杨树茎木质素的RNAi调控及糖化特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境质量和生活品质的重视以及保障能源安全的需求,生物质能源越来越受到公众和科学界的关注。考虑到生物柴油生产的高成本,生物乙醇成为全球最广泛利用的生物燃料。但由于目前生产生物乙醇的原料主要来自于谷物等粮食作物,由此牵涉到到全球粮价上涨和粮食恐慌,加之其有限的能源产量,使得通过粮食发酵生产燃料乙醇的规模化发展受到限制。在保证粮食安全的前提下解决能源危机问题,必然聚焦于林木生物质能源。木质纤维素是地球上数量最大的一种可再生资源,发展经济有效而环境友好的木质纤维素燃料乙醇技术,已成为世界生物能源科技发展的趋势。针对我国国情,发展以木质纤维生物转化乙醇为重点的生物能源技术,建立以能源林业为依托的原料保障模式,可以实现“不与人争粮”、“不与粮争地”的目的,兼得经济、生态、环保、社会多重效益。作为木本模式植物的杨树是全球广泛栽培的重要造林树种之一,我国杨树资源丰富,是世界上人工林面积最大的国家。杨树分布广、实用性强、无性繁殖能力强,加之其速生丰产、遗传背景清楚等优势,无可争议地成为林木生物质能源研究的首选。林木生物质能源发展面临的最大技术难题是木质纤维素的水解。由于木质素与纤维素的紧密结合和对其保护作用是导致纤维素资源利用的主要障碍。降低木质素含量或改变其结构,将有利于纤维素的解聚和糖转化效率的提高。
     本研究根据前人研究成果,选定毛白杨香豆酰莽草酸/奎宁酸羟化酶C3H、肉桂酸-4-羟基化酶C4H和羟基肉桂酰辅酶A:莽草酸/奎尼酸羟基肉桂酰转移酶HCT基因为调控目标,通过RT-PCR的方法得到毛白杨C3H1、C4H1、HCT1和HCQ3基因的cDNA全长序列,C3H1基因的cDNA完整的开放读码框(ORF)共编码508个氨基酸,HCT1编码432个氨基酸,HCQ3编码431个氨基酸,C4H1基因编码505个氨基酸。依此为基础构建了毛白杨C3H1、C4H1、HCT1和HCQ3基因的RNAi抑制表达载体pBIRNAi-C3H1R-i-C3H1L、pBIRNAi-C4H1R-i-C4H1L、pBIRNAi-HCT1R-i-HCT1L和pBIRNAi-HCQ3R-i-HCQ3L。进一步利用Gateway技术和已构建的RNAi抑制表达载体,构建了含有毛白杨C3H1、C4H1、HCT1和HCQ3基因多基因不同组合发夹结构的共15个RNAi抑制表达载体,以用于农杆菌介导的杨树遗传转化。
     通过根癌农杆菌介导的叶盘法转化银腺杨无性系84K,经农杆菌培养、侵染、共培养、选择培养、继代选择培养和生根培养后获得转基因阳性植株。经NPT-II基因和目标基因片段的PCR鉴定后移栽温室,经低温诱导后温室扦插繁殖,最终获得转C3H1基因RNAi抑制表达载体pBIRNAi-C3H1R-i-C3H1L共8个株系25个单株、转HCT1基因RNAi抑制表达载体pBIRNAi-HCT1R-i-HCT1L的15个株系33个单株和转HCQ3基因RNAi抑制表达载体pBIRNAi-HCQ3R-i-HCQ3L的7个株系25个单株。
     扦插繁殖后的转基因阳性植株和对照植株新萌枝条通过Realtime PCR检测目标基因转录表达量,转基因株系323、325和322中C3H1基因表达量较野生型植株分别下调了89.04%、82.22%和68.38%,312、308、502和307各株系HCQ3基因转录量比野生型植株的平均表达量下调了67.64%、56.35%、49.88%和45.05%。
     茎横切片组化染色和显微结构观察结果表明,基因表达受抑制的转基因植株次生木质部细胞层数增多,细胞较小,导管壁塌陷和部分细胞次生壁的不规则区域性加厚,反映出转基因植株木质部发育和木质素沉积方式发生了改变。
     木质素、纤维素含量测定结果表明,转基因植株木质素含量的降低与目标基因的转录表达量下调总体相符,木质素降低的转基因植株表现出较高的纤维素含量,C3H1转基因植株木质素含量平均降低23.00%,最高降低了39.71%;HCQ3转基因植株木质素含量平均降低了37.65%,最高达58.19%。苯酚-硫酸法总糖含量、糖转化效率测定与HPLC法可溶性总糖、单糖含量检测结果表明,木质素含量的降低可导致细胞可溶性糖含量的增加及纤维素的糖转化效率的提高。C3H1和HCQ3转基因植株酸前处理效率较对照平均提高了62.41%和119.18%,酸前处理后酶解效率最高提高了51.74%;说明由于木质素含量的降低可能引发了细胞中可溶性糖和纤维素的代偿性增加,同时由于木质素的减少,减轻了对纤维素的束缚作用,游离的纤维素增多,纤维素复合酶对纤维素的可及度增大,使得酶解糖化效率显著提高。未经酸前处理的转基因植株糖化效率明显高于对照植株,甚至达到或高于经酸前处理后再酶处理的糖化效率,说明木质素含量可能是阻碍细胞壁糖化作用的主要因素,通过RNAi技术抑制木质素合成关键酶基因表达,获得低木质素含量、高糖转化效率的转基因植株,为生物质能源杨树的分子育种和高效利用林木生物质能源提供了理论依据和技术支持。
