拟南芥DNA甲基转移酶DNMT2与组蛋白去乙酰化酶家族HD2互作及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表观遗传学是指DNA序列不发生变化,而序列上的修饰发生变化从而影响生物体的表型性状和遗传功能。DNA甲基化和组蛋白去乙酰化是经典的表观遗传学现象,在生命进程中发挥着重要的调节作用。目前,表观修饰对植物逆境胁迫应答调控的研究取得了很大进展,这方面的研究对阐明植物响应逆境胁迫的分子机制具有重要意义。本论文利用生物化学,分子生物学,遗传学分析和生物信息学等方法,对拟南芥DNA甲基转移酶DNMT2与组蛋白去乙酰化酶HD2s蛋白家族的互作以及生理生化的功能进行研究,并且通过基因芯片分析,对DNA甲基化和组蛋白去乙酰化在冷胁迫下对基因表达的调控进行了系统的分析和全面的阐述,为表观遗传学调控植物逆境耐受提供了理伦依据。研究结果如下:
     1.通过共定位Co-localization分析,双分子荧光互补实验Bimolecular fluorescence complementation分析和体外免疫共沉淀pull down分析,证实DNMT2亚细胞定位在细胞核内,在体内和体外能够与组蛋白去乙酰化酶HD2s家族互作。
     2. GAL4/UAS系统被用于DNMT2抑制基因表达的研究,通过DNMT2::GUS融合蛋白表达量的测定,对DNMT2基因domain的功能进行了分析,我们确定和绘制了DNMT2互作和抑制区域,靠近C端(aa177-384)是基因抑制区,可以有效的结合靶向基因并且抑制表达。而靠近N端(aal-105)可以与HD2s互作,与组蛋白去乙酰化的活性紧密相联。
     3.分析了干旱、冷胁迫、盐胁迫和ABA对拟南芥DNMT2, HD2s表达的影响,结果发现冷胁迫下HD2C的表达有升高的趋势,DNMT2的表达在3小时出现了升高。
     构建pEarleyGate101-35S::DNMT2,然后转化野生型拟南芥(Col-0),得到了DNMT2超表达的转基因植株,并对表型进行了观察。培养20天的野生型植物和35S::DNMT2转基因植物以及35S:://D2C(COE)转基因植物和HD2C-mut (T99)在0℃下放置不同的时间段,然后对ICE1和COR1基因表达量进行了分析,结果发现HD2C对冷应答基因具有一定的影响。DNMT2虽然没有直接的参与这个活动,但是可能是间接调控机体活动的重要因素。
     4.同时在HD2C不同表达体系中:35s::HD2C转基因过表达植物(COE)和hd2c knock down突变体植物(T99),通过类ELISA反应和RT-PCR对DNMTs活性以及DNMT2表达量的分析得到了表达一致的结论,呈现了一种协同作用的关系。
     5.通过免疫共沉淀Co-IP,和MALDI-ToF质谱分析,对DNMT2的潜在互作蛋白进行了分析,发现与鸟苷酸环化脱氢酶有关系,说明DNMT2可能与植物代谢途径有关。
     6.对DNA甲基化抑制剂(5-aza-2'-deoxycytosine)预处理的植株,组蛋白去乙酰化抑制剂(trichostatin A)预处理的植株与对照植株进行0℃冷胁迫,处理24小时后,利用基因芯片手段,进行基因表达比对分析,并在相关的数据库进行了衍射。大量的数据分析结果显示,DNA甲基化和组蛋白去乙酰化不是完全的协同,即使是冷胁迫下,也大体呈现了拮抗的关系,只有局部是协同的,说明了这两种表观修饰在体内是动态平衡和互补的关系。
     综合以上的研究结果,我们认为DNA甲基转移酶DNMT2参与了组蛋白去乙酰化酶HD2s基因家族的活动,具有抑制基因表达的功能,对植物的生长发育有调节作用。通过基因芯片对基因表达进行高通量的分析,讨论了植物DNA甲基化和组蛋白去乙酰化与抗冻的关系,我们希望对阐明表观修饰调节机理,以及为植物遗传工程提高作物的抗逆境能力提供一定的理伦依据。
Epigenetics is the study of heritable changes in gene function that occur without a change in the DNA sequence. DNA methylation and histone dacetylation are common epigenetic modification phenomena. They play important roles in eukaryotic development including the perception and transduction of the changes of internal (hormonal) and environmental signals. DNA methylation is a universal modification phenomenon presentted in the eukaryotic genome. It regulates the expression of corresponding genes through the changes of chromatin structure in plant growth and development. Histone post-translational modifications, especial acetylation and deacetylation, are other important ways of regulating eukaryotic gene expression. They are closely linked to DNA methylation. Plants contain a unique type of histone deacetylase called HD2-type. DNA methytransferase2 (DNMT2) is always deemed to be enigmatic over a long period of time, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. DNMT2 is also deemed to the ancestor of DNA methyltransferase family because of its structure.
