油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶是原产我国南方的重要木本油料树种,栽培历史悠久,现已被引种到国外。长期以来,由于品种良莠不齐,经营管理粗放,油茶单位面积产量普遍偏低。目前国内多应用油茶优良无性系造林,有利于大幅度提高产量。随着分子和细胞育种的深入开展,将来会产生更多更好的优良无性系,这些优良无性系的育成往往需要利用组织培养技术。随着无性系品种的增加,也往往需要从分子水平加以鉴别,便于新品种的登录、保护和分子标记辅助选择育种。另外油茶遗传改良和重要基因的分离克隆则有赖于分子生物学研究的深入,而开展这些工作的一个很重要的基础就是构建cDNA文库。因此,本文主要就油茶优良无性系的组织培养、RAPD鉴别和cDNA文库构建三方面的内容进行研究,为今后油茶品种改良、重要基因分离克隆及提高单位面积产量奠定基础。
     以油茶优良无性系湘林4号腋芽和子叶为外植体,分别采用附加不同种类激素的MS培养基对其进行组织培养实验。研究结果表明:腋芽诱导再生丛芽的最适培养基是MS+6-BA3.0mg.L~(-1)+NAA1.0mg.L~(-1);子叶形成胚性愈伤组织的最适合培养基为MS+2,4-D 2.0mg.L~(-1)+KT1.0mg.L~(-1);经胚状体诱导产生不定芽分化的最适合培养基为MS+6-BA2.5mg.L~(-1)+IAA1.5mg.L~(-1)或6-BA3.0mg.L~(-1)+NAA0.05mg.L~(-1)”;油茶优良无性系的生根培养基以MS+NAA7.0mg.L~(-1)最适;通过对胚状体形成过程中细胞组织学显微观察,实验结果初步揭示了油茶胚状体的起源和大致的发生过程:即油茶胚状体起源于单细胞原胚或者多细胞团,胚状体多从表皮细胞的胚性愈伤组织诱导产生。另外,再生植株过程中各阶段的组培材料经RAPD鉴定分析,在DNA水平上均未发现变异,说明通过组织培养建立的油茶优良无性系再生植株同原无性系无差别,最终获得的组培苗木能够保持原无性系的优良特性,其遗传是稳定的。由腋芽培养产生的再生植株可用于优良无性系的快速扩繁,而以子叶诱导产生胚状体获得油茶优良无性系的再生植株,不仅能满足常规育种的需要,也将为今后开展油茶转基因育种工作打下良好的基础。
     选择12个湘林系列的油茶优良无性系和1个普通油茶对照为实验材料,采用改良的CTAB法提取基因组DNA。对影响RAPD反应的主要因素(诸如Mg~(2+)等)进行了优化,获得了一个重复性高、稳定性好的RAPD反应体系。然后以该体系对上述材料进行RAPD检测和鉴别,实验结果表明:从180种10mer的随机寡核苷酸引物中筛选出22个稳定性好、多态性高、谱带清晰的引物;并以这些引物进行PCR扩增,最终通过反复实验共获得141个DNA谱带,其中多态性谱带91个,占扩增总数的64.54%。每个引物扩增的带数在3-10条之间,扩增片断长度介于305bp-2918bp之间。利用相似性系数进行分析,结果表明油茶
    
     中南林学院博士学位论义
    优良无性系与对照之间相似性水平低,说明这两者之间存在较大的差异,而各无
    性系之间相似性水平也存在一定的差异。在此基础上通过LJ’PGMA力法进行
    RAPD聚类分析,绘制了13个实验材料的聚类图。不同的D值其聚类结果不同。
    当O值取0.4可将13种材料分为4组,组1:普通油茶对照:组2:湘林引小
    组3:湘林刃、3、4、16号;组4:湘林厂、18。叩、53、%、69、82号。对
    ILAPD结果做进一步分析,获得了26个特异性标记,可用于汕茶优良无怕;系的
    鉴别。其中利川引物引106所产生的8个*AP D标记可将所有汕茶优良无性系
    和普通汕茶一次性区分开来。实验结果表明该方法是可行的。
     以湘林4’G优良无性系组培的嫩芽和胚性愈伤组织为材料,利用改良CTAB
    法提驭总 RNA后经 OligoNT)纤维素柱分离纯化得到 m洲A,再加入 NOll引
    物接人,在 Superscript 11 RT反转录酶和其他酶的作用下合成一链 cDNA和二链
    CDNA,经bbl接头修饰、限制性核酸内切酶Notl消化,再经柱层析纯化后同
    质粒载体P**VS卜ORT6连接,并转化感受态大肠杆菌*H10B菌株,从而构建
    了第一个仙茶 CDNA文库。经抽样检测,所构建的 CDNA文库包含 136X 10‘个
    基囚兜隆,重组于的百分比为99.78%,克隆片段长度大于560hp,说明构建的文
    咋质量较高,能够满足ESTS文库构建、从文库中分离筛选重要基因等研究工作
    的需要,为今门进一步研究奠定了很好的物质和技术基础。
Oil-tea camellia or Camellia oleifera is one of the most important oil tree crops native to Southeast China and introductions have been made into several non-indigenous countries. The history of growing this edible oil plant is long in China; however, because of poor management and inadequacy in fine cultivars, the yield of oil per unit area is generally very low. Recently, many clones with good biological and genetic characters are widely used to improve the oil production. With the development of genetic studies and breeding technology at the molecular and cellular levels, a good number of improved varieties will be created. The extension of these varieties needs depending closely on the tissue culture technique and at the same time on the advancement of the molecular technology for logining and preserving these new variety entries. The molecular biotechnology is particularly instrumental when the molecule-assisted selection is applied. Besides, the construction of cDNA library in Camellia oleifera will be
     a crucial research emphasis in variety breeding and clone selection. Hence in this doctorate project, tissue culture, molecular identification using randomly amplified polymorphism DNA (RAPD) markers, and the construction of cDNA library in Camellia oleifera were studied, hoping to provide a sound basis for variety improvement, cloning of vital genes, and promotion of the oil production.
