褐飞虱生物型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱Nilaparvata lugens(st(?)l)是我国和亚洲稻区的重要害虫。抗性水稻品种的选育和利用因其安全、经济、有效而成为褐飞虱防治措施中的首选。然而,随着水稻抗虫品种的推广应用,能够克服品种抗性的害虫新生物型却不断出现,这严重制约了褐飞虱综合治理和水稻抗虫育种工作的深入开展。
     褐飞虱生物型问题自出现以来就引起了国内外学术界的高度重视。许多学者从水稻品种对褐飞虱的抗性机制、褐飞虱生物型的监测、褐飞虱生物型的生物学、形态学、细胞学、生理生化、遗传学及鉴定技术等方面进行了广泛研究,获得了大量的有价值的资料,大大加深了人们对生物型问题的认识和了解。然而,由于褐飞虱生物型问题的复杂性以及传统研究手段的限制,对一些根本性的问题,如褐飞虱生物型致害性的遗传基础及遗传规律,致害性发生和变异的机制,褐飞虱生物型与水稻品种之间的互作机理等,目前仍然缺乏深入了解。另外,虽然多种鉴定褐飞虱群体生物型的方法已经得到广泛应用,但如何准确、快速地对褐飞虱个体生物型进行鉴定,一直是亟待解决的技术难题。澄清和解决上述问题,对于褐飞虱生物型的有效治理以及抗虫育种工作的深入开展有着极其重要的意义。
     从生化及分子水平研究害虫生物型之间的差异,探询害虫与抗性水稻品种之间的互作机制,是从根本上揭示褐飞虱生物型致害性形成机制的重要途径,而目前有关的研究还很少。近年来的研究表明,褐飞虱生物型的致害性并非由单一的基因控制,而是具有复杂的遗传背景。不同生物型致害性上的差异可能涉及到多种基因在质或量上的差异表达。本研究主要以此为切入点,在建立褐飞虱雌成虫对抗性水稻品种Mudgo的个体致害性指标的基础上,采用近年来新发展起来的分子生物学技术——抑制性差减杂交方法,研究生物型1和生物型2之间基因的差异表达情况,分离、鉴定生物型致害性相关基因。另外,由于代谢酶在昆虫对寄主的适应性方面起着重要作用,我们还初步考察了抗性水稻品种对褐飞虱体内几种代谢酶的影响。上述有关的研究结果总结如下:
     (1)用水稻敏感品种TN1和具有不同抗性基因的品种Mudgo,ASD7和Rathu Heenati饲养稻褐飞虱,研究不同品种对褐飞虱体内酯酶、谷胱甘肽转移酶和多功能氧化酶氧-脱甲基活性的影响。结果表明,褐飞虱在3种抗性品种上饲养一代后,其酯酶活性与敏感品种上的试虫相比没有显著差异。然而,取食Mudgo和取食ASD7的雌成虫之间酯酶活性达到显著性差异;取食Mudgo和Ruthu Heenati的雄成虫酯酶
    
     褐飞虱生物型的研究
    的M值分别为取食TNI的2.78和2.58倍。褐飞虱体内酯酶活性还因其生物型的不
    同而异。对褐飞虱生物型1和生物型2个体酯酶活力分布的测定结果表明,生物型2
    雌、雄成虫酯酶活性均显著低于生物型1。另外,在ASD7与Rathu Heenati上饲养
    一代后,褐飞虱雌、雄成虫GSTS的活性显著高于取食W 和MSdgO的个体,但抗性
    品种对褐飞虱成虫的多功能氧化酶氧一脱甲基活性没有明显影响。因此,水稻品种对
    褐飞虱代谢酶的影响因品种的特性,代谢酶的类型,甚至褐飞虱的性别而异。
     门)在 28 t IC下,观测了褐飞虱羽化 24h内短翅型雌成虫在敏感水稻品种 TNI
    及抗性品种MUdg。上的寿命及体重增量。结果表明,取食抗性品种时,试虫的平均增
    重与寿命之间表现出明显的正相关。寿命在7天内的个体,存活期间平均体重增量为
    负值,而存活7天以上的个体则平均增重明显。进一步研究了初羽化的褐飞虱长翅型
    雌成虫在W 及MUdg。上取食第1-4天的体重增量、寿命及产卵量,结果发现试虫
    在Mlldg。上的这3个生物学参数之间存在明显正相关。其中,寿命及体重增量较好地
    反映出害虫个体对抗性品种的致害能力,可作为个体致害性指标.根据研究结果,我
    们将羽化后在Mudgo上存活7天以上,或最初4天内体重增量大于0.ling的雌成虫定
    为能够致害该抗性品种的个体。
     (3)以若虫存活率为致害性指标,采用家系纯化的方法,对室内已选育30多代
    的褐飞虱生物型1和生物型2实验种群分别进行了一代和2代的进一步纯化培养,并
    考察了两种生物型纯化过程中群体及个体家系致害性的变化情况。结果表明,纯化后
    的两种生物型群体基本上保持了原有的致害特性,表明生物型的致害性具有一定的遗
    传稳定性。通过纯化培养,我们获得了群体致害性差异明显、遗传背景相对一致的两
    个生物型实验群体。但研究中也发现,在纯化过程中,两种生物型的子代家系在致害
    性上均出现了较高比例的变异,表明生物型的致害性存在着复杂的遗传背景。
     (4)以家系纯化后的褐飞虱生物型1和生物型2短翅型雌成虫为材料,采用抑制
    性差减杂交的方法分离两种生物型雌成虫差异表达的基因。以生物型1为对照群体
     (driver),生物型2为目标群体(tester)进行正向差减杂交,同时以生物型2为
    对照群体,生物型1为目标群体,进行反向差减杂交,结果构建了分别含有480和
    299个CDNA克隆的正向和反向差减文库。从获得的正、反向差减文库中分别随机挑
    选150个CDNA克隆进行差示筛选。通过两轮差示筛选
The brown planthopper (BPH), Nilaparvata lugens (Stal), is one of the most destructive pests of rice-growing areas in Asia. Resistant rice varieties have been used as the preferential method in the control of this pest for its safety, economy and efficiency. However, the BPH biotypes, which can "overcome" the resistance of rice varieties with different major resistance genes, occurs soon after the release of resistant rice varieties, and this has become a serious problem for resistant rice breeding and pest controlling.
    Extensive studies have been made on the biology, morphology, cytology, biochemistry and genetics of different BPH biotypes, the monitoring method of biotypes in the field, and the resistance mechanism of rice varieties to this pest, et al. Valuable data accumulated and it has greatly deepened our knowledge about the BPH biotypes. However, due to the extra complex of this problem and the limitation in the former research measures, some key problems, such as the genetic basis and hereditary characters of the biotype virulence, the occurrence and variation mechanism of biotypes, the interaction between BPH biotypes and rice varieties, are still waiting for clarification. In addition, although many methods are applicable for the identification of biotype populations, it has been a pressing task to establish some rapid, convenient and accurate means for the identification of individuals. Resolution of all these problems would be most important for the progress in resistant rice breeding and pest controlling.
    To clarify the key questions about the BPH biotypes, it would be most helpful to study the biochemical and molecular variation between different biotypes. Yet up to now, limited research has been done on this aspect. Anyway, some research results indicated from recent studies that the virulence of BPH biotypes seems to be controlled by multiple genes. Thus, the variation in different BPH biotypes is probably correlated to differential expression of many genes in quality or quantity. To identify the genes correlated with the virulence of BPH biotypes, we established the individual virulence indexes of BPH females to Mudgo (a rice variety with Bph1 resistance gene) in the first. According to the index, females with typical virulence were selected respectively from the purified biotype 1 and biotype 2
    