Biofuels are gaining increased public and scientific attention, driven by the desires to improve air quality and secure energy supply. Considering high-cost in biodiesel production, ethanol becomes the most promising biofuel. Ethanol from food stocks has implications of world food prices and limited energy yield, thus the technology has led to the development of cellulosic ethanol. To relieve the energy crisis under food security, forest bioenergy is thus inevitably focused on. Lignocellulose is the largest renewable resource on earth. In China, if the pipeline of lignocellulose bioconversion to ethanol and the energy feedstock based on foresty are established, the purpose of "not competing with food" and "not competing with lands" can be achieved with economic, environmental and social benefits. Poplar, as a model tree species, is widely cultivated globally as the important plantation trees, and China is the world's largest in poplar plantation. The poplar genus is widely distributed, together with its asexual reproduction ability, fast growth and high yield, could minimize the competition between biofuels and food crops. In addition, the sequenced genome of ploplar exhibits more attractive for advanced breeding as an alternative biofuel source. However, efficient hydrolysis of lignocellulose is the biggest technical challenge on forest bionergy development because lignin is a major limitation for converting lignocellulose to ethanol in poplar.
     We are attempting to genetically modify poplar to decrease lignin content in order to enhance fermenTab. sugars which can be converted to ethanol. To do this, we targeted at coumaroyl shikimate 3-hydroxylase ( C3H ) , cinnamate 4-hydroxylase ( C4H ) and hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase(HCT)involved in lignin biosynthesis using RNAi technique. Four full gene-length cDNAs of C3H1, C4H1, HCT1 and HCQ3 in Populus tomentosa Carr. were cloned using in silico and molecular technique. The open reading frame of C3H1, HCT1, HCQ3 and C4H1 gene encodes a peptide of 508, 432, 431 and 505 amino acids respectively. RNAi vectors expressing ds-RNA for each of them were constructed. Additional fifteen multi-gene fusion RNAi constucts with different combinations of the four genes used for transformation were obtained by employing a Gateway-based platform(pBIRNAi-C3H1R-i-C3H1L、pBIRNAi-C4H1R-i-C4H1L、pBIRNAi-HCT1R-i-HCT1L and pBIRNAi-HCQ3R-i-HCQ3L) Poplar was transformed via the Agrobactria-mediated leaf-disc method. 30 independent transgenic poplar lines harboring the three gene RNAi constructs were obtained and vegetatively propagated by cutting for each lines in the greenhouse.
