酪蛋白水解物的修饰及其生物活性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪蛋白不仅营养价值丰富,而且具有良好的功能性质,如溶解性、保水性、吸油性、乳化性、凝胶性等功能特性,还是生物活性肽(如:抗菌活性、抗氧化活性、降血压活性等)的重要来源,使酪蛋白广泛应用于食品及其它行业。利用酪蛋白为原材料,改善酪蛋白相关产品的功能特性与生物活性的研究,已经成为食品科学中的热点问题之一。
     本研究采用三种蛋白酶对酪蛋白进行水解,制备酪蛋白水解产物,并分别对三种酪蛋白水解产物进行Fenton反应修饰和类蛋白反应修饰,测定其抗氧化活性和血管紧张素转化酶抑制活性的变化。主要研究结果如下:
     (1)利用Alcalase 2.4L FG蛋白酶水解酪蛋白,制备酪蛋白水解产物。选取底物浓度5%,pH8.0,酶添加量0.3AU/g蛋白质,50℃水浴中水解2 h得到水解度为10.0%的水解产物,其清除DPPH自由基的IC50值为2.802±0.072 mg/mL。对水解产物进行Fenton反应修饰,结果表明Fenton试剂添加量对水解产物羟基化程度影响显著,而反应时间对其影响不大。修饰产物的抗氧化活性提高,其清除DPPH自由基的IC50值降至0.891±0.017 mg/mL。
     (2)采用Neutrase 0.8L蛋白酶水解酪蛋白,制备水解度为13.0%的酪蛋白水解产物,其对ACE的体外抑制活性IC50为40.35μg/mL。利用Neutrase 0.8L蛋白酶对水解物进行类蛋白反应修饰,并研究酶添加量、底物浓度、反应温度和时间对修饰反应的影响。结果表明,修饰反应体系中合成反应占优势,表现为游离氨基含量减少;酶添加量、底物浓度、反应时间对修饰反应的影响显著,而反应时间影响不大。利用中心组合设计和响应面分析法,优化类蛋白反应条件,以其游离氨基含量变化为响应值。软件分析得到游离氨基含量变化与酶添加量、底物浓度和反应时间的二次回归方程,最适反应条件为:反应温度为20℃,酶添加量3 kU/g蛋白质、底物浓度为62%(m/m)、反应时间6.3 h,此条件下反应体系中游离氨基含量变化达到210.01μmol/g蛋白质。对酪蛋白水解物进行不同程度的类蛋白反应修饰,得到5个不同修饰程度的修饰产物,它们的ACE抑制活性测定结果表明,修饰产物的ACE抑制活性随修饰程度的增加而提高,当反应体系中游离氨基减少量为210.01μmol/g蛋白质时,修饰产物的IC50值降低至14.72±0.22μg/mL。
     (3)采用碱性蛋白酶水解酪蛋白,制备水解度为13.5%的酪蛋白水解物,其对ACE的体外抑制活性IC50为45.23μg/mL。利用中性蛋白酶对水解物进行类蛋白反应修饰,并研究酶添加量、底物浓度、反应温度和时间对修饰反应的影响。结果表明:修饰反应体系中水解反应为优势反应,表现为游离氨基含量增加;酶添加量、底物浓度、反应时间对修饰反应的影响显著,而反应温度的影响不大。在低酶添加量、高底物浓度和短反应时间下,修饰反应体系的游离氨基的增加幅度减少,水解反应相对降低。制备6个不同反应程度的修饰产物,ACE抑制活性分析结果显示,修饰产物的IC50降至15.56~19.98μg/mL,表明中性蛋白酶催化的类蛋白反应修饰,可以提高碱性蛋白酶制备的酪蛋白水解物的ACE抑制活性
Casein is not only rich in nutrition, but also has good functional properties such as water-holding capacity, oil absorption, emulsification, gelation and the important source of bioactive peptides including antibiosis peptide, antioxidant peptide, angiotensin-I-converting enzyme inhibitory peptide etc. , so that it is highly and widespread applied in food and other fields. At present, the researches of the improvement in functional properties and biological properties of casein hydrolysates are popular in food science.
     In this study, casein hydrolysates were prepared by hydrolysis of casein with three kinds of protease and modified by Fenton reaction and plastein reaction, then, the antioxidant activity and angiotensin-converting enzyme inhibitory activity changes were measured. The results obtained in this study are as follow.
     (1) Casein was hydrolyzed with Alcalase 2.4L FG protease to prepared Casein hydrolysates. Casein hydrolysates that had the degree of hydrolysis of 10% and the values of IC50 about 2.802±0.072 mg / mL on DPPH radical were hydrolyzed with the substrate concentration 5%(w/v),the addition level of neutral proteinase 11.0 kU/g proteins, the temperature 50℃and the time 4 hours then modified with Fenton reaction. The results showed that, the addition level of Fenton reagent had a significantly influence on the degree of hydroxylation, while little influence on reacetion time. After modification by the Fenton reaction, the values of IC50 about antioxidation activity on DPPH radical had reduced to 0.891±0.017 mg/mL.