    Auxiliary buds and cotyledons as explants from material 'xianglin-4' (XL-4) were cultured in MS medium with different hormones. Experiment results show that the optimal medium for shoot regeneration from auxiliary buds is MS with 6-BA 3.0 mg. L-1 and NAA 1.0 mg. L-1; the optimal medium for embryogenetic callus formation is MS with 2,4-D 2.0 mg. L-1 and KT 1.0 mg. L-1; the optimal medium for shoot development via embryos is MS with 6-BA 2.5 mg. L-1 and IAA 1.5 mg. L-1 or MS with 6-BA 3.0 mg. L-1 and NAA 0.05 mg. L-1; the optimal medium for root inducement is MS with NAA 7.0 mg. L-1. Somatic embryos were induced from cotyledons and its formation process was observed in the microscope. Results indicate that embryos were derived from single cell embryo or cell aggregate in embryogenetic callus and most of them were induced from embryogenetic callus of epidermis cells. In addition, some materials from different processes of plantlet regeneration were discriminated, but no mutations were discovered. Therefore, it
    can be concluded that plantlets from tissue culture do not have any difference with quondam clone and can well maintain the hereditary consistency. Regenerated plantlets from auxiliary buds could be used in rapid propagation, and those from embryos induced from cotyledons could not only satisfy the need for general breeding, they could also serve as a good basis for gene transformation in the future.
    After the genomic DNA was isolated with the modified CTAB process from 12 selected clones from Hunan province as target samples and one common cultivar of Camellia oleifera as control, their genetic diversity and molecular identity were ready for analysis by RAPD markers. Firstly, an optimized PCR program for RAPD analysis
    
    
    
    with high stability and good repetition was developed by modifying such important factors as the Mg2+, which affected the RAPD-PCR reaction. Then, 22 random oligo primers screened from 180 arbitrary 10 mer primers were used for PCR amplification, which produced an array of polymorphic profiles. Finally, 22 pieces of DNA fingerprint profiles containing 141 bands with 91 distinct polymorphic bands (64.54%) were obtained. Many repetition experiments were conducted to verify the findings.
    Each primer produced 3 to 10 bands with the band size ranging from 305 bp to 2,918 bp. Similarity coefficient analysis shows that there is a low similarity between the control and the target samples, and the difference among the target samples is small. On the basis of these findings, the cluster diagram with UPGMA was produced. When the D value is 0.4, the materials can be divided into four groups, with the c
引文
[1]庄瑞林.中国油茶[M].北京:中国林业出版社,1988:1-5.
    [2]张宏达.山茶属植物的系统研究[M].中山大学学报编辑部出版,1981:1-12.
    [3]田朝光,普通油茶重要经济性状及脂肪酸组成遗传变异研究[D].富阳:中国林业科学研究院亚热带林业研究所2000,1-3.
    [4]Wang, C. L. and Y. H. Lin. The extraction and analysis of oils from selected species of oil tea Camellia in Taiwan[J]. Bulletin Of Taiwan Forestry Research Institute New Series, 1990,5(1):11-16.
    [5]Fang, J. Advances in science and technology on tea-oil tree and tung-oil tree in China. Forest Research [J]. Reserach Inst. Subtropical Forestry, 1994,7(Mem.): 30-38.
    [6]何沛.开发油茶系列产品,实现大幅增值[J].江西林业科技,1987,(3):40-41.
    [7]何方.何方文集[M].中国林业出版社,1998,60-561.
    [8]林少韩.中国油茶生产现状及发展策略世界林业研究[J].1989,2(4):70-76.
    [9]Xiong, N. W. K., X. Chen, et al. The studies on the results of improving the low-yield stands of Camellia oleifera by means of grafting clones and the determination of its clones[J]. Forest Research, 1996, 9(2): 184-188.
    [10]陈永忠,王德斌.入世后油茶的发展机遇和对策[N].湖南科技报.2002-6-11(4).
    [11]罗士韦.植物细胞和组织培养的应用与展望[J].植物生理学通讯,1983,19(2):1-6.
    [12]伊华林.我国经济植物组织培养概况[J].湖北农学院学报,2001,3:279-285.
    [13]彭信海,宾秋实.植物组织培养在林木遗传育种中的应用[J].经济林研究,1998,2:54-55.
    [14]韩美丽,陆荣生.林木生物技术研究现状与发展趋势[J].广西林业科学,1996,25(4):213-218.
    [15]谭文澄,戴策刚.观赏植物组织培养技术[M].中国林业出版社,1998,218-237.
    [16]欧阳权.桉树愈伤组织胚状体的发生[J].植物生理学报,1980,6(4):429-432.
    [17]张宗勤.红豆杉的愈伤组织诱导及培养研究[J].西北植物学报,1996,16(5):16-18,
    [18]周俊彦.植物体细胞在组织培养中产生胚状体[J].植物生理学报,1998,7(4):389-397.
    [19]崔凯荣.植物体细胞胚胎发生研究的某些现状[J].植物学通讯,1993,10:14-20,
    [20]朱永亮.林木生物工程的研究现状与展望[J].西南林学院学报,1994,14(4):251-262.
    [21]唐翠,詹亚光.松属林木组织培养不定芽的发生过程-红松胚培养不定芽发生[J].哈尔滨师范大学自然科学学报,1997,13(5):71-68.
    [22]赵泊,程井辰.石刁柏体细胞胚发生的组织学研究[J].植物学报,1994,34(7):491-495.
    [23]唐巍,欧阳藩.火炬松原生质体及体细胞胚胎发生[J].武汉植物学研究,1998,16(2):106-110.
    [24]何业华,胡芳名,谢碧霞.经济林木离体培养研究进展[J].中南林学院学报,2000,1:31-38.