    
    
    family line. Then a newly-developed molecular technique -suppression subtract!ve hybridization (SSH), was used to separate differentially expressed genes between biotype 1 and biotype 2 females. Also, considering the importance of metabolizing enzymes in the adaptation of insects to their host plants, the influence of resistant rice varieties on some metabolizing enzymes in BPH was also investigated. The results are summed as follows:
    (1) Influence on Esterase (ESTs), glutathione S-transferases (GSTs) and mixed function oxidases (MFOs) in BPH was studied with one susceptible (TN1) and three resistant rice varieties (Mudgo, ASD7, and Ruthu Heenati). It was showed that one-generation feeding on resistant varieties did not make any significant difference in esterase activity. However, females feeding on Mudgo and ASD7 had significantly different esterase activity. Feeding on Mudgo made the Km of esterase in males increase as high as 2.78 times, and on Ruthu Heenati 2.58 times when compared with hoppers feeding on TN1. Esterase activity showed also some changes between different BPH biotypes. Study on distribution of individual esterase activity in biotype 1 and biotype 2 BPH populations indicated that esterase activity in BPH biotype 2, both male and females, was much lower than that of biotype 1. GSTs activity increased significantly after the hoppers feeding on ASD7 or Ruthu Heenati for one generation, but no changes was found in this enzyme when hpoppers were reared on Mudgo. For MFOs, no significant difference in the activity of microsomal O-demethylase was detected among various treatments. Finally, a conclusion was drown that the influence of host plant varieties on metabolizing enz
引文
1. Alborn H T, Turlings T C J, Jones T H, et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 1997,276: 945-949
    2. Alvarez M E, Pennell R I, Meijer P J, et al. Reactive oxygen intermediats mediate a systemic signal network in the establishment of plant immunity. Cell, 1998, 92: 773-784
    3. Bahn S C, Bae M, Park Y B, et al. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochimica et Biophysica Acta, Gene Structure and Expression, 2001, 1522 (2) :134-137
    4. Baldwin I T, Preston C A. The eco-physiological complexity of plant responses to insect herbivores. Pianta, 1999, 208:137-145
    5. Bardner R, Maskell F E, Ross J I. Measurements of infestations of wheat bulbfly, Leptohylemyia coarctata (Fall) and their relationship with yield. Plant Path., 1970, 19: 82-87
    6. Barrion A. A. and Saxena R. C. Genetics of virulence in three biotypes of brown planthopper, Nilaparvata lugens (Stal). Paper prensented at the department of entomology seminar, IRRI. 1984.
    7. Barro P J D, Driver F, Truman J W H, et al. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular phylogenetics and evolution, 2000,16(1) :29-36
    8. Bazzaza F A. The response of natural ecosystems to the rising global CO2 levels. Ann Rev Ecol Syst, 1990,21:167-196
    9. Beck S D. The European corn borer, Pyrausta nubilalis (Hubn.) and its principal host plant. VI. Host plant resistance to larval establishment. J Insect Physiol, 1957,1:158-177
    10. Behura S K, Sahu S C, Rajamani S, et al. Differentiation of Asian rice gall midge, Orseolia oryzae (Wood-Mason), biotypes by sequence characterized amplified regions (SCARs). Insect Molecular Biology, 1999, 8(3) :391-397
    11. Behura S K, Nair S, Sahu S C, et al. An AFLP marker that differentiates biotypes of the Asian rice gall midge (Orseolia oryzae, Wood-Mason) is sex-linked and also linked to avirulence. Molecular and General Genetics. 2000, 263(2) :328-334
    12. Berberich T, Sugawara K, Harada M, et al. Molecular cloning, characterization and expression of an elongation factor la gene in maize. Plant Mol Biol, 1995,29:611-615
    
    
    13. Birch P R J , Avrova A O, Duncan J M, et al. Isolation of potato genes that are induced during an early stage of the hypersensitive response to Phytophthora infestans. Molecular Plant-Microbe Interactions. 1999,12 (4) : 356-361
    14. Black W C, DuTeau N M, Puterka G J, et al. Use of the radom amplified polymorphic DNA polymerase chain reaction ( RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae). Bull Entomol Res, 1992, 82:151-159
    15. Black W C. Variation in the ribosomal RNA cistron among host-adapted races of an aphid ( Schizaphis graminum). Insect Mol Biol, 1993, 2:59-69
    16. Blauth S L, Churchill G A, Mutchler M A. Identification of quantitative trait loci associated with acyl-sugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennillii. Theor Appl Genet., 1998, 96:458-467
    17. Bodnaryk R P. Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry, 1994,35:301-305
    18. Bolwell , Wojtaszek. Mechanisms for the generation of reactive oxygen species in plant defence-a broad perspective. Physiol Mol Plant Path, 1997, 51: 347-366
    19. Boppre M. Lepidoptera and pyrrolizidine alkaloids. Eximplification of complexity in chemical ecology. JChem Ecol, 1990, 16:165-185
    20. Bostock R M. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Path, 1999, 55: 99-109
    21. Broderick K, Pttock C, Arioli T, et ai. Pathogenesis-related proteins in Trifolium subterraneum: A general survey and subsequent characterization of a protein inducible by ethyphon and redlegged earth mite attack. Aust. J Plant physiol., 1997, 24: 819-829
    22. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72:248-254
    23. Bronner R, Westphal E, Dreger F. Chitosan, a component of the compatible interaction between Solarium dulcamara L. and the gall mite Eriophyes cladophthirus Nal. Physiol Mol Plant Path, 1989,34: 117-130
    24. Butlin, R K. Co-ordination of the sexual signallig system and the genetic basis of differentiation between populations in the brown planthopper, Nilaparvata lugens. Heredity, 1996, 77: 369-377
    25. Butlin, R.K.. The variability of mating signals and preferences in the brown planthopper, Nilaparvata lugens. J. Insect. Behav., 1993, 6:125-140
    26. Byrne F J, Gorman K J, Cahill M, et al. The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly, Bemisia tabaci (Genn). Pest Management Science, 2000, 56
    