     (2) Casein hydrolysates that had the degree of hydrolysis of 13.0 % and value of IC50 on angiotensin-converting enzyme (ACE) inhibitory activity about 40.35μg/mL were prepared from casein with a protease Neutrase 0.8 L, and then modified by plastein reaction with the same protease. The effects of the addition level of Neutrase, the concentration of casein hydrolysates, temperature and time on the plastein reaction of casein hydrolysates were studied. The results indicated that synthesis reaction was the dominant reaction in the Plastein reaction system as the content of free amino groups in reaction system decreased in all conditions. The addition level of Neutrase, the concentration of casein hydrolysates and reaction time all had significant impact on the plastein reaction of casein hydrolysates, while reaction temperature gave some influence. Three reaction conditions, enzyme addition, concentration of casein hydrolysates and reaction temperature, for Plastein reaction were optimized by a central composite design and response surface methodology analysis with the changes of free amino groups in the reaction mixture as response. quadratic regression equation was obtained therefore, which could reflect the relationship of the changes of free amino groups and enzyme addition, concentration of casein hydrolysates and reaction time. The optimal reaction conditions were that enzyme addition level was 3 KU/g casein hydrolysates, concentration of hydrolysates was 62%(m/m) and reaction time was 6.3 h when the reaction temperature was at 20℃.At this condition the modified casein hydrolysates had a decrease of free amino groups of 210.01μmol/g proteins.Five modified casein hydrolysates with different modification extents were prepared and their ACE inhibitory activity and IC50 values were determined. The analysis results indicated that the ACE inhibitory activity of the modified casein hydrolysates increased as the extent of modification increased. ACE inhibitory activities of the modified casein hydrolysates were all higher than that of the origin casein hydrolysates. When the modified casein hydrolysates had a decrease of free amino groups of 210.01μmol/g proteins, whose IC50 value would decrease to 14.72±0.22μg/mL.
     (3) Casein hydrolysates that had the degree of hydrolysis of 13.5% and value of IC50 angiotensin-converting enzyme (ACE) inhibitory activity about 45.23μg/mL were prepared from casein with a protease Alcalase, and then modified by plastein reaction with another protease Neutrase. The effects of the addition level of Neutrase, the concentration of casein hydrolysates, temperature and time on the plastein reaction of casein hydrolysates were studied. The results indicated that hydrolysis reaction was the dominant reaction in the Plastein reaction system as the content of free amino groups in reaction system increased in all conditions. The addition level of Neutrase, the concentration of casein hydrolysates and reaction time all had significant impact on the plastein reaction of casein hydrolysates, while reaction temperature gave some influence. Under lower addition level of Neutrase, higher concentration of casein hydrolysates and shorter reaction time, the increase extent of free amino groups in Plastein reaction system showed a trend to decrease which implied that hydrolysis reaction were weakened relatively. Six modified casein hydrolysates with different reaction extents were prepared and their ACE inhibitory activities were determined. The results showed that the values of IC50 of the modified products were in range of 15.56 to 19.98μg/mL, indicating that the ACE inhibitory activity of casein hydrolysates could be improved significantly by plastein reaction catalyzed by Neutrase.