    [25]施季森.迎接21世纪现代林木生物技术育种的挑战[J].南京林业大学学报,2000,(1):1-6,
    [26]颜慕勤.油茶体细胞胚状体的发生[J].实验生物学报,1980,3(3):343-347,
    [27]隆振雄.油茶幼胚离体培养初获完整植株[J].林业科技通讯,198l,1:12-16.
    [28]卢天玲.油茶未成熟子叶幼胚离体培养成苗的研究[J].实验生物学报,1982,5(4):393-403.
    [29]颜慕勤.茶树子叶离体培养形成胚状体的研究[J].林业科学,1983,9(1):25-29.
    [30]隆振雄.油茶花药培养获得绿芽点和根[J].林业科技通讯,1981,5:6-9.
    [31]罗忠泽.金花茶及其远缘杂种未成熟胚离体培养的初步研究[J].北京林业大学学报,1986,4:76-78.
    [32]葛颂,陈灵芝,遗传多样性及其检测方法[M].生物多样性研究的原理与方法,北京:中国科技出版社:1994:123-140.
    [33]程家胜.同功酶分析在果树种质资源分类遗传研究中的应用[J].中国果树,1986(1):40-44.
    [34]张君增,方起程等.从化学成分探讨白豆杉属的系统位置[J].植物分类学报,1996,34(3):282-287.
    
    
    [35]Eom KS, Jeon HK, Kong Y, Hwang UW, Yang Y, Li X et al. Identification of Taenia asiatica in China: molecular, morphological, and epidemiological analysis of a Luzhai isolate[J]. J Parasitol, 2002, 88(4):758-764.
    [36]J. W. Schut, X. Qi, P. Stare. Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley[J].TAG Theoretical and Applied Genetics, 1997,95(7): 26-30.
    [37]Y:J. Hao, C:X. You, X:X. Deng Cell size as a morphological marker to calculate the mitotic index and ploidy level of citrus callus [J].Plant Cell Reports, 2002,20, (12):32-36.
    [38]Forster, B. P., Ellis, R. P., Thomas, W. T. The development and application of molecular markers for abiotic stress tolerance in barley[J]. J.Exp. Bot., 2000,51(342): 19-27.
    [39]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].2001,科学出版社,1-20,
    [40]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,15(4):19-22.
    [41]甘四明,施季森,白嘉雨等.林木分子标记研究进展[J].林业科学研究,1998,11(4):428-434.
    [42]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [43]钱惠荣,郑康乐.DNA分子标记和分子育种[J].生物工程进展,1998,18(3):12-18.
    [44]姜玲.RFLP和RAPD技术及其在园艺植物上的研究和应用[J].生物技术,1996,6(5):35-39.
    [45]彭建营,束怀瑞等.分子标记技术及其在果树种质资源研究上的应用[J].山东农业大学学报(自科版),2001,32(1):103-106.
    [46]张开春,尹淑萍等.分子标记在果树上的应用[J].果树科学,1999,16(3):210-218,
    [47]Slavotinek, A., Rosenberg, M., Knight, S., et.al. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres[J]. J.Med. Genet., 1999, 36(5): 405-411.
    [48]Kaput, V., Prasanth, S. G., O'Ryan, C., Azfer, M. A., & Ali, S. Development of a DNA marker by minisatellite associated sequence amplification (MASA) from the endangered Indian rhino (Rhinoceros unicornis) [J]. Mol. Cell Probes, 2003,17(1): 1-4.
    [49]Siebert, R. & Weber-Matthiesen, K. Fluorescence in situ hybridization as a diagnostic tool in malignant lymphomas. Histoehem[J].Cell Biol., 1997,108(4-5): 391-402.
    [50]王志林,赵树进,吴新荣.分子标记技术及其发展[J].生命的化学,2001,21(4):39-43.
    [51]Lowe AJ,刘旭译.种质资源鉴定的一种分子遗传技术标准:随机扩增多态性DNA(RAPD)[J].生物技术通报,1997(5):37-41.
    [52]祝军,李光晨等.分子标记及其在果树上的应用[M].生命科学研究进展,1996:271-275.
    [53]荆玉祥,匡廷云等.植物分子生物学-成就与前景[M].北京:科学出版社,1995:295-302
    [54]傅荣昭,邵鹏柱等.DNA分子标记及其在药用植物研究上的应用前景[J].生物工程进展,1998,18(4):14-17.
    [55]陈若雷,宋道军.RAPD分子标记及其在作物遗传育种中的应用[J].生物学杂志,2000,17(4):32-34.
    [56]汪小全,邹喻苹等.RAPD分析在遗传遗传多样性和系统学研究中的问题[J].植物学报,1996,38(12):954-962.
    [57]罗正荣,杉浦明等.应用RAPD技术研究柿品种间的亲缘关系[J].果树科学,1998,15(4):311-316.
    [58]林伯年,徐林娟等.RAPD技术在杨梅属植物分类研究中的应用[J].园艺学报,1999,26(4):221-226.
    [59]张开春,吴禄平等.RAPD技术-检测平邑甜茶遗传一致性的有效方法[J].农业生物技术学报,1997,5(2):201,202.
    [60]林同香,陈振光等.RAPD技术在龙眼品种分类中的应用研究[J].植物学报,1998,40(12):1159-1165.
    [61]姜静,杨传平等.利用RAPD标记技术对白桦种源遗传变异的分析及种源区划[J].木本植物研究.2001,21(1):126-130.
    [62]尹佟明,黄敏仁等.利用RAPDs标记和单株树大配子体构建马尾松的分子标记连连图谱[J].
    
    植物学报,1997,39(7):607-612.
    [63]赵淑清,武维华.DNA分子标记和基因定位[J].生物技术通报,2000,6:1-4.
    [64]Castiglione S. G. Wang et al.. RAPD fingerpriting for indetification and for taxonomic studies of ekite poplar(Populus spp)clone[J].Thero Appl Genet. 1993,87:54-59.