    (10) : 867-874.
    27. Campbell B C. On the role of microbial symbiots in herbivorous insects. P 1-44. in: insect-plant interactions. 1989, Vol 1. Bernays ed. CRC Press. Boca Raton., F L.
    28. Carrera E, Prat S. Expression of the Arabidopsis abil-1 mutant allele inhibits proteinase inhibitor wound induction in tomato. Plant J., 1998, 15:765-771
    29. Carroll C R, Hoffman C A. Chemical feeding deterrent mobilized in response to insect herbivory and counteradptation by Epilachna tredecimnotata. Science, 1980,209: 414-416
    30. Casagrande E C, Farias J R B, Neumaier N, et al. Differential gene expression in soybean during water deficit. Revista Brasileira De Fisiologia Vegetal, 2001, 13(2) :168-184
    31. Cervera M T, Cabezas J A, Simon B, et al. Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research, 2000, 90 (5) : 391-396
    32. Chao W S, Gu Y Q, Pautot V, Bray E A, et al. Leucine aminopeptidase RNAs, proteins and activities increased in esponse to water defect, salinity and the wound signals-systemin, methyl jasmonate, and abcisic acid. Plant Physiol., 1999,120:979-992
    33. Cheng C. H. and Chang W. L. Studies on varietal resistance to the brown planthopper in Taiwan. In: Brown planthopper: Threat to rice production in Asia., 1979, p.251-271. IRRI. Los Banos, Philippines.
    34. Chou Y I, Kou, Lee SY. Studies on the brown planthopper (Nilaparvata lugens Stal) in the northern district of Taiwan. Chinese Jour. Entomol., 1983,3 (1) :1-14
    35. Claridge M F, Hollander J Den, Morgan J C. The status of weed-associated populations of the brown planthopper, Nilaparvata lugens-host race or biological species. Zool. Jour. Lin. Soc., 1985b, 84(1) :77-90
    36. Claridge M F and Hollender J Den. Virrulence to rice cultivars and selection for virulence in population of the brown planthopper Nilaparvata lugens (stal). Entomol. Exp. Appl., 1982, 32:222-226
    37. Claridge M F, Hollander JDen, Haslam D. The significance of morphometric and fecundity differences between the "biotypes"of the brown planthopper, Nilaparvata lugens (stal). Entomologia Exp. Appl., 1984,36:107-114
    38. Claridge M F, Hollender J Den and Morgan J C. Variation in courtship signals and hybridization between geographically definable population of the rice brown planthopper, Nilaparvata lugens (Stal). Biol Jour Lin Soc, 1985a, 24:35-49
    39. Claridge M F. Variation within and between population of brown planthopper: Nilaparvata lugens
    
    (Stal), pp.305-318, 1983, Proceeding of the 1st international workshop on biotaxolomy, classification and biology of leafhopper and planthoppers (Auchenonhycha) of economic importance, London October 1982, Edited by Knight W J, et al. London, V K. Commonwealth Institude of Entomology.
    40. Claridge M F, Hollander J Den. The biotype concept and its application to insect pests of agriculture. Crop prot., 1983, 2: 79-85
    41. Claridge M F, Hollander J Den. The Biotypes of the rice brown planthopper, Nilaparvata lugens . EntomoIogia Exp Appl, 1980, 27:23-30
    42. Clore A M, Dannenhoffer J M, Larkins B A. EF-1α is associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. The plant cell, 1996, 8:2003-2014
    43. Cook A G, Denno R F. Planthopper/plant interactions: feeding behavior, plant nutrition, plant defense, and host plant specialization. In: Planthoppers: their ecology and management, eds by Denno R F and Perfect T J, Chapman & Hall, new York & Longdon, 1993, p114-139
    44. De Moraes C M, Lewis W J, Pare P W, et al. Herbivore-infested plants selectively attract parastoids. Nature, 1998, 393: 570-573
    45. De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature, 2001, 410: 577-580
    46. Dellagi A, Heilbronn J, Avrova A O, et al. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Molecular Plant Microbe Interactions. 2000, 13 (10) : 1092-1101.
    47. Hollender J Den and Pathak P K. The genetics of the "biotypes"of the rice brown planthopper, Nilaparvata lugens. Entomologia Exp Appl, 1981, 29: 76-86
    48. Diatchenko L, Lau Y F, Campbell A P, et al. Supression substractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996,93:6025-6030
    49. Dick M, Gols R, Ludeking D, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol, 1999,25:1907-1922
    50. Diehl S R, Bush G L. An evolutionary and applied perspective of insect biotypes. Ann Rev Entomol, 1984, 29: 471-504
    51. Dores S H, Narvaez-Vasquez J, Conconi A, et al. Salicylic acid inhibite synthesis of proteinase inhibitors in tomato leaves induced by systymin and jasmonic acid. Plant Physiol, 1995, 108: 1741-1746
    
    
    52. Doss R P, Oliver J E, Proebsting W M, et al. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Acid Sci USA, 2000, 97: 6218-6223
    53. Douglas A E Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Ann Rev Entomol, 1998, 43:17-37
    54. Duffey S S, Stout M J. Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Phisiol, 1996,32: 3-37
    55. Duguid J, Dinauer M C. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res, 1990,18(9) :2789-92
    56. Dunn M A, Morris A, Jack P L, et al. A low temperature responsive translation elongation factor la from barley (Hordeum valgare L). Plant Mol Biol,1993,23:221-225
    57. Dweikat I, Ohm H, Patterson S, et al. Identification of RAPD markers for 11 Hessian fly resistance genes in wheat. Theor Appl Genet, 1997, 94:419-423
    58. Edwards P J, Wratten S D. Ecology of insect-plant interactions. 1980, Edword Arnold, Londn.
    59. Edwards P J, Written S D, Gibberd R M. The impact of inducible phytochemicals on food selection by insect herbivores and its consequences for the distribution of grazing damage. 1991, P 205-221. in: Phytochemical induction by herbivores . Tallamy D W and Raupp M J Eds, John Wiley and Sons, New York.
    60. El Bouhssini M, Hatchett J H, Cox T S, et al. Genotypic interaction between resistance genes in wheat and virulence genes in the Hessian fly Mayetiola destructor (Diptera: Cecidomyiidae). Bulletin of Entomological Research, 2001, 91 (5) : 327-331;
    61. Febvay G, Bonnin J, Rahbe Y, et al. Resistance of different lucerne cultivars to the pea aphid Acyrthosiphon pisum: influence of phloem composition on aphid fecundity. Entomol Exp Appl, 1988,48:127-134
    62. Feeny P. Ecological aspects in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 1970, 51:565-581
    63. Felton G W, Eichenseer H. Herbivore saliva and its effects on plant defense against herbivores and pathogens. In: Induced plant defenses against pathogens and herbivores: Ecology and agriculture, pp, 19-36. St. Paul, MN: Am. Phytopathol. Soc. Press
    64. Fidantsef A L, Stout M J, Thaler J S, Duffey S S, et al. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Phisiol Mol Plant Path , 1999, 54: 97-114
    
    
    65. Foster D N, Schimid L J, Hogeson C P. Polyadelylated RNA complemented to a mouse retrovirus-like multigene family is rapidly and specifically induced by epidermal growth factor stimulation of quiescent cells. Proc Natl Acad Sci, 1982, 79:7317
    66. Frohlich D R, Torres J I, Bedford I D, et al. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 1999, 8 (10) :1683-1691.
    67. Gardner D R, Stermitz F R. Host plant utilization and iridoid glycoside sequestration by Euphydryas nicia (Lepidoptera: Nymphalididae). J Chem Ecol, 1988, 14: 2147-2168
    68. Gianoli E, Niemeyer R. DIBOA in wild poaceae: Sources of resistance to the Russian wheat aphid (Diuraphis noxia) and the greenbug (Schizaphis graminuma). Euphytica, 1998, 102: 317-321
    69. Girard C, Matayer M, Bonade B N, et al. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochemistry and Molecular Biology, 1998, 28(4) : 229-237
    70. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis. Curr Opin Plant Biol, 1999,2:280-286
    71. Goffeau A. Molecular fish on chips. Nature,1997, 385 (6613) : 202-203
    72. Goh H G, Kin J W, Saxena R C, et al. Classification of the three Korean biotypes of the brown planthopper, Nilaparvata lugens (stal), by morphological variation. Korean Journal of Applied Entomology, 1993a, 32 (3) : 317-322
    73. Goh H G, Saxena R C, Barrion A A, et al. Variations in leg characters among three biotypes of the brown planthopper, Nilaparvata lugens (stal) in Korea. Korean Journal of Applied Entomology, 1993b, 32(1) : 68-75
    74. Goh H G, Saxena R C, Barrion A A, et al. Study of brown planthhoper biotypes. 4. Use of morphological analysis in differentiating biotypes. Research reports of the rural development administration, crop protection. 1988, 30 (1) : 38-41
    75. Habben J E, Moro G L, Hunter B G, et al. Elongation factor la concentration is highly correlated with the lysine content of maize endosperm. Proc Natl Acad Sci USA, 1995,92:8640-8644
    76. Halitschke R, Schittko U, Pohnert G, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera: Sphingidae) and its natural host Nicotiana attenuate. Ⅲ. Fatty acid-ammo acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol, 2001, 125: 711-717
    77. Hara E, Kato T, Nakada S, et al. Subtractive cDNA cloning using oligo(dT)30-latex and PCR:
    
    isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res, 1991,19:7097.
    78. Hardie J, Issacs R, Pickett J A, Wadhams L J, et al. Methy salicylate and (-)-(IR, 5S)-myrtenal aer plant-derived repellents for black bean aphid, Aphis fabae Scop (Homoptera:Aphididae). J Chem Ecol, 1994,20:2847-2855
    79. Harris A J, Shaddock J G, Manjanatha M G, et al. Identification of differentially expressed genes in aflatoxin B1-treated cultured primary rat hepatocytes and Fischer 344 rats. Carcinogenesis (Oxford), 1998, 19 (8) : 1451-1458.
    80. Heidenreich B, Mayer K, Sandermann H J, et al. Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant, Cell and Environment, 2001,24(11) :1227-1234
    81. Heinrichs E A and Madrano F G. Leersia hexandra, a weed host of the brown planthopper, Nilaparvata lugens (stal). Crop Prot, 1984,3:77-85
    82. Hoshizaki S. Detection of isozyme polymorphism and estimation of geographic variation in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Bulletin of Entomological Research, 1994, 84:503-508
    83. Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994,22(25) :5640-5648
    84. Hubank M, Schatz D G A strategy for genome-wide gene analysis: integrated procedure for gene identification. Proc Natl Acad Sci USA, 1998,95 (20) :11909-11914
    85. IRRI. Levels of resistance of rice varieties to the biotypes of the brown planthopper, Nilaparvata lugens, in South and Southeast Asia. IRRI Res, Paper Sen, 1982, No. 72.
    86. IRRI. Biotype studies: Genetics of BPH biotypies. IRRI Ann Rep for 1977, p68-69
    87. IRRI. Selection and studies on sources of resistance biotypes. IRRI Ann Rep, 1975, p107-108
    88. Jimnez D R, Yokomi R K, Mayer R T, et al. Cytology and physiology of silverleaf whitefly-induced squash silverleaf. Phisiol Mol Plant Path, 1995,46:227-242
    89. Johnson M W, Weiter S C, Toscano N C, et al. Reduction of tomato leaflet photosynthesis rates by mining activity of Liriomyza sativae (Diptera: Agrimyzididae). J Econ Entomol, 1983, 76: 1061-1063
    90. Jones P L , Gracesa P , Butlin R K. Systematics of brown planthopper and related species using nuclear and mitochondrial DNA. 1996. In: Symondson W O C and Dell L J E (ed): The Ecology of agricultural pests: Biochemical approaches. p133-148. Chapman and Hall, London.
    91. Jongsma M A, Bakker P L, Peters J, et al. Adaptation of Spodoptera exigua larvae to plant
    
    proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA, 1995, 92(17) : 8041-8045
    92. Kahl S, Siemens D H, Aerts R J, et al. Herbivore-induced ethylene suppresses a direct defens but not a putative indirect defense against an adapted herbivore. Planta, 2000, 210: 336-342
    93. Kao C H, Huang C F and Sun C N. Parathion and Methl parathion resistance in Diomondback moth (Lepidoptera: Plutellidae) lavae. Entomological society of America,1989,82(5) :1299-1304
    94. Katiyar S K, Chandel G, Tan Y, et al. Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome, 2000, 43(2) :322-332.
    95. Kernan A, Thornberg R W. Auxin levels regulate the expression of a would-inducible proteinase inhibitor II-choloramphenicol acetyle transferase gene fusion in vitro and in vivo. Plant Physiol, 1989,91:73-78
    96. Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emission in nature. Science, 2001, 291: 2141-2144
    97. Kessler A, Baldwin I T. Plant responses to insect herbivory: The emerging molecular analysis. Ann Rev Plant Biol, 2002, 53: 299-328
    98. Ketipearachchi Y, Kaneda C and Nakamura C. Adaptation of the brown planthopper (BPH), Nilaparvata lugens (Stal) (Homoptera: Delphacidae), to BPH resistant rice cultivars carrying bph8 or bph9. Appl Entomol Zool, 1998, 33 (4) : 495-505
    99. Khan Z R , Saxena R C. Purification of biotype 1 population of brown planthopper Nilaparvata lugens (Homoptera: Delphacidae). Insect Sci Applic. 1990, 11(1) : 55-62
    100. Khan Z R and Saxena R C. Probing behaviour of three biotypes of Nilaparvata lugens (Homoptera: Delphacidae) on different resistant and susceptible rice varieties. Entomology Society of America, 1988,81:1338-1345
    101. Kim J Y, Chung Y S, Paek K H. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization. Molecules and Cells, 1999, 9 (4) : 392.
    102. Klingler J, Powell G, Thompson G A, et al. Phloem specific aphid resistance in Cucumis melo line AR5: effects on feeding behavour and performance of Aphis gossipii. Entomol Exp Appl, 1998, 86: 79-88
    103. Kogan M, Ortman E E. Antixenosis-a new term proposed to replace Painter's "non-preference" modality of resistance. Bull Entomol Soc Am, 1978, 24:175-176
    104. Korth K L, Dixon R A. Evidence for chewing insect-specific molecular events distinct from a general wound responses in leaves. Plant Physiol, 1997, 115: 1299-1305
    
    
    105. Kramer K J and Muthukrishnan S. Insect Chitinases: Molecular biology and potential use as biopesticides. Insect Biochem Mol boil, 1997,27:887-900
    106. Krishnaveni S, Muthukrishnan S, Liang G H, et al. Induction of chitinases and β-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack, fungal infection and wounding. Plant Sci, 1999, 144: 9-16
    107. Lechner M C, Sinogas C, Osorio-Aimeida M L, et al. Phenobarbitle-mediated modulation of gene expression in rat liver. Analysis of cDNA clones. Eur J Biochem, 1987,163-231
    108. Lee B H, Lee H, Xiong L, et al. A mitochondrial complex 1 defect impairs cold-regulated nuclear gene expression. Plant Cell, 2002, 14 (6) : 1235-1251
    109. Lee J H and Choi S Y. Studies on the artificial induction of biotypes in the brown planthopper, Nilaparvata lugens Stal on the resistant rice varieties and their biological characteristics. Seoul National University College of Agriculture Bulletin, 1981,6 (2) :1-20
    110. Lee M, Barro P, Lee M L, et al. Characterization of different biotypes of Bemisia tabaci (Gennadius) (Homoptera; Aleyrodidae) in South Korea based on 16S ribosomal RNA sequences. Korean Journal of Entomology, 2000, 30(2) :125-130.
    111. Leon J, Rojo E, Sanchez-Serrano J J. Wound signaling in plants. J Exp Bot, 2001, 52: 1-9
    112. LeVesque C S, Perring T M, et al. Local and systemic changes in squash gene expression in response to silverleaf whiteflt feeding. Plant Cell, 2000, 12:1409-1423
    113. Li X C, Schuler M A, Berenbaum M R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature, 2002,419:712-715
    114. Liang P, Pardee A B. Differential display of eukaryotic messenger by means of the polymerase chain reaction. Science, 1992, 21(14) : 3269-3275
    115. Lin H, Kogan M. Influence of induced resistance in soybean on the development and nutrition of the soybean looper and the Mexican been beetle. Entomol Exp Appl, 1990,55: 131-138
    116. Liquido N J. and Rejesus J. Copulation behavior and mating selection among biotypes of the brown planthopper, Nilaparvata lugens (Stal) and strategies in development of host plant resistance. Insect Sci Applic, 1985, 6 (3) :271-289
    117. Lisitsyn N, Wigler M. Clone the difference between two complex genomes. Science, 1993, 259:946-951
    118. Lowvi A de, Landi P, Genchi G. Change of mitochondrial properties in maize seedlings associated with selection for germination at low temperature, fatty acid composition, cytochrome C oxidase, and adenine nucleotide translacase activity. Plant Physiology, 1999,119 (2) :743-754
    119. Lunardi J, Hurko O, Engel W K, et al. The multiple ADP/ATP translocase genes are differentially
    
