:635-44.
    [45] Gregory ST, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol. 1999;289:827-34.
    [46] Pereyre S, Renaudin H, Charron A, Bebear C, Bebear CM. Emergence of a 23S rRNA mutation in Mycoplasma hominis associated with a loss of the intrinsic resistance to erythromycin and azithromycin. J Antimicrob Chemother. 2006;57:753-6.
    [47] Rolain JM, Raoult D. Prediction of resistance to erythromycin in the genus Rickettsia by mutations in L22 ribosomal protein. J Antimicrob Chemother. 2005;56:396-8.
    [48] Unge J, berg A, Al-Kharadaghi S, et al. The crystal structure of ribosomalprotein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure. 1998;6:1577-86.
    [49] Zaman S, Fitzpatrick M, Lindahl L, Zengel J. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Mol Microbiol. 2007;66:1039-50.
    [50] Andersen JF, Utermohlen JG, Feyereisen R. Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Biochemistry. 1994;33:2171-7.
    [51] Carino FA, Koener JF, Plapp FW, Jr., Feyereisen R. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol. 1994;24:411-8.
    [52] Feyereisen R, Koener JF, Farnsworth DE, Nebert DW. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica. Proc Natl Acad Sci USA. 1989;86:1465-9.
    [53] Li X, Ma L, Sun L, Zhu C. Biotic characteristics in the deltamethrin-susceptible and resistant strains of Culex pipiens pallens (Diptera: Culicidae) in China. Appl Entomol Zool. 2002;37:305-8.
    [54] Blitvich BJ, Blair CD, Kempf BJ, et al. Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Mol Biol. 2002;11:431-42.
    [55] Haubruge E, Amichot M, Cuany A, Berge JB, Arnaud L. Purification and characterization of a carboxylesterase involved in malathion-specific resistance from Tribolium castaneum (Coleoptera: Tenebrionidae). Insect Biochem Mol Biol. 2002;32:1181-90.
    [56] Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2001;359:295-304.
    [57] Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.
    [58] Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986;44:283-92.
    [59]公茂庆.蚊抗药性相关基因克隆与功能研究及用RNAi抑制蚊抗药性的初步研究.公茂庆博士学位论文南京:南京医科大学. 2005.
    [60] Wan F, Anderson DE, Barnitz RA, et al. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell. 2007;131:927-39.
    [61]朱宁希,郑树,徐荣臻,虞荣喜. S3核糖体蛋白基因的过表达与K562/DOX细胞耐药性的关系.中华血液学杂志. 2003;24:141-3.
    [62]陈宏,姜浩,张志伟.核糖体蛋白L6在K562/A02和K562细胞株中的表达差异.南华大学学报(医学版). 2006;34:519-21.
    [63] Wang G, Inaoka T, Okamoto S, Ochi K. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother. 2009;53:1019-26.
    [64]田海生.用SSH结合cDNA芯片分离、鉴定淡色库蚊溴氰菊酯抗性相关基因.田海生博士学位论文南京:南京医科大学. 2001.
    [65] Tan W, Sun L, Zhang D, et al. Cloning and overexpression of ribosomal protein L39 gene from deltamethrin-resistant Culex pipiens pallens. Exp Parasitol. 2007;115:369-78.
    [66] Anderson SJ, Lauritsen JP, Hartman MG, et al. Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity. 2007;26:759-72.
    [67] Ni JQ, Liu LP, Hess D, Rietdorf J, Sun FL. Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Gene Dev. 2006;20:1959-73.
    [68] Pridgeon JW, Liu N. Overexpression of the cytochrome c oxidase subunit I gene associated with a pyrethroid resistant strain of German cockroaches, Blattella germanica (L.). Insect Biochem Mol Biol. 2003;33:1043-8.
    [69] Pridgeon JW, Zhang L, Liu N. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene. 2003;314:157-63.