     In this study AtDNMT2 is localized in nucleus. We have shown that AtDNMT2 can interact with AtHD2 family except AtHD2D both in vivo and in vitro and have mapped the interaction and the repression domains in AtDNMT2. Domains at C-terminal of AtDNMT2 are able to mediate repression of gene expression and the domain close to the N-terminal can interact with AtHD2C. This interaction potentially affects correlative enzyme activity. A decrease in the expression of AtDNMT2 is found in athd2c knock-out line. These results show the evidence for a possible function of AtDNMT2 that involves in histone deacetylation activity. While the activity of DNMTs presents synergistic in 35s::HD2C transgenic plants (COE) and hd2c knock down mutant plants (T99). Microarray analysis was performed to test the cold tolerance of DNA methylation inhibitors (5-aza-2'-deoxycytosine) treated plants and histone deacetylase inhibitor (trichostatin A) treated plants. The different expression of genes were analysed by bioinformatics to find correlative pathways and transcription factor. DNA methylation and histone acetylation are critical pathways on cold reponses. DNA methylation and histone acetylation is not a simple synergistic or antagonistic, to some extent, they form a complementary or balanced system.
     In summary, DNMT2 can repress gene expression and involves in histone deacetylase HD2s gene family activity. DNMT2 plays important role in plant growth and development. These results have raised the likelihood that the biological roles of DNMT2 might be broader than those have been previously considered. Through exploring the mechanism of epigenetic regulation in plant cold tolerance, we hope our research might provide some promising clues for future applications in crop plants.
引文
Alland, L., Muhle, R., Hou, H., Potes, J.J., Chin, L., Schreiber-Agus, N. and R.A., D. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature (London),387,49-55.
    Aravind, L. and Koonin, E.V. (1998) Second family of histone deacetylases. Science, 280,1167.
    Arnholdtschmitt, B., Holzapfel, B., Schillinger, A. and Neumann, K.H. (1991) Variable methylation and differential replication of genomic DNA in cultured carrot root explants during growth Induction as influenced by hormonal treatments. Theoretical and Applied Genetics,82,283-288.
    Bartee, L., Malagnac, F. and Bender, J. (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev.15.1753-1758.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes& Development,16,6-21.
    Bray, E.A., Bailey, RE., Sunkar, R. and Zhu, J.K. (2000) Responses to abiotic stresses. In:Biochemistry and molecular biology of plants,1158-1249.
    Brown, D.C.W., Tian, L.N., Buckley, D.J., Lefebvre, M., McGrath, A. and Webb, J. (1994) Development of a simple particle bombardment device for gene delivery into plant cells. Plant Cell. Tiss. Org. Cult.,37,47-53.
    Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S. and Peacock, W.J. (1993) DNA methylation, vernalization, and the initiation of flowering. Proceedings of the National Academy of Sciences of the United States of America,90,287-291.
    Cao, X.F., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M. and Jacobsen, S.E. (2003) Role of the DRM and CMT3 Methyltransferases in RNA-directed DNA methylation. Curr Biol,13,2212-2217.
    Cao, X.F. and Jacobsen, S.E. (2002) Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol.12, 1138-1144.
    Carre, I.A. and Kim, J.Y. (2002) MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot..53.1551-1557.