引文
曹红翠. 2007.紫外分光光度法测定蛋白质的含量.广东化工, 34(8): 93~94
    曹文红,章超桦. 2002.食品蛋白质降血压肽及其酶法制备(一).食品技术, (4): 9~10
    高福成. 1998.食品分离重组工程技术.中国轻工业出版社, 95~802
    葛文光. 1996.大豆多肽的生理功能及作用效果.无锡轻工业大学学报, 15(3): 272~276
    郭清泉,张兰威. 1999.食品中活性肽的研究.食品与机械, (6) 12~14
    韩飞,于婷婷,周孟良. 2008.酶法生产大豆蛋白ACE抑制肽的研究.食品科学, 29(11): 369~374
    黄骊虹. 2004.大豆多肽的生理功能及应用.食品科技, (3): 50~51
    蒋传葵. 1982.工具酶的活力测定.上海科学技术出版社. 104~168
    金化民,张茨. 1998.酶偶联法测定血清血管紧张素转换酶.中华医学检验杂志, 21(6): 362~365
    金融. 2007.大米蛋白酶解物抗氧化作用研究.南京农业大学, 1~3
    李朝慧,罗永康,王全宇. 2005.乳清蛋白酶解制备ACE抑制肽的研究.中国乳品工业, 33(2): 8~11
    李里特,王海. 2002.功能性大豆食品,中国轻工业出版社. 45~58
    李亚云,赵新淮. 2009.酪蛋白水解物的酶法修饰与ACE抑制活性变化.食品与发酵工业, 35(5): 35~39
    刘玉德,曹雁平. 2002.生物蛋白肽的开发研究展望.食品科学, 23(8): 319~320
    刘志国,吴琼,吕玲肖,等. 2007.酶解米糠蛋白分离提取ACE抑制肽及其结构研究.食品科学, 28(3): 223~227
    刘志强,刘壁,曾云龙. 2004.酶法有限水解对花生蛋白功能特性的影响.食品科学, 25(1): 69~72
    龙彪,彭志英,陈中,等. 2005.采用木瓜蛋白酶制备乌鸡蛋白肽的研究.食品工业科技, 26(6): 135~138
    鲁晓翔,陈新华,唐津忠. 2000.酶法改性玉米蛋白功能特性的研究.食品科学, 21(12): 13~15
    乔伟,周安国,王之盛. 2006.酸水解制备饲料小肽的初步研究.饲料工业, 27(13): 10~12
    沈要林,朱志伟,曾庆孝,等. 2007.血管紧张素转化酶抑制剂的测定方法.食品科技, 32(3): 212~216
    石彦国,马永强,赵毅. 2001.大豆蛋白水解物物化特性的研究.中国粮油学报, 16(1): 59~62
    孙显慧,蒋文强. 2004.大豆多肽功能特性及其开发应用.粮食与油脂, (5): 7~10
    孙欣,王璋,王莉,等. 2005.轻度酶解对大豆蛋白凝胶性和疏水性的影响.食品科学, 26(12): 37~40
    汪建斌,邓勇. 2002. Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究.食品工业科技, 23(1): 61~63.
    王双玉,李坤,阚国仕,等. 2007.玉米抗氧化肽的制备及其对小鼠急性酒精性肝损伤的保护作用.食品研究与开发, 28(3): 29~33
    吴建平. 1998.生物活性肽的研究进展.食品与机械, (1): 10~14
    夏向东,吕飞杰,台建祥. 2001.抗氧化剂的功效及体外抗氧化活性的评价.食品科学, 22(1): 89~93
    肖怀秋,林亲录,李玉珍,等. 2005.中性蛋白酶芽孢杆菌BX-4产酶条件及部分酶学性质. 食品与生物技术学报, 24(4): 42~46, 56
    徐清萍,钟桂芳,孟君. 2007.抗氧化剂抗氧化方法研究进展.食品工程, (2): 23~25
    许永红. 1997.蛋白质酶法水解物苦味的控制.食品工业科技, 3: 1~4
    严群芳. 2006.大豆抗氧化肽的分离及其生物活性研究.南京农业大学, 16
    杨芬,张瑞萍,贺玖明,等. 2007.羟自由基的产生、捕集及检测方法.药学学报, 42(7): 692-697
    杨萍,邓尚贵,吴玉廉,等. 2002.木瓜蛋白酶在制取青鳞鱼可溶性蛋白中的应用.湛江海洋大学学报, 22(3): 38~41
    杨万根. 2008.蛋清蛋白水解物的制备、结构及其生物活性的研究.江南大学, 9~10
    姚成虎,王志耕,梅林,等. 2008.胃蛋白酶水解珠蛋白获得ACE抑制肽的工艺优化.农业工程学报, 24(5): 284~288
    翟瑞文. 1997.玉米蛋白在食品工业中的应用.广州食品工业科技, 13(3): 39~41
    张宇昊,马良,王强. 2008.花生短肽降血压活性研究.食品科学, 29(6): 399~403
    张彧,农绍庄,徐龙权,等. 2001.海参蛋白酶解工艺条件的优化.大连轻工业学院学报, 20(2): 105~108
    张智,孙凌雪. 2003.大豆蛋白活性肽在相关行业中的应用.中国调味品, (5): 11~13
    张智武,张列兵,白淑贤. 1997.酪蛋白巨肽的特性及应用前景.食品研究与开发, 25(2): 39~41
    赵国华,陈宗道. 2000.蛋白质水解物苦味研究进展.粮食与油脂, 1:28~30
    郑云,蔡木易. 2005.蛋清蛋白酶解工艺的研究.食品与发酵工业, 31(12): 69~71
    Abubakar A, Saito T, Kitazawa H, et al. 1998. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. Journal of Dairy Science, 81(12): 3131~3138
    Alsina J, Albericio F. 2003. Solid-phase synthesis of C-terminal modified peptides. Biopolymers Peptide Science Section, 71(4): 454~477
    Ames B N, Shigenaga M K, Hagen T M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90(17): 7915~7922
    Amici, A., Levine, R. L., Tsai, L., et al. 1989. Conversion of amino acid residue in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reaction. The Journal of Biological Chemistry, 264(6): 3341~3346
    Andrews A T, Alichanidis E. 1990. The plastein reaction revisited: evidence for a purely aggregation reaction mechanism. Food Chemistry, 35(4): 243~261
    Aoki H, Taneyama O, Orimo N, et al. 1981. Effect of lipophilization of soy protein on its emulsion stabilizing properties. Journal of Food Science, 46(4):1192~11195.