    expressed during human muscle development. Journal of Biological Chemistry, 1992, 167(22) :15267-15270.
    120. Mak C H, Sun K W and Ko R C. Identification of some heat-induced genes of Trichinella spiralis. Parasitology, 2001, 123(3) :293-230
    121. Martin M M, Martin J S. Surfactants: Their role in preventing the precipitation of proteins by tannins in insect guts. Oecologia, 1984, 61: 342-345
    122. Mattiacci L, Dicke M, Posthumus M A. β-glucosidase: An elicitor of herbivore-induced plant ordor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA, 1995,92: 2036-2040
    123. Mayer R T, McCollum T G , McDonald R E, et al. Bemisia feeding induces pathogenesis-related proteins in tomato. 1996. In: Gerling D, Mayer RT, ed: Bemisia: 1995 .Taxonomy, biology, damage, control and management. Andover: Intercept Ltd. p 179-188
    124. McLean J, ames A T, Xue G P; et al. Understanding the molecular basis of drought tolerance in soybean. Proceedings of 11th Australian Soybean Conference. Ballina, NSW, Australia. 2000, 26-31;
    125. Meiners T, Milker M. Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol, 2000, 26: 221-232
    126. Miles P W. Aphid saliva. Biol Rev , 1999, 74: 41-85
    127. Mishra R, Sarawgi A K. Inheritance and allelic relationships of genes governing resistance to the gall midge in rice-a review. Australian and New Zealand Journal of Psychiatry. 1997, 31(6) : 167-184
    128. Morelli J K, Christine K, Shewmaker C K, et al. Biphisic stimulation of translational activity correlates with induction of translation elongation factor 1 subunit a upon wounding in potato tubers. Plant Physiol, 1994,106:897-903
    129. Moya A, Guirao P, Cifuentes D, et al. Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology, 2001, 10(4) :891-897.
    130. Mun J H, Song Y H, Heong K L, Roderick G K. Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera Horvath (Homoptera: Delphacidae): mitochondrial DNA sequences. Bulletin of Entomological Research. 1999, 89: 245-253
    131. Muraji Y, Masahiko H. DNA fingerprint in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae), using minisatellite DNA probes. Bulletin of the national institute of sericultural and entomological. Science, 1996, 0 (16) :41-48
    
    
    132. Myer J H, Bazely D. Thorns, spines, prickles and hairs: are they stimulated by herbivory and do they deter herbivores? In: Tallamy D W and Raupp M J. eds. Phytochemical induction by herbivores. John Wiley and Sons, New York, 1991, p 325-344.
    133. Nagesh S, Rajyashri K R, Behura S K, et al. Genetic, physiological and molecular interactions of rice and its major dipteran pest, gall midge. Plant Cell, Tissue and Organ Culture, 2001, 64: 2-3,115-131;
    134. Nishida R, Fukami H. Sequestration of distasteful compounds by some pharmacophagous insects. JChemEcol, 1990,16:151-164
    135. Noordermeer M A, Veldink G A, Vliegenthart J F G. Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. Chembiochemisty 2001, 2:494-504
    136. Oh R J. Repeated copulation in the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Ecological Entomology, 1979, 4:345-353
    137. Oliveira M R V, Tigano M S, Aljanabi S, et al. Molecular characterization of whitefly (Bemisia spp.) in Brazil. Pesquisa Agropecuaria Brasileira, 2000, 35 (6) :1261-1268.
    138. Paguia P, Pathak M D, Heinrichs E A. Honeydew excretion measurement techniques for determing defferential feeding activity of biotypes of Nilaparvata lugens on rice varieties. J Econ Entomol,1980,73:35-40
    139. Paiter R H. Insect resistance in crop plants. 1951, Macmillan, New York.
    140. Pandax N, Khush G S. Host plant resistance to insects. 1995, CAB international, Wallingford, UK, and IRRI, Philippines.
    141. Pare P W, Alborn H T, Tumlinson J H. Concerted biosynthesis of an insect elicitor of plant volatiles. Proc Natl Acad Sci USA, 1998,95:13971-13975
    142. Pare P W, Tumlinson J H. Plant volatiles as a defense against insect herbivores. Plant Phisiol, 1999,121:325-331
    143. Pathak M D and Khush G S. Studies of variety resistance in rice to the brown planthopper at IRRI. In: Brown planthopper: Threat to rice production in Asia. 1979, p287-301. IRRI
    144. Pathak M D, Saxena R C. Insects resistance in crop plants. In: Smith H Edited, Commtaries in plant science. 1981, p61-68. Pergaman Press, Oxford.
    145. Pathak P K , Heinrichs E A. Selection of biotype population 2 and 3 of Nilaparvata lugens by exposure to resistant rice varieties. Environ Entomol,1982b, 11:85-90
    146. Pathak P K, Saxena R C, Heinrichs E A, et al. Parafilm sachet for measuring honeydew excretion of Nilaparvata lugens on rice. J Econ Entomol, 1982a,75:194-195
    
    
    147. Pohnert G, Jung V, Haukioja E, et al. New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron Lett, 1999, 55: 11275-11280
    148. Ponda N and Khush G. Host plant resistance to insects. Wallingford, UK: CAB International Rice Institute. 1995, p1-431. ,
    149. Power T O, Jensen S G, Kindler S D, et al. Mitochondrial DNA divergence among greenbug ( Homoptera: Aphidiae) biotypes. Ann Entomol Soc Am, 1989, 82:298-302
    150. Puterka J G, Peters D C. Genetics of greenbug (Homoptera: Aphidiae) virulence to resistance in sorghum. J Econ Entomol, 1995,88:421-429
    151. Rana B S, Singh B U, Rao N G P. Breeding for shootfly and stem borer resistance in sorghum. In: Proceedings of the international Sorgum Entomology Workshop, Taxas A& M University, College Station. TX/ICRSAT, Patancheru, Inda. 1984, July 15-21. p347-360
    152. Remoto H and Yokoo M. Experimental selection of a brown planthopper population on mixtures of resistant rice lines. Breeding science, 1994,44:133-136
    153. Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 2000, 12: 707-715
    154. Rhodes J D, Thain J F, Wildon D C. Evidence for physically distinct systemic signaling pathways in the wounded tomato plant. Ann Bot, 1999, 84: 109-116
    155. Roche P, Alston F H, Maliepaard C, Evans KM, et al. RFLP and DAPD markers linked to the rosy leaf curing aphid resistance gene (sd1) in apple. Theor Appl Genet, 1997, 94: 528-533
    156. Roderick G K. Genetics of host plant adaptation in delphacide planthoppers. In: R F Denno and T J Perfect (eds) Planthoppers: Their Ecology and Management. New York: Chapman and Hall. 1996, p551-570
    157. Rojanaaridpiched C, Gracen V E, Everett H L, et al. Multiple factor resistance in maize to European corn borer. Maydica, 1984, 29:305-315
    158. Rosenthal G A. L-Canavanine and L-canaline: Protective allelochemicals of certain leguminous plants, in: Plant resistance to insects. Hedin P A ed. ACS Symp. American Chemical Society. Washington, DC. 1983, Series 208 , p279-290 .
    159. Rossi M, Goggin F L, Milligan S B, et al. The nematode resistance gene Mi of tomato confer resistance against the potato aphid. Proc Natl Acad Sci USA, 1998, 95: 9750-9754
    160. Ryan C A. The systemin signaling pathway: differential activation of defensive genes. Biochim Biophys Acta,2000, 1477: 112-122
    161. Ryan M F, Bryen O. Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol, 1988,14:1965-1975
    