     The kanamycin-resistant seedlings were subjected to further analyses of gene expression by real-time PCR. The transcription level of C3H1 and HCQ3 in both non- and transgenic lines were analyzed by real-time PCR. 89.04%, 82.22% and 68.38% reduction were obtained in the C3H1 RNAi inhibition lines 323, 325 and 322 respectively in comparison with the non-transgenic controls, and 67.64%, 56.35%, 49.88% and 45.05% reduction were obtained in the HCQ3 RNAi inhibition lines 312, 308, 502 and 307.
     Stem cross-section staining and microstructure observations showed that cell layers of the secondary xylem in transgenic plants were increased, but the cell became smaller with cell wall collapsed and irregular thickened secondary wall. It indicated that the xylem development and lignin deposition pattern in transgenic plants were changed. Lignin and cellulose content test showed that transgenic plants with reduced lignin content generally in accordance with the transcript level of the target gene. Lignin reduction in transgenic plants also showed higher cellulose content.
     To determine relationships between lignin content and the efficiency of chemical/enzymatic saccharification, stem material with modified lignin content were tested. Solubilized total sugars in extractive free cell wall residues and hydrolyzates were estimated spectrophotometrically using the phenol-sulfuric acid assay. Monomeric sugars in hydrolysates from acid pre-treatment and the glucose and xylose contents of enzymatic hydrolysates were determined by HPLC. Plants with the least lignin had the highest total carbohydrate levels in untreated biomass, re?ecting compensation for the reduction in lignin level on a mass balance basis. After 72 h incubation, saccharification efficiency was higher in C3H and HCT reduced lines compared with controls. More than 90% of the released sugar from most lines was glucose, indicating enzymatic hydrolysis of cellulose. Enzymatic hydrolysis released more xylose from transgenic lines than from control lines, suggesting that lignin modification increases the accessibility of residual hemicellulose to degradative enzymes.
     This study tested the effectiveness of reduction of lignin content by RNAi strategy using several key genes and their fusion constructs. The results indicated that lignin is probably the major factor in recalcitrance of cell walls to saccharification. Moreover, it demonstrated that genetic reduction of lignin content effectively overcame cell wall recalcitrance to bioconversion. This approach could obviate the need for acid pretreatment, as indicated by that the saccharification efficiency of untreated biomass of the 312 and 323 line were even greater than that of control plants with pretreatment. The genes targeted in the present work thus would be the candidates for improving saccharification in other bioenergy plants.
引文
Abdulrazzak, N., Pollet, B., Ehlting, J., Larsen, K., Asnaghi, C., Ronseau, S., Proux, C., Erhardt, M., Seltzer, V., and Renou, J. (2006). A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiology 140, 30-48.
    Abramson, M., Shoseyov, O., and Shani, Z. (2010). Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Science 178, 61-72.
    Agu, R.C., Amadife, A.E., Ude, C.M., Onyia, A., Ogu, E.O., Okafor, M., and Ezejiofor, E. (1997). Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production. Waste Management 17, 91-96.
    Allina, S., Pri-Hadash, A., Theilmann, D., Ellis, B., and Douglas, C. (1998). 4-Coumarate: coenzyme A ligase in hybrid poplar. Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes. Plant Physiology 116, 743.
    Anterola, A., Jeon, J., Davin, L., and Lewis, N. (2002). Transcriptional Control of Monolignol Biosynthesis inPinus taeda. Journal of Biological Chemistry 277, 18272-18280.
    Atanassova, R., Favet, N., Martz, F., Chabbert, B., Tollier, M., Monties, B., Fritig, B., and Legrand, M. (1995). Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. The Plant Journal 8, 465-477.
    Baucher, M., Halpin, C., Petit-Conil, M., and Boerjan, W. (2003). Lignin: genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology 38, 305-350.