    [65]Grando M.S,De-Micheli L, Scienza. A characterization of Vitis Germplasm Using Random Amplified DNA Markers[J]. Genet Resoup,Crop Evol, 1996,43:187-192.
    [66]吴敏生,王守才等.指纹图谱技术在品种鉴定和纯度分析上的应用[J].农业生物技术学报,1998,6(1):51-56.
    [67]刘雄伦,李栒.RAPD技术在植物遗传育种上的作用[J].生物工程进展,2000,20(5):21-24.
    [68]史永忠,邓秀新等.RAPD技术与果树种质资源及育种研究[J].中国果树,1997(2):46-48,56.
    [69]Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) culfivars and wild species[J].Genome,2001, 44(5):763-772.
    [70]Shiv S. Kaundun, Alexander Zhyvoloup. Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers [J].euphytica,2000,115(1):7-16.
    [71]Hosokawa K, Minami M, Kawahara K, Nakamura I, Shibata T. Discrimination among three species of medicinal Scntellaria plants using RAPD markers[J]. Planta Med, 2000,66(3):270-272.
    [72]Russell JR, Hosein F, Johnson E, Waugh R, Powell W. Genetic differentiation of cocoa (Theobroma cacao L.) populations revealed by RAPD analysis[J]. Mol Ecol ,1993, 2(2):89-97.
    [73]Chansiri K, Kawazu S, Kamio T, Fujisaki K, Panchadcharam C, Watanapokasin Y et al. Inter-species differentiation of benign Theilerias by genomic fngerprinting with arbitrary primers [J]. Vet Parasitol, 1998,79 (2): 143-149.
    [74]Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ. Linkage mapping in diploid alfalfa (Medicago sativa) [J]. Genome, 1994,37(1):61-71.
    [75]Reiss E, Tanaka K, Bruker G, Chazalet V, Coleman D, Debeaupuis JP et al: Molecular diagnosis and epidemiology of fungal infections[J]. Mod Mycol, 1998,36 Suppl 1:249-257.
    [76]Dholakia BB, Ammiraju JS, Santra DK, Singh H, Katti MV, Lagu MD et al. Molecular marker analysis of protein content using PCR-basod markers in wheat[J]. Biochem Genet,2001,39(9-10):325-338.
    [77]Whisson SC, Drenth A, Maclean DJ, Irwin JA. Phytophthora sojae avirulence genes, RAPD,and RFLP markers used to construct a detailed genetic linkage map[J]. Mol Plant Microbe Interact, 1995, 8(6):988-995.
    [78]Welsh J, Rampino N, McClelland M, Perucho M. Nucleic acid fingerprinting by PCR-based methods: applications to problems in aging and mutagenesis[J]. Mutat Res, 1995,338(1-6):215-229.
    [79]Bandi C, La Rosa G, Comincini S, Damiani G, Pozio E. Random amplified polymorphic DNA technique for the identification of Trichinella species[J]. Parasitology, 1993, 107 (Pt4):419-424.
    [80]Devey ME, Delfino-Mix A, Kinloch BB, Jr., Neale DB. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine[J]. Proc Natl Acad Sci U S A, 1995, 92(6):2066-2070.
    [81]Nigatu A, Ahrne S, Molin G. Randomly amplified polymorphic DNA (RAPD) profiles for the distinction of Lactobacillus species[J]. Antonie Van Leeuwenhoek, 2001, 79(1): 1-6.
    [82]Wolff K, Peters-van Rijn J. Rapid detection of genetic variability in chrysanthemum Dendranthema grandiflora Tzvelev) using random primers[J]. Heredity, 1993,71 (Pt4):335-341.
    
    
    [83]Corney BG, Colley J, Djordjevic SP, Whittington R, Graham GC. Rapid identification of some Leptospira isolates from cattle by random amplified polymorphic DNA fingerprinting[J]. J Clin Microbiol ,1993, 31(11):2927-2932.
    [84]Park S, Wong M, Marras SA, Cross EW, Kiehn TE, Chaturvedi V et al. Rapid identification of Candida dubliniensis using a species-specific molecular beacon[J]. J Clin Microbiol,2000,38(8):2829-2836.
    [85]Micheli MR, Bova R, Pascale E, D'Ambrosio E. Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method[J]. Nucleic Acids Res, 1994,22(10):1921-1922.
    [86]Virk PS, Ford-Lloyd BV, Jackson MT, Newbury HJ. Use of RAPD for the study of diversity within plant germplasm collections[J]. Heredity, 1995, 74 ( Pt 2):170-179.
    [87]Aldron J, Peace CP, Searle IR, Furtado A, Wade N, Graham MW et al. Randomly Amplified DNA Fingerprinting: A Culmination of DNA Marker Technologies Based on Arbitrarily-Primed PCR Amplification[J]. J Biomed Biotechnol,2002, 2(3): 141-150.
    [88]Weber, J.; Diez, J.; Selosse, M. A.; Tagu, D.; Le Tacon, F. SCAR Markers to Detect Mycorrhizas of an American Laccaria Bicolor Strain Inoculated in European Douglas-Fir Plantations[J]. Mycorrhiza,2002,12,19-27.
    [89]Koveza, O. V.; Kokaeva, Z. G.; Gostimskii, S. A.; Petrova, T. V.; Osipova, E. S. Production of a SCAR Marker in Pea Pisum Sativum L. Using RAPD Analysis[J].Genetika,2001,37,574-576.
    [90]Hermosa, M. R.; Grondona, I.; Diaz-Minguez, J. M.; Iturriaga, E. A.; Monte, E. Development of a Strain-Specific SCAR Marker for the Detection of Trichoderma Atroviride 11, a Biological Control Agent Against Soilborne Fungal Plant Pathogens[J]. Curr. Genet. 2001, 38,343-350.
    [91]Li X, Wang RR, Larson SR, Chatterton NJ. Development of a STS marker assay for detecting loss of heterozygosity in rice hybrids[J]. Genome,2001,44(1):23-26.