    
    162. Sang C, Soderlund D M. Monooxygenase activity of tobacco budworm (Heliothis virescenes H.) larvae: tissue distribution and optimal assay conditions for the gut activity. Comp Biochem Physiol, 1984,79B(3) :407-411
    163. Sasaki T, Kawamura M, Ishikawa H J. Nitrogen recycling in brown planthopper Nilaparvata lugens: involvement of yeast like endosymbionts in uric acid metabolism. J Insect Physiol, 1996, 42 (2) : 125-129
    164. Savenstrand H, Brosche M, Angehagen M. Molecular markers for ozone stress isolated by suppression subtractive hybridization: specificity of gene expression and identification of a novel stress-regulated gene. Plant, Cell and Environment, 2000, 23 (7) : 689-700
    165. Saxena R C and Barrion A A. Biotypes of the brown planthopper, Nilaparvata lugens (Stal) and strategies in development of host plant resistance. Insect sci Applic, 1985, 6 (3) :271-289
    166. Saxena R C and Barrion A A. Comparative study of brown planthopper populations infesting Leeria hexandra Swarts and rice in the Philippines. Int Rice Res Newsl, 1984c, 9:23-24
    167. Saxena R C and Barrion A A. Cytological variation in brown planthopper biotypes 1 and 2. Int Rice Res Newsl, 1983b, 7: 5
    168. Saxena R C and Mujer C V. Detecting of enzyme polymorphism among populations of brown planthopper (BPH) biotypes using starch gel electrophoresis. Int Rice Res Newsl, 1984a, 9(3) : 18-19
    169. Saxena R C and Mujer C V. Enzyme polymorphism in rice brown planthopper (BPH). Int Rice Res Newsl, 1984b, 9(4) :18-19
    170. Saxena R C and Rueda L M. Morphological variation among three biotypes of the brown plant hopper Nilaparvata lugens in the Philippines. Insect Sic Applic, 1982,3:193-210
    171. Saxena R C, Demayo C G, Barrion A A. Allozyme variation among biotypes of the brown planthopper Nilaparvata lugens in the Philippine. Biochem Genet, 1991, 29 (3/4) :115-123
    172. Saxena R C. and Barrion A A. Cytological variation in brown planthopper biotypes 1 , 2 and 3. Int Rice Res Newsl, 1983c, 8: 14-15
    173. Saxena R C, et al. Morphological variations between planthopper biotypes on Leeria hexandra and rice in the Philippines. Int Rice Res Newsl, 1983a, 8(3) :3
    174. Schena M, Schalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995,270 (5235) : 7-470
    175. Scherer G J, Telfold C, Baldari C, et al. Isolation of cloned genes differentially expressed at early and late stages of Drosophila embryonic development. Dev Biol, 1981, 86:438
    176. Schulte S J, Rider S D, Hachett J H, et al. Molecular genetic mapping of three X-linked
    
    avirulence genes, vH6, vH9 and vH13, in the Hessian fly. Genome, 1999,42: 821-828
    177. Schultz J C. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies. P 37-54, in: Plants resistance to insects. Hedin P A ed. ACS Symp. Series 208. American Chemical Society, Washington D C.
    178. Schultz J C. Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology, 1988,69:896-897.
    179. Sezer M and Butlin R K. The genetic basis of host plant adaptation in the brown planthopper (Nilaparvata lugens). Heredity, 1998a, 80:499-508
    180. Sezer M and Butlin R K. The genetic basis of oviposition preference differences between sympatric host races of the brown planthopper (Nilaparvata lugens). Proceedings of the Royal Society of London Series B. Biological sciences, 1998b , 265 (1314) , Dec.22:2399-2405.
    181. Shelton A M, Hoy C W., Backer P B. Response of cabbage head weight to stimulated lepidopteran defoliation. Entomol Exp Appl, 1990, 54:181-187
    182. Shiina N, Gotoh Y, Kubomura N, et al. Microtubule severing by elongation factor 1α. Science, 1994,266:282-285
    183. Shrestha G L, Adhikary R R. A new brown planthopper (BPH) biotype in Parwanipur, Nepal. Inter Rice Res Newsletter, 1987,12 (3) :34
    184. Shufran K A, Burd J D, Anstead J A, et al. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: evidence for host-adapted races. Insect Molecular Biology, 2000, 9(2) :179-184.
    185. Shufran K A and Whalon M E. Genetic analysis of brown planthopper biotypes using random amplified DNA-polymerase chain reaction (RAPD-PCR). Insect Sci Appl, 1995,16(1) :27-33
    186. Shulaev V, Silverman P, Raskin I. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature, 1997, 386: 718-721
    187. Siebert P D, Chenchik A, Kellogg D E, et al. An improvedmethord for walking in uncloned genomic DNA. Nucleic Acid Res, 1995, 23:1087-1088
    188. Slansky Jr F, Wheeler G S. Compensatory increases in food consumption and utilization efficiencies by velvetbean caterpillars mitigate impact of diluted diets on growth.. Entomol Exp Appl, 1989,51:175-187
    189. Smith S G F, Kreitner G L. Trichomes in Artemisia Iudoviciana Asteraceae and their ingestion by Hypochlora alba ( Orthoptera: Acididae). Am Midland Nature, 1983, 110:118-123
    190. Sogawa K. Electrophoretic variations in esterase among biotypes of the brown planthopper. Int Rice Res Newsl, 1978a, 3:7-8
    