    Bernstein, E., Caudy, A., Hammond, S., and Hannon, G. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.
    Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., and Legrand, M. (2007). Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. The Plant Cell Online 19, 148-162.
    Boerjan, W., Ralph, J., and Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology 54, 519-546.
    Boudet, A., Kajita, S., Grima-Pettenati, J., and Goffner, D. (2003). Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends in Plant Science 8, 576-581.
    Bower, S., Wickramasinghe, R., Nagle, N., and Schell, D. (2008). Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresource Technology 99, 7354-7362.
    Canam, T., Mak, S., and Mansfield, S. (2008). Spatial and temporal expression profiling of cell-wall invertase genes during early development in hybrid poplar. Tree physiology 28, 1059-1067.
    Cano-Delgado, A., Penfield, S., Smith, C., Catley, M., and Bevan, M. (2003). Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant Journal 34, 351-362.
    Chabannes, M., Ruel, K., Yoshinaga, A., Chabbert, B., Jauneau, A., Joseleau, J., and Boudet, A. (2001). In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. The Plant Journal 28, 271-282.
    Chen, F., and Dixon, R. (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25, 759-761.
    Coleman, H., Samuels, A., Guy, R., and Mansfield, S. (2008a). Perturbed Lignification Impacts Tree Growth in Hybrid Poplar--A Function of Sink Strength, Vascular Integrity, and Photosynthetic Assimilation. Plant Physiology 148, 1229-1237.
    Coleman, H., Park, J., Nair, R., Chapple, C., and Mansfield, S. (2008b). RNAi-mediated suppression of p-coumaroyl-CoA 3′-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism. Proceedings of the National Academy of Sciences 105, 4501-4506.
    Day, A., Neutelings, G., Nolin, F., Grec, S., Habrant, A., Cr nier, D., Maher, B., Rolando, C., David, H., and Chabbert, B. (2009). Caffeoyl coenzyme A O-methyltransferase down-regulation is associated with modifications in lignin and cell-wall architecture in flax secondary xylem. Plant Physiology and Biochemistry 47, 9-19.
    Doyle, J.J., and Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
    Elbashir, S., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes & Development 15, 188-200.
    Elias, A. (2009). Evaluation of transgenes for stress tolerance, lignin modification, and growth enhancement in poplar. Paper for the degree of Master of Science in Forest Science presented on March 6, 2009.
    Franke, R., Humphreys, J., Hemm, M., Denault, J., Ruegger, M., Cusumano, J., and Chapple, C. (2002). The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. The Plant Journal 30, 33-45.
    Gressel, J. (2007). Transgenics are imperative for biofuel crops. Plant Science 174, 246–263.
    Guo, D., Chen, F., Inoue, K., Blount, J., and Dixon, R. (2001). Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. The Plant Cell Online 13, 73-88.
    Halpin, C., Knight, M., Foxon, G., Campbell, M., Boudet, A., Boon, J., Chabbert, B., Tollier, M., and Schuch, W. (1994). Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant Journal 6, 339-350.
    Hannon, G. (2002). RNA interference. Nature 418, 244-251.
    Harakava, R. (2005). Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genetics and Molecular Biology 28, 601-607.
    Himmel, M., Ding, S., Johnson, D., Adney, W., Nimlos, M., Brady, J., and Foust, T. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804-807.
    Hisano, H., Nandakumar, R., and Wang, Z. (2009). Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular & Developmental Biology-Plant 45, 306-313.
    Hoffmann, L., Maury, S., Martz, F., Geoffroy, P., and Legrand, M. (2003). Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. Journal of Biological Chemistry 278, 95-103.
    Hoffmann, L., Besseau, S., Geoffroy, P., Ritzenthaler, C., Meyer, D., Lapierre, C., Pollet, B., and Legrand, M. (2004). Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. The Plant Cell Online 16, 1446-1465.
    Hu, G., Heitmann, J., and Rojas, O. (2008). Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources 3, 270-294.