    [92]Paglia, G. P.; Olivieri, A. M.; Morgante, M. Towards Second-Generation STS (Sequence-Tagged Sites) Linkage Maps in Conifers: a Genetic Map of Norway Spruce (Picea Abies K.) [J]. Mol. Gen. Genet, 1998,258,466-478.
    [93]许占友.大豆“三系”的选育及恢复基因的SSR遗传定位[J].中国农业科学,1999,32(2) :32-38.
    [94]李新海,傅骏骅等.利用SSR标记研究玉米自交系的遗传变异[J].中国农业科学,2000,33(2):1-9.
    [95]袁力行,傅骏骅等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [96]刘峰,邹继军等.应用微卫星标记进行大豆种质多样性和遗传变异性分析[J].遗传学报,2000,27(7):628-633.
    [97]Bautista NS, Solis R, Kamijima O, Ishii T. RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice[J]. Genes Genet Syst ,2001, 76(2):71-79.
    [98]江树业,陈启锋.水稻农垦58与农垦58s的RAPD和ISSR分析[J].农业生物技术学报,2000,8(1):63-66.
    [99]Barth S, Melchinger AE, Lubberstedt T. Genetic diversity in Arabidopsis thaliana L. Heynh. investigated by cleaved amplified polymorphic sequence (CAPS) and inter-simple sequence repeat (ISSR) markers[J].Mol Ecol,2002,11(3):495-505.
    [100]尹佟明,黄敏仁.AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997,17(1):6-11.
    [101]吴敏生,戴景瑞,扩增片段长度多态性(AFLP)-一种新的分子标记技术[J].植物学通报,1998,15(4):68-70.
    [102]朱文进,曹瑞琴等,分子标记APLP及其在遗传分析中应用[J].动物科学与动物医学,2001,18(5):21-23.
    
    
    [103]翁曼丽,谢纬武等.新一代分子标记技术—AFLP[J].应用与环境生物学报,1996,2(4):424-429.
    [104]缪颖.AFLP分子标记及其应用(综述)[J].亚热带植物通讯,1999,28(2):55-60
    [105]Mueller, U. G. & Wolfenbarger, L. L. AFLP genotyping and fingerprinting[J]. TRENDS IN ECOLOGY AND EVOLUTION, 1999,14(10):389-394.
    [106]Weeks, A. R., van Opijnen, T., & Breeuwer, J. A. AFLP fingerprinting for assessing intraspecific variation and genome mapping in mites[J]. Exp. Appl. Acarol.,2000,24(10-11):775-793.
    [107]陈一华,贾建航,李传友等.通过AFLP-DNA指纹的计算机分析进行水稻种子鉴定[J].农业生物技术学报,2000,8(3):222-224.
    [108]Wong HL, Yeoh HH, Lim SH. Customisation of AFLP analysis for cassava varietal identification[J].Phytochemistry, 1999,50(6):919-924.
    [109]I. Eujayl, M. Baum, W. Powell, et al. A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines[J].TAG Theoretical and Applied Genetics, 1998,97(1 ): 29-32.
    [110]陶文静,刘大钧.AFLP技术及其在植物基因组研究中的应用[J].世界农业,1998,12:16-20.
    [111]祝军,王涛等.应用AFLP分子标记鉴定苹果品种[J].园艺学报,2000,27(2):102-106。
    [112]Li X, Gardner DR, Ralphs MH, Wang PR. Development of STS and CAPS markers for identification of three tall larkspurs (Delphinium spp.) [J].Genome,2002, 45(2):229-235.
    [113]Yu BL, Huang ZF, Zhou WJ, Zhang WJ. [The creation of 1H chromosome-specific CAPs and ASA markers of barley] [J]. Yi Chuan Xue Bao,2001,28(6):550-555.
    [114]Haga, H., Yamada, R., Olmishi, Y., Nakamura, Y.et al. Gene-Based SNP Discovery As Part of the Japanese Millennium Genome Project: Identification of 190,562 Genetic Variations in the Human Genome Single-Nucleotide Polymorphism[J].J.Hum. Genet,2002,47,605-610.
    [115]Kirk, B. W., Feinsod, M.,Favis,R. Kliman, R. Met al. Single Nucleotide Polymorphism Seeking Long Term Association With Complex Disease[J]. Nucleic Acids Res,2002,30,3295-3311.
    [116]陆佳韵.EST及其应用[J].生命科学,1999,11(4):186-188.
    [117]许占友,常汝镇.大豆表达序列标记(EST)研究进展[J].大豆科学,2002,19(2):5 65-73.
    [118]LUO Meng, KONG Xiu-Ying,JIANG Tan. Analysis of Resistance to Powdery Mildewin Wheat Based on Expressed Sequence Tags(EST) Technique[J]. Acta Botanica Sinica 2002,44(5):567-572.
    [119]王石平,张启发.高等植物基因组中的反转录转座子[J].植物学报,1998,40(4):291-297.
    [120]江树业,孙梅.籽粒苋copia类反转录转座子的初步研究[J].福建农林大学学报(自然科学版),2002,31(2):218-222.
    [121]苏晓华,张绮纹.林木遗传图谱研究的现状与展望[J].林业科技通讯,1995,5:10-12.
    [122]刘旭.遗传标记和遗传图谱构建[J].中国种业,1997,3:29-32.
    [123]Wu XL, He CY, Wang YJ, Zhang ZY, Dongfang Y, Zhang JS et al. Construction and analysis of a genetic linkage map of soybean[J].Yi Chuan Xue Bao,2001,28(11): 1051-1061.
    [124]Saliba-Colombani V, Causse M, Gervais L, Philouze J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome[J].Genome,2000, 43(1):29-40.
    [125]田敏,谭晓风,胡芳名,林木分子遗传图谱的构建[J].生命科学研究,2000,4(1):13-20.
    [126]陈洪,朱立煌等.RAPD标记构建水稻分子连锁图[J].植物学报,1995,37(9):677-684.