    
    191. Sogawa K. Biological and genetic nature of biotype populations of the brown planthopper Nilaparvata lugens. Japan Agricultural Research Quarterly, 1980, 14:186-190
    192. Sogawa K. Biotypic variation in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) at the IRRI, the Philippines. Appl Entomol Zool, 1981a, 16 (2) :129-137
    193. Sogawa K. Hybridization experiments on the three biotypes of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae) at IRRI, Philippines. Appl Ent Zool, 1981b,16: 193-199
    194. Sogawa K. Quantitative morphological variations among biotypes of the brown planthopper. Int Res Newsl, 1978b,3:9-10
    195. Sogawa K. The rice planthopper: feeding physiological and host plant intemactions. Ann Rev Entomol, 1982, 27:49-73
    196. Southgate B J. The importance of bruchids (Coleoptera: Bruchidae) as pests of pigeon peas (Cajanus cajan). Trpp Grain Legume Bull, 1982,24:21-24
    197. Stadler E. Oviposition and feeding stimuli in leaf surface waxes. In: Insects and the plant surface. JuniperBE, Southwood T R E , edsEdward Arnold, London. 1986, p105-121.
    198. Storey K B. Survival under stress: molecular mechanism of metabolic rate depression in animal. South African Journal of Zoology, 1998, 33 (2) :55-64
    199. Stout M J, Workman J, Duffey S S. Differential induction of tomato foliar proteins by arthropod herbivores. J Chem Ecol, 1994, 20:2575-2594
    200. Sun Y P, Yolken R H. Serial analysis of gene-expression of brain-tissue from schizophrenia patient. Schizophrenia Research, 1997, 24 (1-2) : 88
    201. Svensson A S, Johnsson F I, Moller I M, et al. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Letters, 2002,517( 1-3) :79-82
    202. Tanak K. Quantitative genetic analysis of biotypes of the brown planthopper Nilaparvata lugens: herebility of virulence to resistant rice varieties. Entomol Exp Appl, 1999,90:278-287
    203. Tanaka K, Matsumura M. Development of virulence to resistant rice varieties in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae), immigrating into Japan. Appl Entomol Zool, 2000,35 (4) :529-533
    204. Tanaka K. Quantitative genetic analysis of biotypes of the brown planthopper (Nilaparvata lugens). Heridity, 1998, 80:499-508
    205. Tatsuka M, Mitsui H, Wada M, et al. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature, 1992, 359 (6393 ):333-336
    206. Van der westhuizen A J, Qian X M, Botha A M. β-1,3-glucanases in wheat and resistance to the Russian wheat aphid. Physiol Plant, 1998a, 103:125-131
    
    
    207. van der Wethuizen A J, Qian X M, Botha A M. Differencial induction of apoplastic peroxidase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Reports, 1998b,18:132-137
    208. van Helden M, Tjallingii W F, Dieleman F L. The resistance of lettuce (Lactuca sativa L.) to Nasonovia ribisnigri: Bionomics of Nasonovia ribisnigri on near isogenic lettuce lines. Entomol Exp Appl, 1993,66: 53-58
    209. Van Kan J A L, Cozijnsen T, Danhash N., et al. Induction of tomato stress protein mRNAs by ethephon, 2,6-dichloroisonicotinic acid and salicylate. Plant Mol Biol., 1995, 27: 1205-1213
    210. Velculescu V E, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995, 270 (5235) :484-487
    211. Walling L L. The myriad plant responses to herbivores. J Plant Growth Regul, 2000, 19:195-216
    212. Wang S M, Rowley J D. A strategy for genome-wide gene analysis: integrated procedure for gene identification. Proc Natl Acad Sci USA, 1998 (95) : 11909-11914
    213. Way M J, Cammell M. Aggregation behavior in relation to food utilization by aphids. in: Animal population in relation to their food resources. Watson A, ed. Blackwell Scientific Publications. Oxford. 1970, p229-247.
    214. Webster J A. Association of plant hairs and insect resistance. An annotated bibliography. USDA-ARS Misc Publ, 1975, 1297:1-18
    215. Werner M, Uehlein N, Proksch P, et al. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta, 2001, 213 (4) :550-555.
    216. Wu Y R, Llewellyn D, Mathews A, et al. Adaptation of Helicoverpa armigera ( Lepidoptera: Noctuidae ) to a proteinase inhibitor expressed in transgenic tobacco. Molecular Breeding, 1997, 3 (5) : 371-380
    217. Xiong L, Qi M, Yang Y. Identification of defense-related immediate early genes from rice by suppression subtractive hybridization. Research Series Arkansas Agricultural Experiment Station, 2001,485:45-52.
    218. Yamaguchi N, Kagari T, Kasai M, et al. Inhibition of the ryanodine recepter calcium channel in the Sarcoplasmic recepticulum of skeletal musle by an ADP/ATP translocase inhibitor, atractyloside. Biochemical and Biophisical Research Communication, 1999,258 (2) :247-251
    219. Yang M, Sytkowski W G. Cloning differentially expressed genes by linker capture subtraction. Anal Biochem, 1996,237(1) : 109-114.
    
    
    220. Zang Y Q, Roote J, Brogna S, et al. Stress sensitive B encodes an Adenine Nucleotide Translocase in Drosophila melanogaster. Genetics, 1999, 153 (2):891~903
    221. Zangerl A R. Furanocoumarin induction in wild parsnip: evidence for an induced defense against herbivores. Ecology, 1990, 71:1926~1932
    222. Zeng J, Gorski RA, Hamer D. Differential cDNA cloning by enzymatic degrading subtraction (EDS) Nucleic Acids Res, 1994, 25; 22 (21): 4381~4385.
    223. Zhang Y L, Ong C T, Leung K Y. Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiology, 2000,146 (4):999~1009.
    224. Zhu J K, Damsz B, Kononowicz A K, et al. A higher plant extracellular vitronectin-like adhesion protein is related to the translation elongation factor Iα.. Plant Cell, 1994, 6:393~404
    225.池晓菲,舒庆尧.开放的差异基因表达技术研究进展.中国生物化学与分子生物学报,2002,18(3):259~264
    226.丛翔宇,凌世昀,朱玉贤.豌豆EF-1α的cDNA克隆、全序列及结构特征分析.科学通报,1999,44(15):1639~1645
    227.崔峰,刘春宇,夏家辉.人多肽延伸因子1α四个反转录假基因的鉴别与定位.遗传,1998,20(6):6~10
    228.方继朝,杜正文,夏礼如等.褐飞虱生物型特异性蛋白质研究.昆虫学报,1996,39(3):330~331
    229.冯闻铮,曹竹安,刘进元.分析基因表达图式的新方法.生物化学与生物物理进展,1999,26(2):127~131
    230.傅强,张志涛,胡萃,等.饲料氨基酸对褐飞虱及其蜜露氨基酸的影响.中国水稻科学,2001,15(4):298~302
    231.傅强,张志涛,胡萃.寄主经历对稻褐飞虱致害特性的影响.昆虫学报,1997(增刊):116~120
    232.傅强,张志涛,胡萃,等.高温处理后褐飞虱体内共生酵母菌和氨基酸需求的变化.昆虫学报,2001,44(4):534~540
    233.顾正远.稻种资源褐飞虱抗性鉴定.江苏农业科学,1984,1:31~32
    234.何志巍,姚开泰.DNA微阵列(或芯片)技术原理及应用.生物化学与生物物理进展,1999,26(5):507~510
    235.黄升谋,郭兆武.mRNA差异显示法及其在水稻分子生物学中的应用.长沙电力学院学报(自然科学版),2002,17(1):91~94
    236.江志强,吴荣宗,张良佑.褐稻虱生物型的形成.华南农业大学学报,1993,14(1):76~83
    
