加工工艺及合金成分对锆合金第二相和相变行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以8种不同成分的锆合金(N1、N2、N3、N4、N5、N18、T1和T7)为主要研究对象,采用电子背散射衍射(EBSD)、电子通道衬度像(ECC)、透射电子显微镜(TEM)、定量金相、差示扫描量热法(DSC)等分析技术,系统定量的研究了锆合金板材及管材加工过程中显微组织演变规律,合金成分(Cu、Cr和Sn元素)对锆合金中第二相及相变行为的影响,初步探讨了第二相析出动力学机制。主要研究结论如下:
     (1) T1和T7锆合金板材及管材在冷轧过程中形成了c轴平行于法向的难变形晶粒,第二相随着冷轧变形量的增大分布由流线型逐渐向弥散型转变,且轧制变形对第二相平均尺寸没有明显影响。在冷轧后的退火过程中,第二相发生Ostwald熟化,此过程符合Kahlweit的二阶长大动力学,而晶粒长大过程符合齐纳钉扎模型。
     (2) T1管材含有尺寸较小的BCC结构的βNb和尺寸较大的HCP结构的Zr-Nb-Fe第二相。处于晶界处的第二相多为Zr-Nb-Fe相,且部分Zr-Nb-Fe相中含有层错结构。在加工过程中T1管材中的第二相由流线型逐渐分解,形成包含有两个或多个βNb和Zr-Nb-Fe粒子的团簇,最终形成弥散分布。
     (3) N1、N3、N4、N5和N18合金系中均含有细小的HCP或FCC结构的Zr(Fe,Cr, Nb)2Laves相,且Laves相中存在层错结构。在锆合金中添加Cu、Cr和Sn元素后,添加元素对合金中的第二相产生影响。Cu元素的添加主导了Zr2Fe和Zr3Fe颗粒的形成,减小了第二相平均尺寸。Cr元素促进小的Laves相的形成,抑制Zr2Fe和Zr3Fe大颗粒的析出,显著减小第二相平均尺寸。Sn元素含量变化对合金中第二相种类没有影响,但随着元素含量的降低,第二相有明显减小趋势。
     (4)采用DSC、淬火实验及热力学外推模型对N1-N5和N18合金的α→β相变温度进行测定。对比实验数据及模型计算结果得出,淬火实验所得Tα→α+β最接近相变平衡区域的温度。DSC所测相变温度点整体高于淬火实验结果,为非平衡状态的温度点,但整体偏离幅度较小,可作为α→β相变温度的参考依据。Zhu和Devletian的热力学模型及方法计算的Tα→α+β与淬火数据相吻合,证明此模型可以较好的应用于锆合金的Tα→α+β外推计算。
     (5)合金元素在升温和降温过程中对α→β和β→α相变温度有较大影响。在升温过程中,Cu元素的添加使Tα→α+β降低,Tα+β→β升高,扩大了β相区;Cr元素的添加使Tα→α+β降低,Tα+β→β升高,扩大了β相区;Sn元素含量的升高导致Tα→α+β升高,Tα+β→β降低,扩大了α相区。在降温过程中,Cu元素使Tβ→α+β和Tα+β→α均升高,但Tα+β→α升高幅度更大,扩大了β相区;Cr元素使Tβ→α+β升高,针对不同合金对其Tα+β→α影响有所差异,但总体上扩大β相区;Sn元素含量的增加会使得Tβ→α+β降低,Tα+β→α升高,扩大了α相区。综上可知:Cu元素和Cr元素是β相稳定元素,Sn元素是α相稳定元素。
     (6)6种合金在不同升温速率下β相体积分数与温度呈S型曲线关系。不同合金第二相析出活化能与析出温度之间的关系曲线变化趋势相似,析出初期活化能较大,在10%-90%析出量范围内,活化能变化较小,临近结束时,活化能继续下降。
The thesis studied several kinds of Zirconium alloys with different componentswhich were N1, N2, N3, N4, N5, N18, T1and T7alloys by SEM-SE, SEM-ECC,EBSD, TEM and DSC. The microstructural evolution of Zr alloy sheets and tubesduring processes and the effects of alloy elements (Cu, Cr and Sn) on the second phasesand phases transformation of Zr alloys were researched. At the same time, the dynamicmechanism of second phases precipitation were discussed simply. Some conclusionswere obtained below:
     (1) The undeformed microstructure of T1and T7Zr alloy sheets and tubes withc//ND (normal direction) was formed during cooled rolling. The distribution of secondphases was transformed from streamline distribution to diffusion distribution duringcooled rolling and the changes of second phases sizes cannot be observed obviously.The process of second phase growth fits for the Ostwald during annealing after cooledrolling, which is in good agreement with the curve calculated for second order kinetics.