    [70] Daborn PJ, Yen JL, Bogwitz MR, et al. A single p450 allele associated with insecticide resistance in Drosophila. Science. 2002;297:2253-6.
    [71] Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg. 2008.
    [72] Kovach MJ, Carlson JO, Beaty BJ. A Drosophila metallothionein promoter is inducible in mosquito cells. Insect Mol Biol. 1992;1:37-43.
    [73] Bunch TA, Grinblat Y, Goldstein LS. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 1988;16:1043-61.
    [74] C. C, Wu N, Fallon AM. Evaluation of a Heterologous Metallothionein Gene Promoter in Transfected Mosquito Cells. Comp Biochem Physiol B. 1997;116:353-8.
    [75] Veraksa A, Bauer A, Artavanis-Tsakonas S. Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev Dyn. 2005;232:827-34.
    [76] Chevillon C, Raymond M, Guillemaud T, Lenormand T, Pasteur N. Population genetics of insecticide resistance in the mosquito Culex pipiens. Biol J Linn Soc. 1999;68:147-57.
    [77] Etchells SA, Hartl FU. The dynamic tunnel. Nat Struct Mol Biol. 2004;11:391-2.
    [78] Moore PB, Steitz TA. The structural basis of large ribosomal subunit function. Annu Rev Biochem. 2003;72:813-50.
    [79] Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell. 2002;10:117-28.
    [80] Zhao W, Bidwai AP, Glover CV. Interaction of casein kinase II with ribosomal protein L22 of Drosophila melanogaster. Biochem Biophys Res Commun. 2002;298:60-6.
    [81] Di Maira G, Brustolon F, Tosoni K, et al. Comparative analysis of CK2 expression and function in tumor cell lines displaying sensitivity vs. resistanceto chemical induced apoptosis. Mol Cell Biochem. 2008;316:155-61.
    [82] Di Maira G, Brustolon F, Bertacchini J, et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene. 2007;26:6915-26.
    [83] Guo C, Yu S, Davis AT, Wang H, Green JE, Ahmed K. A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem. 2001;276:5992-9.
    [84] Song DH, Dominguez I, Mizuno J, Kaut M, Mohr SC, Seldin DC. CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling. J Biol Chem. 2003;278:24018-25.
    [85] Tapia JC, Torres VA, Rodriguez DA, Leyton L, Quest AF. Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc Natl Acad Sci USA. 2006;103:15079-84.
    [1] Grodzicker T, Williams J, Sharp P, Sambrook J. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor symposia on quantitative biology. 1975;39 Pt 1:439-46.
    [2] Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314-31.
    [3] Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA. 1982;79:6465-9.
    [4] Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531-5.
    [5] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407-14.
    [6] Chauvet JM. Single nucleotide polymorphism wars? Nat biotechnol. 1998;16:120.
    [7]周延清. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社. 2005:2-4.
    [8] Romans P, Seeley DC, Kew Y, Gwadz RW. Use of a restriction fragment length polymorphism (RFLP) as a genetic marker in crosses of Anopheles gambiae (Diptera: Culicidae): independent assortment of a diphenol oxidase RFLP and an esterase locus. J Med Entomol. 1991;28:147-51.
    [9] Oshaghi MA, Chavshin AR, Vatandoost H. Analysis of mosquito bloodmeals using RFLP markers. Exp Parasitol. 2006;114:259-64.
    [10] Barr NB, Copeland RS, De Meyer M, et al. Molecular diagnostics of economically important Ceratitis fruit fly species (Diptera: Tephritidae) inAfrica using PCR and RFLP analyses. B Entomol Res. 2006;96:505-21.
    [11] Alam MT, Das MK, Dev V, Ansari MA, Sharma YD. PCR-RFLP method for the identification of four members of the Anopheles annularis group of mosquitoes (Diptera: Culicidae). Trans R Soc Trop Med Hyg. 2006.