    [127]谭晓风.银杏RAPD遗传图谱的构建及主要栽培品种的雌雄株的分子鉴别[D]博士论文,株洲:中南林学院研究生处,1997:20-56.
    [128]尹佟明,沈永宝,郑阿宝.林木遗传图谱构建研究概述[J].江苏林业科技,2000,27(6):38-44.
    [129]谭震波.近等基因系和群分法在植物基因定位中的应用[J].遗传,1996,18(增刊):17-30.
    [130]王泽立,戴景瑞等.玉米Rf3基因近基因系(NIL)的构建及RAPD验证[J].农业生物技术
    
    学报,2000,8(3):294-296.
    [131]Stommel JR, Panta GR, Levi A, Rowland LJ. Effects of gelatin and BSA on the amplification reaction for generating RAPD[J].Biotechniques,1997, 22(6): 1064-1066.
    [132]李松涛,张忠廷等.用新的分析标记方法(RAPD)分析小麦抗白粉病基因Pm4a的近等基因系[J].遗传学报,1995,22(2):103-108.
    [133]马渐新,周荣华等.小麦抗条锈病基因定位及分子标记研究进展[J].生物技术通报,1999(1):1-6.
    [134]朱立煌,徐吉臣等.用分子标记定位一个未知的抗稻瘟病的基因[J].中国科学(B辑),1994,24:1048-1052.
    [135]黎裕,王天宇,贾继增.植物比较基因组学的研究进展[J].生物技术通报,2000,5:11-15.
    [136]Devey M E, Sewell M M, Neale D B.A comparison of loblolly and radiata pine genomes using RFLP markers In: Dieters M J, Matheson A C, Nikles A C, etl. (eds.)[J]. Tree Improvement for sustainable Tropical Forestry, 1996,27:478-480.
    [137]万贤崇,林永启.林木遗传多样性研究中的DNA标记[J].辽宁林业科技,1994,5:3-7.
    [138]Wachira, F. N.; Waugh, R.; Hackett, C. A.; Powell, W. Detection of Genetic Diversity in Tea (Camellia Sinensis) Using RAPD Markers[J]. Genome, 1995,38,201-210.
    [139]杨永华.数量基因定位方法的研究进展[J].遗传,1996,18(增刊):21-26.
    [140]尹佟明,黄敏仁.林木遗传图谱构建和数量性状基因定位[J].世界林业研究,1995,3:6-13.
    [141]Irzykowska L, Wolko B, Swiecicki WK. Interval Mapping Of QTLs Controlling Some Morphological Traits In Pea[J]. Cell Mol Biol Lett, 2002, 7(2A):417-422.
    [142]Hurme, P.; Sillanpaa, M J.; Arjas, E.; Repo, T.; Savolainen, O. Genetic Basis of Climatic Adaptation in Scots Pine by Bayesian Quantitative Trait Locus Analysis[J]. Genetics, 2000, 156,1309-1322.
    [143]刘旭.种质资源鉴定的一种分子遗传技术标准—随机扩增多态性DNA(RAPD)[J].生物技术通报,1997,5:37-41.
    [144]谭晓风,胡芳名等.银杏主要栽培品种与分子鉴别[J],中南林学院学报,1998,18(3):3-10.
    [145]贾建航,许璞等.用于紫菜无性系种质鉴定的计算机化DNA指纹的建立[J].海洋学报2001,23(1):79-84.
    [146]戴思兰,陈像愉等.菊花起源的RAPD分析[J].植物学报,1998,40(11):1053-1059.
    [147]乔爱民,刘佩瑛等.芥菜16个变种的RAPD研究[J].植物学报,1998,40(10):915-921.
    [148]林同香,陈振光等,RAPD技术在龙眼品种分类中的应用研究[J].植物学报,1998,40(12):1150-1165.
    [149]余四斌.用RAPD技术鉴定水稻种子纯度初探[J].种子,1996,85(5):56-57.
    [150]水稻基因组物理图谱构建完成[J].生命的化学,1996,17(2):14
    [151]张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用[J].生物技术通报,1998,5:15-23.
    [152]Shi, Q. & Martin, R. H. Aneuploidy in human spermatozoa: FISH analysis in men with onstitutional chromosomal abnormalities, and in infertile men[J]. Reproduction., 2001,121 (5):655-666.
    [153]陆朝福,朱立煌.植物育种中的分子标记辅助选择[J].生物工程进展,1995,15(4):11-17.
    [154]韩志勇,沈革志.基于PCR的染色体步行技术[J].高技术通讯,2000,11:102-107.
    [155]刘金元,刘大钧等.分子标记辅助育种新尝试-与Pm2及Pm4a基因肾密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学学报,1997,20(2):1-5.
    [156]刘志勇,孙其信等.小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择[J].遗传学报,1999,26(6):673-682.
    [157]卢钢,曹家树.cDNA-AFLP技术在植物表达分析上的应用[J].植物学通报,2002,19(1);102-108.
    [158]Campalans A, Pages M, Messeguer R. Identification of differentially expressed genes by the
    
    cDNA-AFLP technique during dehydration of almond (Prunus amygdalus) [J].Tree Physiol,200 1,21(10):633-643.
    [159]van der Biezen EA, Juwana H, Parker JE, Jones JD. cDNA-AFLP display for the isolation of Peronospora parasitica genes expressed during infection in Arabidopsis thaliana[J]. Mol Plant Microbe Interact,2000,13(8):895-898.
    [160]Dellagi A, Birch PR, Heilbronn J, Lyon GD, Toth IK. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora[J]. Microbiology, 2000,146 (Ptl):165-171.
    [161]吴敏生,高志环等.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报,2001,27(3):339-342.
    [162]李凌,宋文芹,毛英伟,用cDNA-aflp银染技术研究与花椰菜花色相关的基因[J].南开大学学报2000,33(4):33-37.