     (2) T1tube contains βNbwith BCC structure and small size and Zr-Nb-Fe withFCC and bigger sizes. Most of second particles distributed in grain boundaries areZr-Nb-Fe phase which have stacking faults. The second particles of T1tube decomposeduring process and formed cluster contained two or more second particles.
     (3) Zr(Fe, Cr, Nb)2Laves with HCP or FCC and tiny sizes were observed in N1,N3, N4, N5and N18alloys and stacking faults were found in these Laves phases. TheCu, Cr and Sn elements have significant effects on the second phases of Zr alloys. theZr2Fe and Zr3Fe were formed by adding Cu and the formation of Laves phases werepromoted by adding Cr. The types of second phases were not changed by adding Sn.Meanwhile, the alloys elements have important effects on the second particle sizes.
     (4) The α→β transformed temperatures were measured by DSC, quenching andcalculated used equilibrium phase transformation model built by Zhu and Devletian.Compared the measuring dates and calculative results, the result measured byquenching is more agree with the temperature of equilibrium phase transformation. Thedate measured by DSC is slightly higher than that of quenching, which can refer toactual temperature of α→β phase transformation. The equilibrium phase transformationmodel by Zhu and Devletian were used to calculate the temperature of phasetransformation of Zr alloys. The calculative results were accorded with the date of quenching, proving that the model can be used in calculation of phase transformationtemperature of Zr alloys successfully.
     (5) Alloy elements have significant effects on the temperatures of α→β和β→αtransformations. During the heating process, the Tα→α+βdecreases and Tα+β→βincreaseswith Cu of Cr addition, which increase the region of the β phase. The Tα→α+βincreasesand Tα+β→βdecreases with the increase of content of Sn, which increase the region of αphase. During the cooling process, the Tβ→α+βand Tα+β→αare increased by Cu addition,while Tα+β→αincrease more than that of Tβ→α+β, which increase the region of β. TheTβ→α+βincreases by Cr addition, while Tα+β→αis affected differently for different alloysby Cr element. However, the region of β is enlarged. The Tβ→α+βand Tα+β→αaredecreased and increase respectively, which enlarge the region of α. Above all, the Cuand Cr elements can steady the region of β and Sn can steady the region of α.
     (6) The ship of volume fraction of β phase and temperature relational grahp is ‘S’.The relationship of energy (E) and precipitation temperature is similar in differentalloys that the E is highest in starting precipitation temperature and the change of E isnot apparent when the precipitation contents is about10%-90%, while the E is decreasenear the finishing precipitation temperature.
引文
[1]刘建章.核结构材料[M].北京:化学工业出版社,2007.
    [2]扎依莫夫斯基,姚敏智.核动力用锆合金[M].北京:原子能出版社,1988.
    [3] K. Linga Murty,I. Charit. Texture development and anisotropic deformation of zircaloys [J].Prog. Nucl. Energy,2006,48:325-359.
    [4]赵文金,周邦新,苗志,等.我国高性能锆合金的发展[J].原子能科学技术,2005,39:2-9.
    [5]国家发展和改革委员会.核电中长期发展规划[R].2005-2020,2007.
    [6]杨文斗主编.反应堆材料学[M].北京:原子能出版社,2006.
    [7] K. Oka, S. Koshizuka. Supercritical-pressure, once-through cycle light water cooled reactorconcept [J]. J. Nucl. Sci. Technol,2001,38:1081-1089.
    [8]中国电力百科全书:核能及新能源发电卷[M].北京:中国电力出版社,1995.
    [9]熊炳昆等.锆铪及其化合物应用[M].北京:冶金工业出版社,2002.
    [10]难熔金属科学与工程.第七届全国难熔金属交流会文集[M].西安:陕西科学技术出版社,1991.
    [11]黄伯云,李成功等主编.中国材料工程大典,有色金属材料工程(下)第11篇,铍、锆、铪及其合金[M].北京:化学工业出版社,2005.
    [12]刘承新.锆合金在核电工业中的应用现状及发展前景[J].稀有金属快报,2004,5:21-23.