    Hu, W., Harding, S., Lung, J., Popko, J., Ralph, J., Stokke, D., Tsai, C., and Chiang, V. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology 17, 808-812.
    Huminiecki, L., and Bicknell, R. (2000). In Silico Cloning of Novel Endothelial-Specific Genes (Cold Spring Harbor Lab), pp. 1796-1806.
    Humphreys, J.M., Hemm, M.R., and Chapple, C. (1999). New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proceedings of the National Academy of Sciences of the United States of America. Aug. 96, 10045-10050.
    Jackson, A., Bartz, S., Schelter, J., Kobayashi, S., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnology 21, 635-637.
    Kahl, G., and Winter, P. (1995). Plant genetic engineering for crop improvement. World Journal of Microbiology & Biotechnology 11, 449-460.
    Kajita, S., Hishiyama, S., Tomimura, Y., Katayama, Y., and Omori, S. (1997). Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed. Plant Physiology 114, 871-879.
    Kamath, R., Fraser, A., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., and Sohrmann, M. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.
    Kumar, P., Barrett, D., Delwiche, M., and Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res 48, 3713-3729.
    Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leple, J., Boerjan, W., Ferret, V., and De Nadai, V. (1999). Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant physiology 119, 153-163.
    Laskar, D., Jourdes, M., Patten, A., Helms, G., Davin, L., and Lewis, N. (2006). The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant Journal 48, 674-686.
    Lau, M., Gunawan, C., and Dale, B. (2009). The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Applied Biochemistry and Biotechnology (Online).
    Lee, C., Teng, Q., Huang, W., Zhong, R., and Ye, Z. (2009). Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant and Cell Physiology 50, 1075-1089.
    Li, J., Brunner, A., Shevchenko, O., Meilan, R., Ma, C., Skinner, J., and Strauss, S. (2008). Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic research 17, 679-694.
    Li, L., Cheng, X., Leshkevich, J., Umezawa, T., Harding, S., and Chiang, V. (2001). The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. The Plant Cell Online 13, 1567-1586.
    Li, L., Zhou, Y., Cheng, X., Sun, J., Marita, J., Ralph, J., and Chiang, V. (2003). Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the United States of America 100, 4939-4944.
    Lin, Z., and Xu, Y. (2003). Lignin biosynthesis and its molecular regulation. Progress in Natural Science 13, 321-328.
    McMillan, J. (1992). Processes for pretreating lignocellulosic biomass: A review (NREL/TP-421/4978, National Renewable Energy Lab., Golden, CO (United States)).
    Meissner, A., and Jaenisch, R. (2006). Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439, 212-215.
    Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343-349.
    Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., Herdewijn, P., Devreese, B., Van Beeumen, J., and Marita, J. (2000). Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. Journal of Biological Chemistry 275, 36899-36909.
    Mohr, S., Bakal, C., and Perrimon, N. (2010). Genomic Screening with RNAi: Results and Challenges. Annual Review of Biochemistry 79, 37-64.
    Moniruzzaman, M. (1996). Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw. Applied Biochemistry and Biotechnology 59, 283-297.
    Morant, M., Schoch, G., Ullmann, P., Ertun , T., Little, D., Olsen, C., Petersen, M., Negrel, J., and Werck-Reichhart, D. (2007). Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Molecular Biology 63, 1-19.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96, 673-686.
    Niggeweg, R., Michael, A., and Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22, 746-754.
    Pedersen, J., Vogel, K., Funnell, D., and USDA, A. (2005). Impact of reduced lignin on plant fitness. Crop Science 45, 812-819.
    Petsch, K., Ma, C., Scanlon, M., and Jorgensen, R. (2009). Targeted forward mutagenesis by transitive RNAi. The Plant Journal 61, 873-882.
    Pimentel, D., and Patzek, T. (2005). Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Natural Resources Research 14, 65-76.
    Pinchon, G., Maury, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., and Legrand, M. (2001). Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57, 1167-1176.