    Barb W G, Baxendale J H, George P, et al. 1949. Reactions of ferrous and ferric ions with hydrogen Pperoxide. Nature, 163: 692~694
    Bernardi Don L S.,Pilosof A M R.,Bartholomai G B.1991. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists' Society, 68(2): 102~105
    Berrocal R S, Chanton, Juillerat M A, et al. 1989. Tryptic phosphopeptides from whole casein. Ⅱphysicochemical properties related to the solubilization of calcium. Journal of Dairy Research, 56: 335~341
    Biondi R, Xia Y, Rossi R, et al. 2001. Detection of Hydroxyl Radicals by D-Phenylalanine Hydroxylation: A Specific Assay for Hydroxyl Radical Generation in Biological Systems. Analytical Biochemistry, 290(1): 138~145
    Brantl V, Teshchemacher H, Blasig J, et al. 1981. Opioid activities ofβ-casomorphins. Life Science, 28: 1903~1909
    Brody E P. 2000. Biological activities of bovine glycomacropeptide. The British Journal of Nutrition, 784(1): 39~46
    Byun H G, Kim S K. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry, 36 (1): 155~162
    Byun H G, Kim S K. 2002. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. Journal of Biochemistry and Molecular Biology, 35(2): 239~243
    Chabance B, Jolles P, Izquierdo C, et al. 1995. Characterization of an antithrombotic peptide fromκ-casein in newborn plasma after milk ingestion. The British Journal of Nutrition, 73: 583~590
    Cheeseman G. 1981. Modification of Skimmed Milk Constituents. Journal of the Society of Dariy Technology, 34(2): 74~77
    Chen G W, Tsai J S, Sun Pan B. 2007. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. International Dairy Journal, 17(6): 641~647
    Chen H M, Muramoto K, Yamauchi F. 1995. structural analysis of antioxidative peptides from soybeanβ-conglycinin. Journal of Agricultural and Food Chemistry, 43(3): 574~578
    Chen H M, Yamauchi F, Fujimoto K, et al. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46(1): 49~53
    Chen H. M, Koji M, Fumio Y. 1995. Structural analysis of antioxidative pep tides from soybeanβ-conglycinin. Journal of Agricultural and Food Chemistry, 43: 574~578
    Chiba H, Tani F, Yoshikawa M. 1989. Opioid antagonist peptides derived fromκ-casein. Journal of Dairy Research, 6: 363~366
    Christen Y. 2000. Oxidative stress and alzheimer disease. American Journal of Clinical Nutrition, 71(2): 621~629
    Christensen J E, Dudley E G, Pederson J A, et al.1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 76(1-4): 217~246
    Clare D A, Swaisgood H E. 2000. Bioactive milk peptides: a prospectus. Journal of Dairy Science, 83: 1187~1195
    Cross J B, Currier R P, Torraco D J, et al. 2003. Killing of bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions. Applied and Environmental Microbiology, 69(4): 2245~2252
    Cushman D W, Cheung H S, Sabo E F, et al. 1982. Development and design of specific inhibitors of angioten-converting enzyme. Neuroscience and Behavioral Physiology, 49(6): 1390~1394
    Cushman D W, Cheung H S. 1971. Spectrophotometric Assay and Properties of the angiotensin I-Converting Enzyme of Rabbit Lung. Bichemical pharmacology, 20(7): 1637~1648
    Daniel H. 2004. Molecular and Integrative Physiology of Intestinal Peptide Transport. Annual Review of Physiology, 66: 361~384
    Dantzig A H, Hoskins J A, Tabas L B, et al. 1994. Association of intestinal peptide transport with a protein related to the cadherin superfamily Science, 264(5157): 430~433
    Decker E A, Chan W K M, Livisay S A, et al. 1997. Interactions Between Carnosine and the Different Redox States of Myoglobin. Journal of Food Science, 60(6) 1201~1204
    Doucet D, Gauthier S F, Otter D E, et al. 2003. Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Comparison with the plastein reaction and characterization of interactions. Journal of Agricultural and Food Chemistry, 51(20): 6036~6042
    Erd?s E G, Skidgel R A. 1987. The angiotensin I-converting enzyme. Laboratory Investigation, 56(4): 345~348
    Eriksen S, Fagerson I S. 1976. The plastein reaction and its application: a review. Journal of Food Science, 41(3): 490~493
    Fei Y J, Kanai Y, Nussberger S, et al. 1994. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature, 368: 563~566
    Ferreira I, Pinho O, Mota M V, et al. 2007. Preparation of ingredients containing an ACE-inhibitory peptide by tryptic hydrolysis of whey protein concentrates. International Dairy Journal, 17(5): 481~487