    [13]师昌绪,李恒德,周廉主编.材料科学与工程手册[M].北京:化学工业出版社,2004.
    [14] P.V. Shebaldov, M.M. Perregud, et al. Ello alloy cladding tube properties and their interrelationwith alloy structure-phase condition and impurity content [C]. Zirconium in the NuclearIndustry: Twelfth International Symposium, ASTM STP1354,2000:545-559.
    [15] J.P. Mardo, D. Charquet, J. Senevat. Influence of composition and fabrication process onout-of-pile and in-pile properties of M5alloy [C]. Zirconium in the Nuclear Industry: TwelfthInternational Symposium, ASTM STP1354,2000:505-524.
    [16] B.D. Warr, P.A.W. Van Der Heidi, M.A. Maguire. Oxide characteristics and corrosion andhydrogen uptake in Zr-2.5Nb CANDU pressure tubes [C]. Zirconium in the Nuclear Industry:Eleventh International Symposium, ASTM STP1295,1996:265-291.
    [17] G.P. Sabol, G.R. Kilp, M.G. Balfour, et al. Development of a cladding alloy for higher burnup[C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP1023,1989:227-244.
    [18] R.J. Comstock, G. Schoenberger, G.P. Sable. Influence of processing variables and alloychemistry on the corrosion behavior of ZIRLO nuclear fuel cladding [C]. Zirconium in theNuclear Industry: Eleventh International Symposium, ASTM STP1295,1996:710-725.
    [19] A.V. Nikulina, V.A. Markelov, M.M. Peregud. Zirconium alloy E635as a material for fuel rodcladding and other components of VVER and RBMK cores [C]. Zirconium in the NuclearIndustry: Eleventh International Symposium, ASTM STP1295,1996:785-804.
    [20]刘建章.国内核动力堆用锆合金的研究动向[J].稀有金属材料与工程,1990,6:32-35.
    [21]郑杰,牛惠玲,等. Zr-4合金工艺改进的研究[J].稀有金属,1995,19:260-263.
    [22]李佩志,邝用庚,等. Nb含量对锆合金腐蚀性能的影响[C].“96中国材料研讨会,生物及环境材料, Ⅲ-2”,北京:化学工业出版社,1997:179-182.
    [23]稀有金属加工手册编写组.稀有金属材料加工手册[M].北京:冶金工业出版社,1984.
    [24]周邦新,李强,苗志. β相水淬对锆-4合金耐腐蚀性能的影响[J].核动力工程,2000,21:339-343.
    [25]吕培成,田振业.锆-4合金管材料性能研究.1986年核材料会议论文集[C].北京:原子能出版社.
    [26] R.A. Holt, P. Zhao. Micro-texture of extruded Zr-2.5Nb tubes [J]. J. Nucl. Mater,2004,335:520-528.
    [27] R.M. Kruger, R.B. Adamson, S.S Brenner. Effect of microchemistry and precipitate size onnodular corrosion resitance of zircaloy-2[J]. J. Nucl. Mater,1992,189:193-200.
    [28]周邦新.锆合金中的疖状腐蚀问题[J].核材料与工程,1993,13:51-58.
    [29] P. Rudling, G. Wikmark, B. Lehtinen, H. Pettersson. Impact of second phase particles on BWRZr-2corrsion and hydriding performance [C]. Zirconium in the Nuclear Industry: TwelfthInternational Symposium, ASTM STP1354,2000:678-706.
    [30] F. Garzarolli, H. Ruhmann, L. Van Swam. Alternative Zr alloys with irradiatioin resistantprecipitates of high burnup BWR application [C]. Zirconium in the Nuclear Industry:Thirteenth International Symposium, ASTM STP1423,2002:119-132.
    [31] W. Goll, I. Ray. The behavior of intermetallic precipitates in highly irradiated BWR LTPcladding [C]. Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTMSTP1423,2002:80-95.
    [32] A. Seibold, F. Garzarolli. Influence of composition and conditioin on In-PWR behavior ofZr-Sn-Nb-FeCrV alloys [C]. Zirconium in the Nuclear Industry: Thirteenth InternationalSymposium, ASTM STP1423,2002:743-757.
    [33] P. Chemelle, D. Knorr, J Vander Sande, R. Pelloux. Morphology and compostion of secondphase particles in Zircaloy-2[J]. J. Nucl. Mater,1983,113:58-64.