    Pincon, G., Chabannes, M., Lapierre, C., Pollet, B., Ruel, K., Joseleau, J., Boudet, A., and Legrand, M. (2001). Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-O-methyltransferase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene. Consequences for plant development and lignin synthesis. Plant physiology 126, 145-155.
    Ralph, J., Lapierre, C., Marita, J., Kim, H., Lu, F., Hatfield, R., Ralph, S., Chapple, C., Franke, R., and Hemm, M. (2001). Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR. Phytochemistry 57, 993-1003.
    Ruane, J., Sonnino, A., and Agostini, A. (2010). Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass and Bioenergy 1-13(online).
    Rubin, E. (2008). Genomics of cellulosic biofuels. Nature 454, 841-845.
    Sannigrahi, P., Ragauskas, A., and Miller, S. (2008). Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Research 1, 205-214.
    Sassner, P., M rtensson, C., Galbe, M., and Zacchi, G. (2008). Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology 99, 137-145.
    Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., and Werck-Reichhart, D. (2001). CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. Journal of Biological Chemistry 276, 36566-36574.
    Schwind, N., Zwiebel, M., Itaya, A., Ding, B., Wang, M., Krczal, G., and Wassenegger, M. (2009). RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Molecular Plant Pathology 10, 459-469.
    Smita, R., and Nath, D. (2008). Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Science 174, 264-277.
    Smith, C., and Valcárcel, J. (2000). Alternative pre-mRNA splicing: the logic of combinatorial control. Trends in Biochemical Sciences 25, 381-388.
    Sticklen, M. (2008a). Altering regulation of maize lignin biosynthesis enzymes via RNAi technology. (WO Patent WO/2008/069,964).
    Sticklen, M. (2008b). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics 9, 433-443.
    Sui, G., Soohoo, C., Affar, E., Gay, F., Shi, Y., and Forrester, W. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 99, 5515-5520.
    Tiimonen, H., Aronen, T., Laakso, T., Saranp , P., Chiang, V., Ylioja, T., Roininen, H., and H ggman, H. (2005). Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222, 699-708.
    Tronchet, M., Balage, C., Kroj,T, Jouanin, L., and Roby, D. (2010). Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology 11, 83-92.
    Tuschl, T., Zamore, P., Lehmann, R., Bartel, D., and Sharp, P. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Development 13, 3191-3197.
    Vallet, C., Chabbert, B., Czaninski, Y., and Monties, B. (1996). Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems.. Annals of Botany 78, 625-632.
    Van der Rest, B., Danoun, S., Boudet, A., and Rochange, S. (2006). Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. Journal of experimental botany 57, 1399.
    Vanholme, R., Morreel, K., Ralph, J., and Boerjan, W. (2008). Lignin engineering. Current Opinion in Plant Biology 11, 278-285.
    Wagner, A., Ralph, J., Akiyama, T., Flint, H., Phillips, L., Torr, K., Nanayakkara, B., and Te Kiri, L. (2007). Modifying lignin in conifers: the role of HCT during tracheary element formation in Pinus radiata. Proceedings of the National Academy of Sciences, USA 104, 11856-11861.
    Wang, M., Helliwell, C., Wu, L., Waterhouse, P., Peacock, W., and Dennis, E. (2008). Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14, 903-913.
    Wesley, S., Helliwell, C., Smith, N., Wang, M., Rouse, D., Liu, Q., Gooding, P., Singh, S., Abbott, D., and Stoutjesdijk, P. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal 27, 581-590.
    Wheeler, R., Sharp, J., and Schultz, R. (2001). In Silico Cloning: the identification of genes within the CLN6 critical region. AM. J. HUM. GENET 69, 1573suppl.
    Whetten, R., and Sederoff, R. (1995). Lignin Biosynthesis (Am Soc Plant Biol), pp. 1001-1013.
    Wyman, C., Dale, B., Elander, R., Holtzapple, M., Ladisch, M., Lee, Y., Mitchinson, C., and Saddler, J. (2009). Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnology progress 25, 333-339.