    [163]李碧荣.国内cDNA文库及cDNA克隆的研究概况[J].生物工程进展,1992,12(4):53-57.
    [164]J.萨姆布鲁克等.分子克隆实验指南[M].1999,第二版:396-449.
    [165]余叔文 汤章城.植物生理与分子生物学[M].第2版,北京:科学出版社,1998:739-749.
    [166]Thomas Roeder. Solid-phase cDNA library construction, a versatile approach[J].NucleicAcids Research, 1998,26(14):3451-3452.
    [167]俞曼,茅矛等.cDNA文库构建方法新进展[J].国外医学遗传学分册,1995,19(1):41-44.
    [168]刘军,袁自强等.应用抑制差减杂交法分离水稻幼穗发育早期特导表达的基因[J].科学通报,2000,45(13):1392-1397.
    [169]罗敏捷.抑制性差减杂交方法介绍[J].国外医学:临床生物化学与检验学分册,2000,21(5):252-253.
    [170]田海生,马磊等.两个标准化cNDA差减文库的构建[J].中国血吸虫病防治杂志,2001,13(2):75-78.
    [171]Bonaldo M F,Lennon G,Soares M B. Normalization and subtraction:Two approaches to facilitate[J].gene discovery. Genome Res,1996,6:791-806.
    [172]T akayuki Kohchi, Kotomi Fujishige,Kanji Ohyama. Construction of an equalized cDNA library from Arabidopsis thaliana [J].Animal Genetics,2000, 31 6: 400-404.
    [173]Patanjali S R, Parimoo S,Weissman S M. Construction of a uniform-abundance(normalized)cDNA library[J].Proc Natl Acad Sci USA, 1991,88:1943-1947.
    [174]Soares M B,Bonaldo M F, Su L,et al. Construction and characterization of a normalized cDNA library[J].Proc Natl Acad Sci USA, 1994,91:9228-9232.
    [175]Saaaki Y F, Ayusawa D, Oishi M. Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system[J]. Nucleic Acids Res, 1994,22:987-992.
    [176]储昭晖.水稻全生育期均一化cDNA文库的构建和鉴定[J].科学通报2002,47(21):1656-1662.
    [177]金志强.香蕉果实cDNA文库的构建[J].热带作物学报,1999,20(1):25-29.
    [178]刘长征,张正钫,张国珍等.玉米叶片cDNA文库构建及Cah基因克隆[J].山东农业大学学报,1995,26(4):447-452.
    [179]Zhuang, R., Huang, et al. Studies on the breeding of 19 new tea-oil varieties with high yield[J]. Forest Research Res. Inst. Subtropical Forestry, 1992,5(6): 619-627.
    [180]王德斌.30个油茶优良无性系的选育研究[J].湖南林业科技,1991,(2):7-10.
    [181]韩宁林.芽苗砧嫁接应用于油茶无性系鉴定的研究[J].林业科学,1989,25(4):375-381.
    [182]Ruilin, Z., R. Dong, et al. The establishments and benefits of the gene pools for the germ plasm resources of Camellia[J]. Forest Research, 1991,4(2): 178-184.
    [183]朱广廉.植物组织培养中灭菌和无菌操作的几个问题[J].植物生理学通讯,1995,5:373-376,
    [184]王傲雪,李景富.植物体细胞胚状体的诱导研究及应用[J].黑龙江农业科学,1999,2:39-42.
    
    
    [185]S. Kintzios, J.B. Drossopoulos, E. Shortsianitis and D. Peppes Induction of somatic embryogenesis from young, fully expanded leaves of chilli pepper (Capsicum annuum L.): effect of leaf position, illumination and explant pretreatment with high cytokinin concentrations[J].Scientia Horticulturae,2001,85(1-2): 137-144.
    [186]肖顺元,Freerick G.RAPD分析—鉴定柑桔体细胞杂种的快速方法[J].遗传,1995,17(4):40-42.
    [187]张开春,覃兰英.樱桃小茎尖培养后的早熟变异与RAPD鉴定[J].果树科学,2000,17(3):225-227.
    [188]Atienzar FA, Evenden AJ, Jha AN, Depledge MH. Use of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations: possible implications of confounding factors [J]. Biomarkers, 2002, 7(1 )294-101.
    [189]胡春根,郝玉等.RAPD分析用的梨DNA提取方法[J].遗传,1998,20(4):31-33.
    [190]邹喻苹,汪小全等.几种濒危植物及其近缘类群DNA的提取与鉴定[J].植物学报,1994,36(7):528-533.
    [191]Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees [J]. Plant Mol Biol Reptr, 1993, 112 113-116.
    [192]谭晓风,漆龙霖等.山茶属植物叶片的DNA抽提[J].中南林学院学报,1999,19(4):75-79.
    [193]戴思兰,陈俊愉等.DNA提纯方法对9种菊属植物RAPD的影响[J].园艺学报,1996,23(2):169-174.
    [194]焦锋,楼程富.RAPD技术应用中的一些问题及对策[J].西北农业学报,2000,9(4):98-102.
    [195]尹佟明,韩正敏,黄敏仁等,林木RAPD分析及实验条件的优化[J].南京林业大学学报,1999,23(4):7-13.
    [196]刘春林,官春云等.关于植物随机引物扩增多态性DNA分子标记技术的可靠性问题[J].植物.生理学通讯,2000,36(1):56-59.
    [197]Mulls K B,陈受宜等(译).聚合酶链式反应[M].北京:科学出版社,1997:285-295.
    [198]夏铭,栾非时等.RAPD及其影响因素的研究及实验条件的优化[J].植物研究,1999,19(2):195-199.
    [199]袁长春,施苏华.扩增条件对茶类植物RAPD带的影响[J].热带亚热带植物学报.1999,7(4):313-317.
    [199]刘春林,阮颖等.TE缓冲液对RAPD带型的影响[J].科学研究,2001,5(3):275-276,279.