    [34] W.J.S. Yang, R.P. Tucker, B. Cheng, R.B. Adamson. Precipitates in zircaloy: Identification andthe effects of irradiation and thermal treatment [J]. J. Nucl. Mater,1986,138:185-195.
    [35] K. Huang, C. Tsai. The effect of heat treatment on the microsturcture and the corrosionresistance of zircaloy-4in450℃steam [J]. J. Nucl. Mater,1985,136:16-29.
    [36] J.H. Jeong, H.G. Kim, T.H. Kim. Effect of beta phase, precipitate and Nb-concentrarion inmatrix on corrosion and oxide characteristics of Zr-XNb alloys [J]. J. Nucl. Mater,2003,317:1-12.
    [37] J.H. Jeong. H.G. Kim, D.J. Kim, B.K. Choi, J.H. Kim. Influence of Nb concentration in thealpha-matrix on the corrosion behavior of Zr-XNb binary alloys [J]. J. Nucl. Mater,2003,323:72-80.
    [38] H.G. Kim, J.H. Jeong, T.H. Kim. Effect of isothermal annealing on the corrosion behavior ofZr-XNb alloys [J]. J. Nucl. Mater,2004,326:125-131.
    [39] H.G. Kim, J.Y. Park, Y.H. Jeong. Phase boundary of the Zr-rich region in commercial gradeZr-Nb alloys [J]. J. Nucl. Mater,2005,347:140-150.
    [40]李中奎,周廉,张建军,王文生,金志浩. Zr-Sn-Nb-Fe合金中铌的存在方式及其与热处理的关系[J].稀有金属材料与工程,2004,33:1362-1364.
    [41] W.Q. Liu, Q. Li, B.X. Zhou, Q.S. Yan, M.Y. Yao. Effect of heat treatment on themicrostructure and corrosion resistance of a Zr-Sn-Nb-Fe-Cr alloy [J]. J. Nucl. Mater,2005,341:97-102.
    [42] M.M. Stupel, M. Bamberger, B.Z. Weiss. Determination of Fe solubility in α-Zr by mossbauerspectroscopy [J]. Scr. Metall,1985,19:739-740.
    [43] P. Barberis, D. Charquet, V. Rebeyrolle. Ternary Zr-Nb-Fe(O) system: Phase diagram at853Kand corrosion behavior in the domain Nb<0.8%[J]. J. Nucl. Mater,2004,326:163-174.
    [44] O.T. Woo, M. Griffiths. The role of Fe on solubility of Nb in alpha-Zr [J]. J. Nucl. Mater,2009,384:77-80.
    [45] B. Wadman, H.-O. Andrén, A.-L. Nystr m, P. Rudling, H. Pettersson. Microstructuralinfluence on uniform corrosion of Zircaloy nuclear fuel claddings [J]. J. Nucl. Mater,1993,200:207-217.
    [46] M. Thuvander, H.O. Andrén. Methods of quantitative matrix analysis of Zircaloy-2[J].Ultramicroscopy,2011,111:711-714.
    [47] J.Y. Park, B.K. Choi, S.J. Yoo, Y.H. Jeong. Corrosion behavior and oxide properties ofZr-1.1wt%Nb-0.05wt%Cu alloy [J]. J. Nucl. Mater,2006,359:59-68.
    [48]姚美意,张宇,李士炉,张欣,周军,周邦新. Cu含量对Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-XCu合金在500℃过热水蒸气中的耐腐蚀性能影响[J].金属学报,2011,47:872-876.
    [49] G. Ostberg. Determination of the compositioin of the second phase in zircaloy [J]. J. Nucl.Mater,1962,7:103-106.
    [50] E. Vitikainen, P. Nenonen. Transmission electron microscopy studies on intermetallics in somezirconium alloys [J]. J. Nucl. Mater,1978,78:362-373.
    [51] D. Arias, T. Palacios, C. Rurrillo. Composition of precipitates present in zircaloy-2and-4[J].J. Nucl. Mater,1987,148:227-229.
    [52] R. Versaci, M. Ipohorski. Composition of Zr(Cr, Fe)2-type precipitates in zircaloy-2andzircaloy-4[J]. J. Nucl. Mater,1983,116:321-323.
    [53] J. Aander Sande, A. Bement. An investigation of second phase particles in zircaloy-4alloys [J].J. Nucl. Mater,1974,52:115-118.
    [54] C. Menoni, T. Palacios, D. Arias. Intermetallic precipitates in zircaloy-4alloys [J]. Solid toSolid Phase Transformations,1981,763-767.