    Fiat A M, Migliore-Samour D, Jolles P. 1993. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. Journal of Dairy Science, 76: 301~310
    Flanagan J, Fitzgerald R J. 2002a. Functionality of Bacillus proteinase hydrolysates of sodiumcaseinate. International Dairy Journal, 12(9): 737~748
    Flanagan J, Fitzgerald R J. 2002b. Physicochemical and nitrogen solubility properties of Bacillus proteinase hydrolysates of sodium caseinate incubated with transglutaminase pre- and post-hydrolysis. Journal of Agricultural and Food Chemistry, 50(19): 5429~5436
    Fountoulakis M, Lahm H W. 1998. Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 826(2): 109~134
    Froetschel M A. 1996. Bioactive peptides in digesta that regulate gastrointestinal function and intake. Journal of Animal Science, 74: 2500~2508
    Fujii H, Yoshimura T, Kamada H. 1996. ESR Studies of A(1u) and A(2u) Oxoiron(IV) Porphyrin pi-Cation Radical Complexes. Spin Coupling between Ferryl Iron and A(1u)/A(2u) Orbitals. Inorganic Chemistry, 35(8): 2373~2377
    Fujimaki M, Kato H, Arai S, et al. 1971. Application of microbial proteinases to soybean and other materials to improve accept-ability, especially through the formation of plastein. Journal of Applied Microbiology, 34(1): 119~131
    Ganapathy, V Burckhardt G, Leibach F H. 1984. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. The Journal of Biological Chemistry, 259(14): 8954~8959
    Gilbert D L. 2000. Fifty years of radical ideas. Annals of the New York Academy of Sciences, 899(1): 1~14
    Gill H S, Doull F, Rutherfurd K J, et al. 2000. Immunoregulatory peptides in bovine milk. The British Journal of Nutrition, 84(1): 111~117
    Gobbetti M, Minervini F, Rizzello CG. 2004. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. International journal of dairy technology, 57: 172~188
    Goepfert A, Lorenzen P C, Schlimme E. 1999. Peptide synthesis during in vitro proteolysis-transpeptidation or condensation? Nahrung, 43(3): 211~212
    Guo Y, Pan D, Tanokura M. 2009. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chemistry, 114(1): 328~333
    Hamada J S. 2000. Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. Journal of Food Science, 65(2): 305~310
    Hernández-Ledesma B, Quirós, Amigo A, et al. 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. International Dairy Journal, 17(1): 42~49
    Iwami K, Hattori M, Ibuki F. 1987. Prominent antioxidant effect of wheat gliadin on linoleate peroxidation in powder model systems at high water activity. Journal of Agricultural and FoodChemistry, 35(4): 628~631
    Je J Y, Qian Z J, Byun H G, et al. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42: 840~846
    Johnston C I. 1992. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. Journal of Hypertension, 10(7): S13~S26
    Julio C M, Rolf J. 1979. Papain-catalyzed synthesis of methionine-enriched soy plasteins. Average chain length of the plastein peptides. Journal of Agricultural and Food Chemistry, 27(6): 1281~1285
    Kato H, Suzuki T. 1971. Bradykinin-potentiating peptides from the venom of Agkistrodon halys. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry, 10(6): 972~980
    Kawamura Y. 1997. Food protein and antihypertensive peptides. Farming Japan. 31(1): 14~19
    Kilara A, Panyam D. 2003. Peptides from milk protein and their properties. Critical Reviews in Food Science and Nutrition, 43(6): 607~613
    Kitts D D, Weiler K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current pharmaceutical design, 9(16): 1309~1323
    Kitts D D, Yuan Y V. 1992. Caseinophosphopeptides and calcium bioavailability. Trends in Food Science and Technology, 3: 31~35
    Kohmura M, Nio N, Kubo K, et al. 1989. Inhibition of angiotensin-converting enzyme by synthetic peptides of humanβ-casein. Agricultural and Biological Chemistry, 53(8): 2107~2114
    Kolakowski E, Wianecki M, Bortnowska G, et al. 1997. Trypsin treatment to improve freeze texturization of minced bream. Journal of Food Science, 62(4): 737~743, 752
    Kremer M L. 1985.“Complex”versus“free radical”mechanism for the catalytic decomposition of H2O2 by ferric ions. International Journal of Chemical Kinetics, 17(12): 1299~1314
    Kuba M, Tana C, Tawata S, et al. 2005. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry, 40(6): 2191~2196.