    Yang, B., and Wyman, C. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering 86, 88-98.
    Yu, J., DeRuiter, S., and Turner, D. (2002). RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proceedings of the National Academy of Sciences 99, 6047-6052.
    Yuan, J., Tiller, K., Al-Ahmad, H., Stewart, N., and Stewart, C. (2008). Plants to power: bioenergy to fuel the future. Trends in Plant Science 13, 421-429.
    Zamore, P., Tuschl, T., Sharp, P., and Bartel, D. (2000). RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals. Cell 101, 25-33.
    Zhang, S., Yang, Q., and Ma, R. (2007). Erwinia carotovora ssp. carotovora Infection Induced" Defense Lignin" Accumulation and Lignin Biosynthetic Gene Expression in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Journal of Integrative Plant Biology 49, 993-1002.
    Zheng, Y., Pan, Z., Zhang, R., and Wang, D. (2009). Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Applied Energy 86, 2459-2465.
    Zhong, R. (1998). Dual methylation pathways in lignin biosynthesis. The Plant Cell Online 10, 2033-2045.
    Zhong, R., Lee, C., and Ye, Z. (2010). Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors. Plant Physiology 152, 1044-1055.
    Zhu, J., Pan, X., Wang, G., and Gleisner, R. (2009). Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100, 2411-2418.
    何蒲明. (2008).基于粮食安全的林业生物质能发展.林业经济问题28, 314-318.
    贾彩红,赵华燕,王宏芝,邢智峰,杜克久,宋艳茹,魏建华. (2004).抑制4CL基因表达获得低木质素含量的转基因毛白杨.科学通报49, 662-666.
    李金花,张绮纹,牛正田,卢孟柱. (2007).木质素生物合成及其基因调控的研究进展.世界林业研究20, 29-37.
    李桢,王宏芝,李瑞芬,魏建华. (2009).植物木质素合成调控与生物质能源利用.植物学报44, 262-272.
    刘惠荣,赵华燕. (2002).抑制CCoAOMT表达对烟草木质素生物合成的影响.中国农业科学35, 921-924.
    聂会忠,薛永常. (2008).杨树木质素合成酶C3H基因的克隆及其序列分析.西北植物学报28, 889-894.
    宋东亮,沈君辉,李来庚. (2008).高等植物细胞壁中纤维素的合成.植物生理学通讯44, 791-796.
    宋源泉,许赟珍,刘德华. (2009).全球生物燃料发展概况.生物产业技术5, 34-42.
    王士海,李先德,马晓春. (2008).生物质能源与国家粮食安全.第三期(2008年)中央级公益性科研院所基本科研业务费专项资金项目研究报告.
    王雪霞,薛永常,赵文超. (2008).木质素生物合成中C3H/HCT的研究进展.生命的化学28, 650-653.
    魏建华,宋艳茹. (2001).木质素生物合成途径及调控的研究进展.植物学报:英文版43, 771-779.
    薛永常. (2001).杨树木质素合成酶PAL基因的克隆,鉴定及其表达载体的构建(中国林业科学研究院博士学位论文).
    于建荣,陈大明,江洪波. (2009).能源作物发展现状和商业化前景.生物产业技术5, 15-19.
    赵华燕,魏建华. (2002).抑制COM与CCoAOMT调控植物木质素的生物合成.科学通报47, 604-607.
    赵华燕,魏建华,宋艳茹. (2004a).木质素生物合成及其基因工程研究进展.植物生理与分子生物学学报30, 361-370.
    赵华燕,魏建华,路静,石超,王宏芝,宋艳茹. (2004b).利用反义CCoAOMT基因培育低木质素含量毛白杨的研究.自然科学进展14, 1067-1071.
    赵艳玲,陆海,陶霞娟,陈雪梅,蒋湘宁. (2003).GRP1.8融合反义4CL1基因调控烟草木质素生物合成. 北京林业大学学报25, 16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700