    [55] V. Krasevec. Transmission electron microscopy study of second-phase particles in zircaloy-2[J]. J. Nucl. Mater,1981,98:235-237.
    [56] X.Y. Meng, D.O. Northwood. Intermetallic precipitaties in zircaloy-4[J]. J. Nucl. Mater,1985,132:80-87.
    [57] X.Y. Meng, D.O. Northwood. A TEM study of the C15type Zr(Cr, Fe)2Laves phase inzircaloy-4[J]. J. Nucl. Mater,1985,136:83-90.
    [58]赵文金. Zr-4合金中第二相的研究[J].核动力工程,1991,12:66-72.
    [59]杨晓林,周邦新,蒋有荣,李聪. Zr-4合金中第二相Zr(Fe, Cr)2的电化学分离[J].核动力工程,1994,15:79-83.
    [60]周邦新,杨晓林.热处理对Zr-4合金中第二相结构和成分的影响[J].核动力工程,1997,18:511-516.
    [61] D. Shaltiel, I. Jacob, D. Davidov. Hydrogen absorption and desorption properties of AB2Laves-phase pseudobinary compounds [J]. J Less-Common Met,1977,53:117-131.
    [62] T.O. Malakhova, L.N. Guseva. Zirconium cornor of the Zr-Cu-Cr-Fe phase-diagram [J].Russian Metallurgy,1980,5:221-224.
    [63] R.P. Elliott, W. Rostoker. The occurrence of Laves-type phases among transition elements [J].Transactions of the American Society for Metals,1958,50:617-633.
    [64] V.N. Shishov, M.M. Peregud, A.V. Nikulina, E.V. Shebaldov, A.V. Tselischev, A.E. Novoselov,G.P. Kobylyansky, Z.E. Ostrovsky, V.K. Shamardin. Influence of zirconium alloy chemicalcompostion on microstructure formation and irradiation induced growth [C]. Zirconium in theNuclear Industry: Thirteenth International Symposium, ASTM STP1423,2002:758-779.
    [65] V.N. Shishov, M.M. Peregud, A.V. Nikulina, Y.V. Pimenov, G.P. Kobylyansky, A.E. Novoselov,Z.E. Ostrovsky, A.V. Obukhov. Influence of structure-phase state of Nb containing Zr alloyson irradiation-induced growth [C]. Zirconium in the Nuclear Industry: Fourteenth InternationalSymposium, ASTM STP1467,2005:666-685.
    [66] V.N. Shishov, M.M. Peregud, A.V. Nikulina, V.F. Konkov, V.V. Novikov, V.A. Markelov, T.N.Khokhunova, G.P. Kobylyansky, A.E. Novoselov, Z.E. Ostrovsky, A.V. Obukhov.Structure-phase state, corrosion and irradiation properties of Zr-Nb-Fe-Sn system alloys [C].Zirconium in the Nuclear Industry: Fifteenth International Symposium, ASTM STP1505,2009:724-743.
    [67]赵文金,苗志,蒋宏曼,于晓卫,李卫军,李聪,周邦新. Zr-Sn-Nb合金的腐蚀行为研究[J].中国腐蚀与防护学报,2002,22:124-128.
    [68]刘文庆,雷鸣,耿迅,李强,周邦新.显微组织对Zr-Sn-Nb-Fe锆合金耐腐蚀性能的影响[J].材料热处理学报,2006,27:47-51.
    [69] O.T. Woo, G.J.C. Carpenter. Micro analytical identification of a new Zr-Nb-Fe-phase [C].Proceedings of the12th International Congress for Electron Microscopy,1990:132-143.
    [70] Z.M. Alekseevam, N.V. Korotkova. Isothermal sections of a Zr-Nb-Fe phase diagram in atemperature interval of600-850℃[J]. Russian Metallurgy,1989,1:203-209.
    [71] N.V. Korotkova, Z.M. Alekseeva. Topology of the Zr-Nb-Fe phase diagram in the range of500-800℃[J]. Russian Metallurgy,1989,3:198-204.
    [72] M.S. Granovsky, M. Canay, E. Lena, D. Arias. Experiemntal investigation of the Zr corner ofthe ternary Zr-Nb-Fe phase diagram [J]. J. Nucl. Mater,2002,302:1-8.
    [73] C. Ramos, C. Saragovi, M. Granovsky, D. Arias. Effect of Nb content on the Zr2Feintermetallic stability [J]. J. Nucl. Mater,2003,312:266-269.