    
    237.姜人春,赖凤香,王桂荣.稻褐飞虱实验种群致害性的遗传分析.西南农业大学学报,1998,20(5):438~441
    238.姜人春,颜红岚.稻褐飞虱实验种群可溶性蛋白质的初步研究.西南农业大学学报,1998,20(5):419~422
    239.姜人春.稻褐飞虱生物型的最新研究进展.昆虫知识,1999,36(5):308~312
    240.李青,罗善昱,师翱翔,等.褐飞虱生物型的监测和控制对策.昆虫学报,1997,40(增刊):139~146
    241.李青,罗善昱,师翱翔,韦素美,黄凤宽.我国褐稻虱生物型研究.西南农业学报,1994,7(3):89~96
    242.李青,罗善昱,韦素美,等.广西褐飞虱生物型研究初报.广西农业科学,1991,(1):29~32.
    243.李汝铎,丁锦华,胡国文,苏德明.褐飞虱及其种群管理.1996.上海:复旦大学出版社.3~4
    244.李子银,张劲松,陈受宜.水稻盐胁迫应答基因的克隆、表达及染色体定位.中国科学(C辑),1999,29(6):561~570
    245.梁恺,张晓辉,张红卫.青岛文昌鱼NADH脱氢酶亚基1基因片段的克隆.山东大学学报(自然科学版),2002,37(1):88~94
    246.刘光杰,胡国文.水稻品种抗褐飞虱机理研究的最新进展.昆虫知识,1995,32:52~55
    247.刘国庆,颜辉煌,傅强.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报,2001,46(9):738~742
    248.刘军,杨金水.差异表达基因的分离策略.生物工程进展,1999,9(6):43~47
    249.刘军,袁志强,刘建东,等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因.科学通报,2000,45(13):1392~1397.
    250.刘连新,王秀琴,吴旻.微阵列(microarray)技术原理及应用.高技术通讯,2000,4:100~104
    251.柳桂秋.湖南褐飞虱生物型的研究.湖南农业科学,1986,4:38
    252.娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制.生态学报,2000,20(6):1097~1106
    253.吕仲贤,俞晓平,陈建明,等.共生菌在褐飞虱致害性变化中的作用.昆虫学报 2001,44(2):197~204
    254.吕仲贤,俞晓平,郑许松,等.褐飞虱致害性变异过程及体内酶的变化.昆虫学报,1997,40(增刊):122~127
    255.彭兆普,雷惠质,柳桂秋.褐飞虱生物型监测研究.湖南农业科学,1997,(3):41~42
    256.彭忠魁.国内外水稻抗虫性研究.昆虫知识,1980,17(2):91~94
    
    
    257.萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T,著:分子克隆实验指南(第二版),科学出版社,1992.p516~520
    258.谭维嘉.寄主植物对棉铃虫生理代谢的影响.植物保护学报,1993,20(2):147~154
    259.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:中国农业出版社,1997,p407
    260.唐振华,吴世雄.昆虫抗药性的遗传与进化上海科学技术文献出版社,1999,286~288
    261.唐振华.昆虫抗药性及其治理.北京:农业出版社,1993,208~231
    262.陶林勇,俞晓平,巫国瑞.我国褐飞虱生物型监测初报.中国农业科学,1992,25(3):9~13.
    263.田海生,朱昌亮,高晓红,等.色库蚊对溴氰菊酯抗药性和敏感性相关基因克隆和序列分析.中国寄生虫学与寄生虫病杂志,2001,19(4):193~197
    264.王桂荣,樊叶杨,庄杰云,郑康乐,张志涛.稻褐飞虱DNA遗传变异性分析.昆虫学报,2001,44(1):123~126
    265.王桂荣,赖凤香,傅强,张志涛,郭兰芳.稻褐飞虱致害性变异的研究.中国水稻科学,1999,13(4):229~232
    266.王涛,陆应鳞.抑制消减杂交技术的原理及应用.国外医学.分子生物学分册,1998,20(6):271~275
    267.巫国瑞,陈福云,陶林勇等.褐飞虱生物型研究.昆虫学报,1983,26(2):154~159
    268.巫国瑞,陶林勇,俞晓平等.褐飞虱生物型的发生与现状.昆虫知识,1990,27(1):47~51
    269.吴荣宗,等.水稻品种抗褐飞虱筛选方法的研究.植物保护学报,1984,11(3):145~153
    270.吴荣宗,等.我国主要稻区褐飞虱生物型研究.植物保护学报,1981,8(4):217~226
    271.吴荣宗,害虫的生物型.1992.见:周明主编,作物抗虫性原理及应用.北京:北京农业大学出版社.
    272.吴荣宗,江志强,张良佑.褐稻虱生物型的研究进展.华南农业大学学报,1992,13(4):113~120.
    273.肖华胜,黄文晋.降低差异显示PCR假阳性和提高重复性的几种策略.生物化学与生物物理进展,1999,26(5):437~438
    274.肖英方,顾正远,邱光.江苏省褐飞虱生物型研究初报.植物保护,1994,20(6):2~3
    275.肖英方,顾正远,邱光等.褐稻虱生物型变异特征与遗传方式研究.江苏农业学报,1997,13(1):14~17
    276.肖英方,顾正远,邱光等.迁入江淮稻区褐飞虱生物型跟踪监测及分析.昆虫学报,1998,41(3):275~279
    277.徐晓春,瞿逢伊,宋关鸿,等.蚊媒感染疟原虫后应答性表达增高基因的富集和筛选.中国寄生虫学与寄生虫病杂志,2001,19(3):325~329
    278.许晓风,程遐年,邹运鼎.褐飞虱不同生物型基因组DNA的RAPD分析.安徽农业大学学报.
    
    2000,27(1):5~8
    279.许晓风,程遐年,邹运鼎.家系纯化对褐飞虱致害特性的影响.安徽农业大学学报 2001,28(1):73~76
    280.杨劲松.微阵列技术(mirroarrays)及其应用.生命科学 2001,13(2):85~88
    281.姚洪渭,叶恭银,程家安.寄主植物影响害虫药剂敏感性的研究进展.昆虫学报,2002,45(2):253~264
    282.俞晓平,巫国瑞,张志涛.褐飞虱若干地理种群的主要危害特性研究.浙江农业学报,1997,3(3):123~126
    283.俞晓平,巫国瑞.褐飞虱泌露量测定方法的研究..昆虫知识,1992,29(4):235~237
    284.俞晓平,叶恭银.褐稻虱生物型监测技术的研究.科技通报,1993,9(4):260~264
    285.曾平耀,陈主初.基因鉴定集成法:全基因组基因表达研究的新策略.生命科学,2000,12(1):26~29
    286.曾宪森.福州地区褐飞虱生物型测定.福建农业科学.1983,3:11~12
    287.张劲松,刘望夷.核糖体rRNA基因拓扑学与RNA N—糖苷酶研究进展(上).生物化学与生物物理进展,1994,21(1):23~27
    288.张扬,谭玉娟,陈峰等.广东褐飞虱生物型普查与监测.广东农业科学.1991,9:22~25
    289.张志涛.褐飞虱生物型鉴别的若干技术问题.植物保护.1987,13(3):33~35
    290.张志涛,陈伟,姜人春,张燕,蔡祥承.稻褐飞虱致害性的转化.昆虫学报,1997,40(增刊):110~115
    291.张志涛,殷柏涛,陈伦裕等.褐飞虱求偶鸣声和交尾行为.昆虫学报,1991,34(3):257~265
    292.赵锦荣,阎小君,苏成芝.差异显示反转录PCR技术研究进展.生物化学与生物物理进展,1999,27(1):28~32
    293.赵士熙,吴中孚,吴刚,徐春全.水稻品种对虫体酯酶的影响.植物保护学报,1993,20(3):193~198
    294.周国岭,杨光圣,傅廷栋.基因克隆技术.华中农业大学学报,2001,20(6):584~592
    295.祝晓文.稻褐虱生物型鉴定.西南农业大学学报.1989,11(4):353~354

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700