    [200]Penner GA, Bush A, Wise R, Kim W, Domier L, Kasha K et al. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories[J]. PCR Methods Appl, 1993,2(4)2341-345.
    [201]Saunders GC, Dukes J, Parkes HC, Corner JH. Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses[J].Clin Chem,2001,47(1):47-55.
    [202]Atienzar F, Evenden A, Jha A, Savva D, Depledge M. Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperature[J].Biotechniques,2000,28(1):52-54.
    [203]Yu K, Pauls KP. Optimization of the PCR program for RAPD analysis[J]. Nucleic Acids Res, 1992,20(10) 2260-266.
    [204]刘旭.种质资源鉴定的一种分子遗传技术标准—随机扩增多态性DNA(RAPD)[J].生物技术通报,1997,5:37-41.
    [205]Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res,1990,18(22):6531-6535.
    [206]Mazurier S, van de GA, Heuvelman K, Wernars K. RAPD analysis of Campylobacter isolates: DNA fingerprinting without the need to purify DNA[J].Lett Appl Microbiol, 1992,14 (6):260-262.
    
    
    [207]王艳,张爱民.DNA分子诊断技术在品种纯度鉴定中的应用[J].种子工程与农业发展,1997,2:740-750.
    [208]丁士支,张春材等.DNA水平上的植物系统学研究方法[J].西北植物学报,1996,16(2):197-202.
    [209]徐涤,宋林生等.五个紫菜品系间遗传差异的RAPD分析[J].高技术通讯,2001,11(12):1-3.
    [210]Del Tufo JP, Tingey SV. RAPD assay. A novel technique for genetic diagnostics[J].Methods Mol Bio1,1994,28:237-241.
    [211]Moore AJ, Challen MP, Warner PJ, Elliott TJ. RAPD discrimination of Agaricus bisporus mushroom cultivars[J]. Appl Microbiol Biotechnol, 2001, 55(6):742-749.
    [212]Fani R, Bandi C, Bardin MG, Comincini S, Damiani G, Grifoni A et al. RAPD fingerprinting is useful for identification of Azospirillum strains[J]. Microb Releases, 1993,1 (4):217-221.
    [213]Esselman EJ, Crawford DJ, Brauner S, Stuessy TF, Anderson GJ, Silva OM. RAPD marker diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae) [J]. Am J Bot,2000, 87(4):591-596.
    [214]Forte AV, Ignatov AN, Ponomarenko V, Dorokhov DB, Savel'ev NI. Phylogeny of the Malus (apple tree) species, inferred from its morphological traits and molecular DNA analysis[J].Genetika,2002, 38(10): 1357-1369.
    [215]汪建亚,黄发新,林英司等.运用RAPD法识别杨树品种技术的研究[J].湖北林业科技,2000,增刊:8-13.
    [216]冷肖荀,杨振国.随机扩增多态性DNA技术在林业中的应用[J].生物学通报1999,34(4):9-10.
    [217]戴思兰.DNA遗传标记技术在林业生产中的应用[J].生物工程进展,1996,16(3):44-49.
    [218]Lange W.J.de,Wingfield B.D.,Viljoen C.D.,et al. RAPD-fingerprintiong to identify Eucalyptus grandis clones[J].African Forestry Journal, 1993, 167:47-50.
    [219]王艇,黄超.红豆杉科植物RAPD分析及其系统学意义[J].西北植物报,2000,20(2):243-249.
    [220]李宽钰,黄敏仁等,用RAPD探讨毛白杨起源[J].植物分类学报,1997,35(1):24-31.
    [221]恽锐.北京东灵山辽东栎种群DNA多样性的研究[J].植物学报,1998,40(2):169-175.
    [222]黄韧,马昭林.猕猴属种间及亚种间RAPD分析[J].中山大学学报(自科版),1999,38(1):111-114.
    [223]王三红,陈力耕等.RAPD在柑橘品系鉴别上的应用[J].果树科学,2000,17(1):70-72.
    [224]张俊卫,包满珠等.梅、桃、李、杏、樱桃的RAPD分析[J].北京林业大学学报,1998,20(2):12-15.
    [225]P Chomczynski and N Sacchi. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction[J].Anal Biochem, 1987,162(1): 156-159.
    [226]Hughes DW, Galau G. Preparation of RNA from cotton leaves and pollen[J]. Plant Mol Biol Reptr, 1988,6:253-257.
    [227]Schneiderbauer A, Sandermann H Jr, Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds[J].Anal Biochem, 1991,197: 91-95.
    [228]夏兰芹,郭三堆.棉花RNA的快速提取方法[J].棉花学报,2000,12(4):205-207.
    [229]徐杰,李明启.异硫氰酸胍-酚-氯仿一步法提取RNA时某些操作技术的改进[J].植物生理学通讯,1996,32(3):206-208.
    [230]殷剑宁,范清宇等.简便、快速分离高质量mRNA的方法[J].第四军医大学学报,1997,18(1):80.
    [231]李景鹏,何成强.一步法快速纯化mRNA[J].东北农业大学学报,1999,30(3):283-288.
    [232]王劲,袁旭等.芥蓝cDNA文库的构建及文库质量检测[J].四川大学学报(自然科学版),2000,37:76-79.
    [233]Kris N La mbert and Vale rie M.Williamson.cDNA library construction from small amounts of RNA using paramagnetic beads and PCR[J].Nucleic Acids Research, 1993,21 (3):775-776.
    
    
    [234]GOU Xiao-Ping, Xu Ying, TANG Lin, YAN Fang, CHEN Fang. Represertative cDNA Library from Isolated Rice Sperm Cells[J].Acta Botanica Sinica, 2001, 43 (10) : 1093-1096.
    [235]Dresselhaus T, Lorz H, Kranz E. Representative cDNA libraries from few plant cells[J].Plant Mol Biol, 1994,5:605-610.
    [236]Dresselhaus T, Hagel C, Lorz H, Kranz E, Isolaton of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes of maize[J]. Plant, 1996, 31:23-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700