    [74] C. Ramos, C. Saragovi, M. Granovsky, S.D.M. Arias. Ssbauer spectroscopy of the Zr-richregion in Zr-Nb-Fe alloys with low Nb content [J]. Hyperfine Interactions,1999,122:201-207.
    [75] C. Ramos, C. Saragovi, M. Granovsky, D.M. Arias. Ssbauer spectroscopy studies of someintermetallics in the Zr-Nb-Fe system [J]. Hyperfine Interactions,2002,139:363-368.
    [76] G.R. Sabol, R.J. Comstock, R.A. Weiner, E. Larouere, R.N. Stanutz. In-reactor corrosionperformance of ZIRLO and Zircaloy-4[C]. Zirconium in the Nuclear Industry: TenthInternational Symposium, ASTM STP1245,1993:724-744.
    [77] A.V. Nikulina, V.A. Markelov, M.M. Peregud, V.N. Voevodin, V.L. Panchenko, G.P.Kobylyansky. Irradiation-induced microstructural changes in Zr-1%Sn-1%Nb-0.4%Fe [J]. J.Nucl. Mater,1996,238:205-210.
    [78] C. Toffolon-Masclet, J.C. Brachet, C. Servant, L. Legras, D. Charquet, P. Barberis, J.P. Mardon.Experimental study and preliminary thermodynamic calculations of the pseudo-ternaryZr-Nb-Fe-(O, Sn) system [C]. Zirconium in the Nuclear Industry: Thirteenth InternationalSymposium, ASTM STP1423,2002:361-382.
    [79] C. Toffolon-Masclet, J.C. Brachet, G. Jago. Studies of second phase particles in differentzirconium alloys using extractive carbon replica and an electrolytic anodic dissolutionprocedure [J]. J. Nucl. Mater,2002,305:224-231.
    [80] C. Toffolon-Masclet, J.C. Brachet, C. Servant, J.M. Joubert, P. Barberis, N. Dupin, P. Zeller.Contribution of multi-component zirconium based alloys [C]. Zirconium in the NuclearIndustry: Fifteenth International Symposium, ASTM STP1505,2009:754-775.
    [81] K.T. Erwin, O. Delaire, A.T. Motta, Y.S. Chu, D.C. Mancini, R.C. Birtcher. Observation ofsecond-phase particles in bulk zirconium alloys using synchrotron radiation [J]. J. Nucl. Mater,2001,294:299-304.
    [82] H.G. Kim, J.Y. Park, Y.H. Ong, Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fealloys with the Nb/Fe ratio [J]. J. Nucl. Mater,2005,345:1-10.
    [83] E.E. Havinga, P. Hokkeling. Compounds and pseudo-binary alloys with the CuAl2(16)-typestructure (Ⅰ): Preparation and X-ray results [J]. J Less-Common Met,1972,27:169-186.
    [84] I. Vincze, F. Vander Wounde, M.G. Scott. Local structure of amorphous Zr3Fe [J]. Solid StateCommunications,1981,37:567-570.
    [85] Y.B. Kuz’ma, V.Y. Markiv, Y.V. Voroshilov, R.V. Skolozdra. X-ray structural analysis of someZr-Fe and Zr-Co alloys [J]. Inorganic Materials,1966,2:259-263.
    [86] M.V. Nevitt, J.W. Downey, R.A. Morris. A further study of Ti2Ni-type phases containingtitanium, zirconium or hafnium [J]. Transactions of the American Institute of Mining andEngineers,1960,218:1019-1023.
    [87] F. Aubertin, U. Gonser, S.J. Campbell, H.G. Wagner. An appraisal of the phases of thezirconium-iron system [J]. Zeitschrift fur Metallkunde,1985,76:237-244.
    [88]李士炉,姚美意,张欣,耿建桥,彭建超,周邦新.添加Cu对M5合金在500℃过热蒸汽中耐腐蚀性能的影响[J].金属学报,2011,47:163-168.
    [89] Y.H. Jeong, S.Y. Park, M.H. Lee, B.K. Choi, J.H. Baek, J.Y. Park, J.H. Kim, H.G. Kim.Out-of-pile and in-pile performance of advanded zirconium alloys (HANA) for high burn-upfuel [J]. J. Nucl. Sci. Technol.,2006,43:977-983.