    Chan, S.W., Henderson, I.R. and Jacobsen, S.E. (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet..6.351-360.
    Choi, C.S. and Sano, H. (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics,277.589-600.
    Curradi, M., Izzo, A., Badaracco, G. and Landsberger, N. (2002) Molecular mechanisms of gene silencing mediated by DNA methylatio. Molecular Cell Biology, 22.3157—3173.
    Dangl, M., Brosch, G, Haas, H., Loidl, P. and Lusser, A. (2001) Comparative analysis of HD2-type histone deacetylation in higher plants, plant a,213.280-285.
    Dong, A., Yoder, J.A., Zhang, X., Zhou, L., Bestor, T.H. and Cheng, X. (2001) Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res.,29,439-448.
    Finnegan, E.J. and Dennis, E.S. (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res.,21,2383-2388.
    Finnegan, E.J., Genger, R.K., Peacock, W.J. and Dennis, E.S. (1998) DNA methylation in plants. Annual Review of Plant Physiology and Plant Molecular Biology,49,223-247.
    Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. U. S. A.,96,8449-8454.
    Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. and Kouzarides, T. (2000) DNA methyltransferase Dnmtl associates with histion deacetylase activity. Nature reviews,24,88-91.
    Gamborg, O.L., Miller, R.A. and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res.50.151-158.
    Ge, C. and Yang, X.Y. (2002) Effects of heavy metal on the DNA methylation level in rice and wheat. Journal of Plant Physiology and Molecular Biology.28.363-368.
    Gelmetti, V., Zhang, J., Fanelli, M., Minucci, S., Pelicci, P.G. and Lazar, M.A. (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol.,18. 7185-7191.
    Goll, M. (2005) Biological role of the DNA methyltransferase homologue Dnmt2 in diverse eukaryotes. Thesis (Ph. D.)--Columbia University.
    Goll, M.G., Kirpekar, F., Maggert, K.A., Yoder, J.A., Hsieh, C.L., Zhang, X., Golic, K.G., Jacobsen, S.E. and Bestor, T.H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science.311.395-398.
    Hashida, S., Kitamura, K., Mikami, T. and Kishima, Y. (2003) Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology,132.1207-1216.
    Hashida, S.N., Uchiyama, T., Martin, C., Kishima, Y., Sano, Y. and Mikami, T. (2006) The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell,18, 104-118.
    Hassig, C.A., Fleischer, T.C., Billin, A.N., Schreiber, S.L. and Ayer, D.E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell (Cambridge, Mass.).89,341-347.
    Hermann, A., Schmitt, S. and Jeltsch, A. (2003) The human Dnmt2 has residual DNA-(Cytosine-C5) mehtyltransferase activity.J. Biol. Chem.,278,31717-31721.
    Horn, J.P. and Peterson, L.C. (2002) MOLECULAR BIOLOGY:Chromatin Higher Order Folding:Wrapping up Transcription. Science.2971824-1827.
    Hua, Y., Chen, X.F., Xiong, J.H., Zhang, Y.P. and Zhu, Y.G. (2005) Isolation and analysis of isolation of differentially-methylated fragment CIDM7 in rice induced by cold stress. Hereditas 27.595-600.
    Jefferson, R. (1998) the GUS gene fusion system. In:J. K. Setlow and A. Holluender (Eds.), Genetic Engineering:Principles and Methods, Plenum, New York,247-263.
    Jeltsch, A., Nellen, W. and Lyko, F. (2006) Two substrates are better than one:dual specificities for Dnmt2 methyltransferases. Trends Biochem. Sci.,31,306-308.
    Jurkowski, T., Meusburger, M., Phalke, S., Helm, M., Nellen, W., Reuter, G. and Jeltsch, A. (2008) Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA,14,1663-1670.
    Kadosh, D. and Struhl, K. (1997) Repression by UME6 involves recrutment of a complex containing SIN3 corepressor and RPD3 histone deacetylation to target promoters. Cell (Cambridge, Mass.),89,365-371.
    Kankel, M., Ramsey, D.E., Stokes, T.L., Flowers, S.K., Haag, J.R. and Jeddeloh, J.A. (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics,163, 1109-1122.