    Kuo W G. 1992. Decolorizing dye wastewater with Fenton's reagent. Water Research, 26(7): 881~886
    Legrini O, Oliveros E, Braun A M. 1993. Photochemical processes for water treatment. Chemical Reviews, 93(2): 671~698
    Lieske B, Konrad G. 1996. Physico-chemical and functional properties of whey protein as affected by limited papain proteolysis and selective ultrafiltration. International Dairy Journal, 6(1): 13~31
    Lorenzen P, Schieber A, Bruckner H, et al. 1996. Characterization of pancreatic casein plasteins. Nahrung, 40(1): 7~11
    Loukas S, Varoucha D, Zioudrou C, et al. 1983. Opioid activities and structures of a casein-derived exorphins. Biochemistry, 22: 4567~4573
    Lowry O H. 1951. Rosebrough, N. J., Farr, A. L., et al. Protein measurement with the Folin phenol reagent. Journal of Biochemistry, 193(1): 265~275
    Lozano P, Combes D, Iborra J L. 1994. Food protein nutrient improvement by protease at reduced water activity. Journal of Food Science, 59(4): 876~888
    Lozano P, Combes D. 1991. alpha-Chymotrypsin in plastein synthesis: influence of substrate concentration on enzyme activity. Biotechnology and Applied Biochemistry, 14(2): 212~221
    Maeno M, Yamamoto N, Takano T. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by proteinase from Lactobacillus Helveticus CP790. Journal of Dairy Science, 79: 1316~1321
    Mahmoud M I, Malone W T, Cordle C T. 1992. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 57(5): 1223~1229.
    Manson W, Annan W D. 1971. The structure of a phosphopeptide derived fromβ-casein. Archives of Biochemistry and Biophysics, 145: 16~26
    Mao X Y, Ni J R, Sun W L, et al. 2007. Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. Food Chemistry, 103(4): 1282~1287
    Marnett L J. 2000. Oxyradicals and DNA damage. Carcinogenesis, 21(3): 361~370
    Maruyama S, Kazuya N, Tomizuka N, et al. 1985. angiotensin-I-conberting enzyme inhibitor derived from an enzymatic hydrolysate of casein(Ⅱ): isolation and bradykinin-potentiating actibity on the uterus and the ileum of rats. Agricultural and Biological Chemistry, 49(5): 1405~1409
    Maruyama S, Suzuki H. 1982. A peptide inhibitor of angiotensin I-conberting ezyme in the tryptic hydrolysate of casein. Agricultural and Biological Chemistry, 46(5): 1393~1394
    Matsui T, Matsufuji H, Seki E, et al. 1993. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzate derived from sardine muscle. Bioscience Biotechnology Biochemistry, 57(6): 922~925
    Matthews D M. 1987. Mechanisms of peptide transport. In: In dipeptides as new substrates in nutrition . The rapy, Karger London, 6~53
    Meagher E A, Barry O P, Lawson J A, et al. 2001. Effects of Vitamin E on lipid peroxidation in healthy persons. JAMA, 285(9): 1178~1182.
    Meisei H. 1997. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers, 43(2): 119~128
    Meisel H, Fitzgerald R J. 2000. Opioid peptides encrypted in intact milk protein sequences. The British Journal of Nutrition, 84(1): 27~31
    Miguel M, Contreras M M, Recio I, et al. 2009. ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry, 112(1): 211~214
    Miyoshi S, Ishikawa H, Kaneko T, et al. 1991. Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate. Agricultural and Biological Chemistry, 55(5): 1313~1318
    Monti J C, Jost R. 1979. Papain-catalyzed synthesis of methionine-enriched soy plasteins. Average chain length of the plastein peptides. Journal of Agricultural and Food Chemistry, 27(6): 1281~1285
    Motoi H, Kodama T. 2003. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahrung/Food, 47(5): 354~358
    Mstsui T, Li C H, Tanaka T, et al. 2000. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biological and Pharmaceutical Bulletin, 23(4): 427~431
    Mullally M M, Meisel H, FitzGerald R J. 1997. Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. International Dairy Journal, 7(5): 299~303
    Murray B A, Walsh D J, FitzGerald R J. 2004. Modification of the furanacryloyl-L-phenylalanyl-glycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. Journal of Biochemical and Biophysical Methods, 59(2): 127~137
    Muruyama S, Mitachi H, Tanaka H, et al. 1987. Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein. Agricultural and Biological Chemistry, 51(6): 1581~1586
    Nakamura Y, Masuda O, Takano T. 1996. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Bioscience Biotechnology and Biochemistry, 60(3): 488~489
    Nakamura Y, Yamamoto N, Sakai K, et al. 1995a. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. Journal of Dairy Science, 78: 777~783
    Nakamura Y, Yamamoto N, Sakai K, et al. 1995b. Antihypertensibe effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science, 78: 1253~1257