    [90] J.Y. Park, B.K. Choi, S.J. Yoo, Y.H. Jeong. Corrosion behavior and oxide properties of Zr-1.1wt%Nb-0.05wt%Cu alloy [J]. J. Nucl. Mater,2006,359:59-68.
    [91] H.G. Kim, B.K. Choi, J.Y. Park, Y.H. Jeong. Influence of the manufacturing processes on thecorrosion of Zr-1.1Nb-0.05Cu alloy [J]. Corros. Sci,2009,51:2400-2405.
    [92]李强,梁雪,彭剑超,余康,姚美意,周邦新. Cu对Zr-2.5Nb合金在500℃/10.3MPa过热蒸汽中腐蚀行为的影响[J].金属学报,2011,47:877-881.
    [93]姚美意,张宇,李士炉,张欣,周军,周邦新. Cu含量对Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-XCu合金在500℃过热蒸汽中耐腐蚀性能的影响[J].金属学报,2011,47:872-876.
    [94] H.S. Hong, J.S. Moon, S.J. Kim, K.S. Lee. Investigation on the oxidation characteristics ofcopper-added modified Zircaloy-4alloys in pressurized water at360℃[J]. J. Nucl. Mater,2001,297:113-119.
    [95]曾奇峰,周邦新,姚美意,彭剑超,夏爽.添加合金元素Cu和Mn对锆合金中第二相的影响.上海大学学报,2008,14:531-536.
    [96] S. Banerjee, P. Mukhopadhyay. Phase Transformations Examples from Titanium andZirconium Alloys [M]. Oxford: Pergamon Materials Series,2007.
    [97] Y.Z. Liu, W.J. Zhao, Q. Peng, H.M. Jiang, X.T. Zu. Study of microstructure of Zr-Sn-Nb-Fe-Cr alloy in the temperature range of750-820℃[J]. Mater. Chem. Phys,2008,107:534-540.
    [98] R.A. Holt. The beta ro alpha phase transformation in zircaloy-4[J]. J. Nucl. Mater,1970,35:322-334.
    [99] O.T. Woo, K. Tangri. Transformation characteristics of rapidly heated and quenchedzircaloy-4-oxygen alloys [J]. J. Nucl. Mater,1979,79:83-94.
    [100] H. Chung, A. Garde, E. Lin, T. Kassner. Mechanical properties of Zircaloy containing oxygen[C]. Light-Water-Reactor Safety Research Program: Quarterly Progress Reports,1976:76-87.
    [101] Y.H. Jeong, K.S. Rheem, C.S. Choi, Y.S. Kim. Effect of beta heat treatment on microstructureand nodular corrosion of Zircaoy-4[J]. J Nucl Sci Technol,1993,30:154-163.
    [102] W.G. Burgers. On the process of transition of the cubic-body-centered modification into thehexagonal-close-packed modification of zirconium [J]. Physica,1934,1:561-586.
    [103] J.W. Glen, S.F. Pugh. The effect of phase transformations on the orientation of zirconiumcrystals [J]. Acta Metall,1954,2:520-529.
    [104] M. Corchia, F. Righini. Kinetic aspects of the phase transformations in Zircaloy-2[J]. J. Nucl.Mater.1981,97:137-148.
    [105] A. Miquet, D. Charquet, C.H. Allibert. Solid state phase equilibria of Zircaloy-4in thetemperature range750-1050℃[J]. J. Nucl. Mater.1982,105:132-141.
    [106] T. Terai, Y. Takahashi, S. Masumura, T. Yoneoka. Heat capacity and phase transition ofZircaloy-4[J]. J. Nucl. Mater.1997,247:222-226.
    [107] Y.B. Chun, S.K. Hwang, M.H. Kim, S.I. Kwun, Y.S. Kim. Effect of Mo on recrystallizationcharacteristics of Zr-Nb-(Sn)-Mo experimental alloys [J]. J. Nucl. Mater.1999,265:28-37.
    [108] A. Miquet, D. Charquet, C. Michaut. Effect of Cr, Sn and O contents on the solid state phaseboundary temperature of Zircaloy-4[J]. J. Nucl. Mater.1982,105:142-148.
    [109] W.J. Zhao, Y.Z. Liu, H.M. Jiang, Q. Peng. Effect of heat treatment and Nb and H contents onthe phase transformation of N18and N36zirconium alloys [J]. J. Alloys Compd.2008,462:103-108.
    [110] H. Okamoto. Sn-Zr (Tin-Zirconium)[J]. J. Phase Equilib. Diff.2010,31:411-412.