    Katoh, M., Curk, T., Xu, Q., Kuspa, A. and Shaulsky, G. (2006) Developmentally regulated DNA mrthylation in Dictyostelium discoideum. Eukaryol Cell,5,18-25.
    Khochbin, S., Verdel, A., Lemercier, C. and Sesigneurin-Berny, S. (2001) Functional significance of histone deacetylase diversity. Current Opinion in Genetic Development 419.157-160.
    Kovalchuk, O., Burke, P., Arkhipov, A., Kuchma, N., James, S.J., Kovalchuk, I. and Pogribny, I. (2003) Genome hypermethylation in Pinus silvestris of Chernobyl-a mechanism for radiation adaptation? Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis.529,13-20.
    Kovarik, A., Koukalova, B., Bezdek, M. and Opatrny, Z. (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theoretical and Applied Genetics,95,301-306.
    Kumar, V.S. and Wigge, P.A. (2010) H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell,140.136-147.
    Kunert, N., Marhold, J., Stanke, J., Stach, D. and Lyko, F. (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development.130.5083-5090.
    Labra, M., Ghiani, A., Citterio, S., Sgorbati, S., Sala, F., Vannini, C, Ruffini-Castiglione, M. and Bracale, M. (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology.4,694-699.
    Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem..58.913-949.
    Lin, M.J., Tang, L.Y., Reddy, M.N. and James Shen, C.K. (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila.J. Biol. Chem.,280, 861-864.
    Lindroth, A.M., Cao, X.F., Jackson, J.P., Zilberman, D., McCallum, C.M. and Henikoff (2001) Requirement of chromomethylase 3 for maintenance of CpXpG methylation. Science,292.2077-2080.
    Lippman, Z. and Gendrel, A. (2004) Role of transposable elements in hererochromatin and epigenetic control. Nature.430,471.
    Liu, L., White, M.J. and MacRae, T.H. (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J. Biochem.262. 247-257.
    Liu, Y., Oakeley, E. and Sun, L. (1998) Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucl Acids Res,26,1038.
    Long, L., Lin, X., Zhai, J., Kou, H., Yang, W. and Liu, B. (2006) Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochemisty Biophysiology Research Community,340,369-376.
    Lu, Q., Tang, X., Tian, G, Wang, F., Liu, K., Nguyen, V., Kohalmi, S.E., Keller, W.A., Tsang, E.W., Harada, J.J., Rothstein, S.J. and Cui, Y. (2009) Arabidopsis homolog of the yeast TREX-2 mRNA export complex:components and anchoring nucleoporin. Plant J.,61.259-270.
    Lusser, A., Brosch, G., Loidl, A., Haas, H. and Loidl, P. (1997) Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science.211.
    LY., T., Reddy, M., Rasheva, V., Lee, T., Lin, M., Hung, M. and Shen, C. (2003) The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. The Journal of biological chemistry,278,33613-33616.
    Lyko, F., Whittaker, A.J., Orr-Weaver, T.L. and Jaenisch, R. (2000) The putative Drosophila methyltransferase gene dDnmt2 is contained in a transposon-like elment and is expressed specially in ovaries. Mech. Dev..95.215-217.
    Matassi, G., Melis, R., Kuo, K.C., Macaya, G., Gehrke, C.W. and Bernardi, G. (1992) Large-scale methylation patterns in the nuclear genomes of plants. Gene,122. 239-245.
    Mund, C, Musch, T., Strodicke, M., Assmann, B., Li, E. and Lyko, F. (2004) Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem. J.,378.763-768.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol.,15,473-497.
    Nagy, L., Kao, H.-Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L. and Evans, R.M. (1997) Nuclear receptor repression mediated by a complex containing SMRT. mSin3A, and histone deacetylase. Cell (Cambridge, Mass.).89,373-380.
    Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature,393.386-389.
    Okano, M., Xie, S. and Li, E. (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res.. 26,2536-2540.
    Pandey, R., Muller, A., Napoil, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J.,
    Berder, J., Mount, D.W. and Jorgensen, R.A. (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucl. Acids Res.,30,5036-5055.