    Nicholson W L, Munakata N, Horneck G, et al. 2000. Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64(3): 548~572
    Nsimba R Y, Kikuzaki H, Konishi Y. 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp.seeds . Food Chemistry, 106(2): 760~766
    Ondetti M A, Williams N J, Sabo E F, et al. 1971. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry, 10(22): 4033~4039
    Ortiz-Chao P, Gómez-Ruiz J A, Rastall R A, et al. 2009. Production of novel ACE inhibitory peptides fromβ-lactoglobulin using Protease N Amano. International Dairy Journal, 19(2): 69~76
    Otte J, Shalaby S M, Zakora M, et al. 2007. Angiotensin- converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. International Dairy Journal, 17(5): 488~503
    Pallavicini C, Finley J W, Stanley W. 1980. Plastein Synthesis with a-Chymotrypsin Immobilised on Chitin. Journal of the Science of Food and Agriculture, 31(3): 273~278
    Park, D., Xiong, Y. L. 2007. Oxidative modification of amino acids in porcine Myofibrillar protein isolates exposed to three oxidizing systems. Food Chemistry, 103(2): 607-616
    Park P.J, Jung W.K, Nam K.S, et al. 2001. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. JAOCS, 78: 651~656
    Pena-ramos E A, Xiong Y L. 2002. Antioxidative activity of soy protein hydrolysates in a liposomal system. Journal of Food Science, 67: 2952~2956
    Pihlanto A, Akkanen S, Korhonen H J. 2008. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chemistry, 109(1): 104~112
    Pihlanto-Lepp?l? A, Koskinen P, Piilola K, et al. 2000. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. Journal of Dairy Research, 67(1): 53~64
    Pihlanto-Lepp?l? A, Rokka T, Korhonen H. 1998. Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. International Dairy Journal, 8(4): 325~331
    Prioult G, Pecquet S, Fliss I. 2005. Allergenicity of acidic peptides from bovine β-lactoglobulin is reduced by hydrolysis with Bifidobacterium lactis NCC362 enzymes. International Dairy Journal, 15(5): 439~448
    Pripp A H, Isaksson T, Stepaniak L, et al. 2004. Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. European Food Research and Technology, 219(6): 579~583
    Qian Z J, Jung W K, Byun H G, et al. 2008. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresource Technology, 99(9): 3365~3371
    Raghunath M R, Mccurdy A R. 1991. Synthesis of Plastein From Fish Silage. Journal of Science Food and Agriculture, (54): 655~658
    Reimerdes E H. 1990. Improvement of Protein Functionalities, e.g. from Milk. Food Biotechnology, 4(1): 59~68
    Robert M C, Razaname A, Mutter M, et al. 2004. Identification of angiotensin-I-converting enzyme inhibitory peptides derived from sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. Journal of Agricultural and Food Chemistry, 52(23): 6923~6931
    Saito Y, Wanezaki K, Kawato A, et al. 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Bioscience Biotechnology Biochemistry, 58(10): 1767~1771
    Scholz-Ahrens K E, Schrezenmeir J. 2000. Effects of bioactive substances in milk on miniraland trace element metabolism with special reference to casein phosphopeptides. The British Journal of Nutrition, 84(1): 147~153
    Shalaby S M, Zakora M, Otte J, et al. 2006. Performance of two commonly used angiotensin-converting enzyme inhibition assays using FA-PGG and HHL as substrates. Journal of Dairy Research, 73(2): 178~186.
    Shimada A, Arai S. 1984. Surface Properties of Enzymically Modified Proteins in Aqueous Systems. Agricultural and Biological Chemistry, (48): 2681~2688
    Shimada K Fujikawa K Yahara K, et al. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6): 945~948
    Sikorski Z E. 1981. Modification and Technological Properties of Fish Protein Concentrates. CRC Critical Reviews in Food Science and Nutrition, 14(3): 201~230
    Slattery H, Fitzgera R J. 1998. Functional Properties and Bitterness of Sodium Caseinate Hydrolysates Prepared with a Bacillus Proteinase. Journal of Food science, 63(3): 418~422
    Song E, Ma W, Ma J, et al. 2005. Photochemical oscillation of Fe(Ⅱ)/Fe(Ⅲ) ratio induced by periodic flux of dissolved organic matter. Environmental Science and Technology, 39(9): 3121~3127
    Stevenson D E, Morgan K R, Fenton G A, et al. 1999. Use of NMR and mass spectrometry to detect and quantify protease-catalyzed peptide bond formation in complex mixtures. Enzyme and Microbial Technology, 25(3-5): 357~363
    Suetsuna K, Maekawa K, Chen J R. 2004. Antihypertensive effects of undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry, 15(5): 267~272
    Suetsuna K, Ukeda H, Ochi H. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. The Journal of Nutritional Biochemistry, 11(3): 128~131
    Suetsuna K, Yamagami M. 1988. Inhibitory activity against Angiotensin I–Converting Enzyme of peptides origating from fish and shellfish muscle. Nippon Suisan Gakkaishi, 54(10): 922~925