    [12] Scataglini MA, Confalonieri VA, Lanteri AA. Dispersal of the cotton boll weevil (Coleoptera: Curculionidae) in South America: evidence of RAPD analysis. Genetica. 2000;108:127-36.
    [13] Hunt GJ, Page RE, Jr. Linkage map of the honey bee, Apis mellifera, based on RAPD markers. Genetics. 1995;139:1371-82.
    [14] Mutebi JP, Black WCt, Bosio CF, Sweeney WP, Jr., Craig GB, Jr. Linkage map for the Asian tiger mosquito [Aedes (Stegomyia) albopictus] based on SSCP analysis of RAPD markers. J Hered. 1997;88:489-94.
    [15] Abe H, Harada T, Kanehara M, Shimada T, Ohbayashi F, Oshiki T. Genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-1, in the silkworm, Bombyx mori. Genes Genet Syst. 1998;73:237-42.
    [16] Abe H, Sugasaki T, Kanehara M, et al. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes Genet Syst. 2000;75:93-6.
    [17] Zebeau M, Vos P. European patent applicatioin, publication no: EP0534858. 1993.
    [18] Zhong D, Pai A, Yan G. AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum). J Hered. 2004;95:53-61.
    [19] Zhong D, Menge DM, Temu EA, Chen H, Yan G. Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics. 2006;173:1337-45.
    [20] Zhong D, Temu EA, Guda T, et al. Dynamics of gene introgression in the African malaria vector Anopheles gambiae. Genetics. 2006;172:2359-65.
    [21] Hawthorne DJ. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: sex chromosomes and a pyrethroid-resistance candidate gene. Genetics. 2001;158:695-700.
    [22] Skinner DM, Beattie WG, Blattner FR, Stark BP, Dahlberg JE. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n-(-A-T-C-C-)n. Biochemistry. 1974;13:3930-7.
    [23] Kamau L, Mukabana WR, Hawley WA, et al. Analysis of genetic variability inAnopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol. 1999;8:287-97.
    [24] Norris DE, Shurtleff AC, Toure YT, Lanzaro GC. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae ss (Diptera: Culicidae). J Med Entomol. 2001;38:336-40.
    [25] Temu EA, Hunt RH, Coetzee M. Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera: Culicidae) in east and southern Africa. Acta Trop. 2004;90:39-49.
    [26] Solignac M, Vautrin D, Baudry E, Mougel F, Loiseau A, Cornuet JM. A microsatellite-based linkage map of the honeybee, Apis mellifera L. Genetics. 2004;167:253-62.
    [27] Staten R, Schully SD, Noor MA. A microsatellite linkage map of Drosophila mojavensis. BMC Genet. 2004;5:12.
    [28] Prugnolle F, Durand P, Jacob K, et al. A comparison of Anopheles gambiae and Plasmodium falciparum genetic structure over space and time. Microbes Infect. 2008;10:269-75.
    [29] Banfi S, Borsani G, Rossi E, et al. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nat Genet. 1996;13:167-74.
    [30] Mita K, Morimyo M, Okano K, et al. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci USA. 2003;100:14121-6.
    [31] Severson DW, Meece JK, Lovin DD, Saha G, Morlais I. Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti. Insect Mol Biol. 2002;11:371-8.
    [32] Wu H, Tian H, Wu G, et al. Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and -susceptible strains. Pestic Biochem Phys. 2004;79:75-83.
    [33] Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ. Genetic mapping with SNP markers in Drosophila. Nature genetics. 2001;29:475-81.
    [34] Hoskins RA, Phan AC, Naeemuddin M, et al. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 2001;11:1100-13.
    [35] Wilkins EE, Howell PI, Benedict MQ. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification,Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar J. 2006;5:125.
    [36] Bass C, Williamson MS, Field LM. Development of a multiplex real-time PCR assay for identification of members of the Anopheles gambiae species complex. Acta Trop. 2008;107:50-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700