    Pavlopoulou, A. and Kossida, S. (2007) Plant cytosine-5 DNA methyltransferases: Structure, function, and molecular evolution. Genomics,90,530-541.
    Pazin, M.J. and Kadonaga, J.T. (1997) What's up and down with histone deacetylation and transcription? Cell,89.325-328.
    Pei, Z.M., Ghassemian, M., Kwak, C.M., McCourt, P. and Schroeder, J.I. (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science.282,287-290.
    Ponger, L. and Li, W.H. (2005) Evolutionary diversification of DNA methyltransferases in enkaryotic genomes. Mol. Biol. Evol,22,1119-1128.
    Prokhortchouk, E. and Hendfich, B. (2002) Methyl-CpG binding proteins and cancer:are MeCpGs more important than MBD. Oncogen.21,5394—5539.
    Robertson, K.D. (2002) DNA methylation and chromatin unraveling the tangled web. Oncogene,21,5361—5379.
    Ronemus, M.J., Galbiati, M., Ticknor, C, Chen, J.C. and Dellaporta, S.L. (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science.273. 654-657.
    Song, Y., Wu, k., Dhaubhadel, S., An, L. and Tian, L. (2010) Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochemical and biophysical research communications,10.1016/j.bbrc.2010.03.119.
    Sparkes, I.A., Runions, J., Kearns, A. and Hawes, C. (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc.1.2019-2025.
    Sridha, S. and Wu, K. (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J..46,124-133.
    Steward, N., Ito, M., Yamaguchi, Y., Koizumi, N. and Sano, H. (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry,277,37741-37746.
    Tian, L. and Chen, Z.J. (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on the plant gene regulation and development. Proceedings of the National Academy of Sciences of the United States of America,98.
    Vanyushin, B.F. (2006) DNA methylation and epigenetics. Russian Journal of Genetics,42.985-997.
    Vidal, M. and Gaber, R.F. (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. 11:. Molecular and cellular biology 11,6317-6327.
    Walhout, A.J., Temple, G.F., Brasch, M.A., Hartley, J.L., Lorson, M.A., van den Heuvel, S. and Vidal, M. (2000) GATEWAY recombinational cloning:application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol,328,575-592.
    Wilkinson, C, Barlett, R., Nurse, P. and Bird, A.P. (1995) The fission yeast gene pmt 1+encodes a DNA mehtyltransferase homologue. Nucleic Acids Res.,23.203-210.
    Wolffe, A.P. and Matzke, M.A. (1999) Epigenetics:Regulation through repression. Science,286.481-486.
    Wu, K., Tian, L., Malik, K., Brown, D. and Miki, B. (2000) Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. Plant J..22.19-27.
    Wu, K., Tian, L., Zhou, C, Brown, D. and Miki, B. (2003) Repression of gene expression by Arabidopsis HD2 histone deacetylases. Plant J.,34,241-247.
    Zhou, C, Labbe, H., Sridha, S., Wang, L., Tian, L., Latoszek-Green, M., Yang, Z.,
    Brown, D. and Wu, K. (2004) Expression and function of HD2-type histone deacatylases in Arabidopsis development. Plant J.,38,715-724.
    Zhu, J.H. (2002) Salt and drought stress signal transduction in plants. Annu. Rev, plant Biol,53,247-273.
    王志刚,吴建新.(2009)DNA甲基转移酶分类、功能及其研究进展.HEREDITAS(Beijing),31,903-912.
    林洁,来茂德(2006)DNA甲基化、组蛋白去乙酰化与基因表达抑制.临床与实验病理学杂志,22,353-357.
    侯夫云,张立明,王庆美,李爱贤,张海燕,董顺旭(2007)植物耐非生物胁迫的分子机制.分子植物育种,5,80—84.
    高懋芳,邱建军,刘三超,覃志豪,王立刚(2008)我国低温冷冻害的发生规律分析.中国生态农业学报,16,1167-1172.
    苏培玺,丁松爽,解婷婷(2009)甘肃河西走廊临泽小枣冻害成因及防治对策.自然灾害学报,18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700