    Sukan G, Andrews A T. 1982a. Application of the plastein reaction to caseins and to skim milk powder I. Protein hydrolysis and plastein formation. Journal of Dairy Research, 49: 265~278
    Sukan G, Andrews A T. 1982b. Application of the plastein reaction to caseins and to skim milk power II. Chemical and physical properties of the plasteins and mechanism of plastein formation, Journal of Dairy Research. 49: 279~293
    Synowiecki J, Jagielka R, Shahidi F. 1996. Preparation of hydrolysates from bovine red blood cells and their debittering following plastein reaction. Food Chemistry, 57(3): 435~439
    Takuwa N, Shimada T, Matsumoto H, et al. 1985. Proton-coupled transport of glycylglycine in rabbit renal brush-border membrane vesicles. Biochimica et Biophysica Acta(BBA)-Biomembranes, 814(1): 186~190
    Teschemacher H. 2003. Opioid receptor ligands derived from food proteins. Currentpharmaceutical design, 9(16): 1331~1344
    Tong L M, Sasaki shigefumi, Mcclements K J, et al. 2000. Mechanisms of the antioxidant Activity of a high molecular weight fraction of whey. Journal of Agricultural and Food Chemistry, 48(5): 1473~1478
    Vegarud G E, Langsrud T, Svenning C. 2000. Mineral-binding milk proteins and peptides; occurrence, biochemical andtechnological characteristics. The British Journal of Nutrition, 84(1): 91~98
    Vermeirssen V, Van C J, Verstraete W. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. The British Journal of Nutrition, 92(3): 357~366
    Vermeirssen V, Camp J V, Vertraete W. 2002. Optimization and validation of an angiotensin I-converting enzyme inhibition assay for the screening of bioactive peptides. Biochemistry Biophysical Methods, 51(1): 75~87
    Vilailak K, Soottawat B, Duangporn K, et al. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4): 1317~1327
    Vincenzini M T, Lantomasi T, Favilli F. 1989. Glutathione transport across intestinal brush-border membranes: effects of ions, pH,Δψ, and inhibitors. Biochimica et Biophysica Acta(BBA)-Biomembranes, 987(1): 29~37
    Volkert M A, Klein B P. 1979. Protein dispersibility and emulsion characteristics of four soy products. Journal of Food Science, 44(1): 93~96
    Wang J Y, Fujimoto K, Miyazawa T, et al. 1991. Antioxidative mechanism of maize zein in powder model systems against methyl linoleate: effect of water activity and coexistence of antioxidants. Journal of Agricultural and Food Chemistry, 39(2): 351~355
    Williams R J H, Brownsell V L, Andrews A T. 2001. Application of the plastein reaction to mycoprotein: I Plastein synthesis. Food Chemistry, 72(3): 329~335
    Yamamoto N, Akino A, Takano T. 1994a. Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 58(4): 776~778
    Yamamoto N, Akino A, Takano T. 1994b. Antihypertensive effects of the peptides derived from casein by an extracellular proteinase from Lactobacillus Helveticus CP790. Journal of Dairy Science, 77: 917~922
    Yamamoto N, Maeno M, Takano T. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus Helveticus CPN4. Journal of Dairy Science, 82: 1388~1393
    Yamashita M, Arai S, Matsuyama J, et al. 1970. Enzymic modification of proteins in foodstuffs. Part 4. Bitter dipeptides as plastein building blocks withα-chymotrypsin. Agricultural and Biological Chemistry, 34: 1492~1497
    Yamashita M, Arai S, Tanimoto S, et al. 1973. Condensation reaction occurring during plasteinformation byα-chymotrypsin. Agricultural and Biological Chemistry, 37: 953~954
    Yamashita M, Arai S, Tsai S J, et al. 1971. Plastein reaction as a method for enhancing the sulfur-containing amino acid level of soybean protein. Journal of Agricultural and Food Chemistry, 19(6): 1151~1154
    Yoshikawa M, Tani F, Ashikaga T, et al. 1986. Purification and characterization of an opioid antagonist from a peptic digest of bobineκ-casein. Agricultural and Biological Chemistry, 50(9): 2419~2421
    Yoshikawa M, Yoshimura T, Chiba H. 1984. Opioid peptides from humanβ-casein. Agricultural and Biological Chemistry, 48(12): 3185~3187
    Zepp R G, Faust B C, Hoigne J. 1992. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science and Technology, 26(2): 313~319
    Zhang H, Wang J Z, Li R, et al. 2008. Attenuated effects of peptides derived from porcine plasma albumin on in vitro lipid peroxidation in the liver homogenate of mice. Food Chemistry, 111(2): 364~369
    Zhang Y, Lewis K. 1997. Fabatins: new antimicrobial plant peptides. FEMS Microbiology Letters, 149(1): 59~64
    Zioudrou C, Streaty R A, Klee W A. 1979. Opioid peptides derived from food proteins. The Journal of Biological Chemistry, 254(7): 2446~2449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700