    [111] D. Arias, L. Roberti. The solubility of tin in α and β zirconium below1000℃[J]. J. Nucl.Mater.1983,118:143-149.
    [112] O.S. Ivanov, V.K. Grigorovich. Structure and properties of zirconium alloys. In: Proceedingsof the Second UN International Conference PUAE [J].1959,3:34-39.
    [113] M. Canay, C.A. Danón, D. Arias. Phase transition temperature in the Zr-rich corner ofZr-Nb-Sn-Fe alloys [J]. J. Nucl. Mater.2000,280:365-371.
    [114] J.W. Cahn. Challenges of paradigm building for solid-state transformations [J]. J. Jpn. Inst.Met.1999:3-14.
    [115] G.P. Krielaart, S.V.D. Zwaag. Simulations of pro-eutectoid ferrite formation using a mixedcontrol growth model [J]. Mater. Sci. Eng. A,1998,246:104-116.
    [116] M. Avrami. Kinetics of phase change ii: transformation-time relations for random distributionof nuclei [J]. J. Chem. Phys.1940,8:212-224.
    [117] M. Avrami. Kinetics of phase change iii: granulation, phase change, and microstructure [J]. J.Chem. Phys.1941,9:177-184.
    [118]宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.
    [119] Z.S. Liu, Q. Wang, Z.S. Zou, G.L. Tan. Arrhenius parameters determination in non-isothermalconditions for the nucatalyzed gasification of carbon by carbon dioxide [J]. Thermochim. Acta.2011,512:1-4.
    [120] H.K. Kissinger. Reaction kinetics in differential thermal analysis [J]. Anal. Chem.1957,29:1702-1706.
    [121] X.D. Jiang, H.W. Zhang, Q.Y. Wen, Z.Y. Zhong, Y. Zheng, X.L. Tang. Crystallization kineticsof CoNbZr amorphous alloys thin films [J]. Mater. Chem. Phys.2004,88:197-201.
    [122] T. Ozawa. A new method of analyzing thermogravimetric data [J]. Bull. Chem. Soc. Jpn.1965,11:38-42.
    [123] C.D. Doyle. Series approximations to the equation of thermogravimetric data [J]. Nature.1965,207:290-295.
    [124] C.G. van Essen, E.M. Schulson, R.H. Donaghay. Electron channeling patterns from small (10microm) selected areas in the scanning electron microscope [J]. Nature,1970,225:847-848.
    [125] D.C. Joy, D.E. Newbury, D.L. Davidson. Electron channeling patterns in the scanning electronmicroscopy [J]. J. Appl. Phys.1982,53:R81-R122.
    [126]胡运明,陈道伦,苏会和,王中光.直接观察位错结构的扫描电镜电子通道衬度技术[J].材料研究学报,1997,11:240-244.
    [127] F. Wagner, N. Bozzolo, O. Van Landuyt. Evolution of recrystallisation texture andmicrostructure in low alloyed titanium sheets [J]. Acta Mater.2002,50:1245-1259.
    [128] K.V.M. Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G.H.Das, N. Saibaba, S. Banarjee. Microstructural and textural developments during Zircaloy-4fuel tube fabrication [J]. J. Nucl. Mater.2008,383:78-85.
    [129] M.K. Kumar, C. Vanitha, I. Samajdar, G.K. Dey, R. Tewari, D. Srivastava, S. Banerjee.Deformation texture and microtexture developments in a cold rolled single phase hexagonalZircaloy2[J]. Mater. Sci. Tech.2006,22:331-342.
    [130] S.K. Sahoo, V.D. Hiwarkar, I. Samajdar, G.K. Dey, D. Srivastav, R. Tiwari, S. Banerjee.Heterogeneous deformation in single-phase Zircaloy2[J]. Scripta Mater.2007,56:963-966.
    [131] J.W. Chen, B.F. Luan, L.J. Chai, H.B. Yu, Q. Liu. Heterogeneous microstructure and textureevolution during fabrication of Zr-Sn-Nb zirconium [J]. Acta Metall. Sinica.2012,48:393-400.
    [132] A. Akhtar. Compression of zirconium single crystals parallel to the c-axis [J]. J. Nucl. Mater.1973,47:79-86.
    [133] E. Tenckhoff. Review of deformation mechanisms, texture, and mechanical anisotropy inzirconium and zirconium base alloys [C]. In: B. Kammenzind, P. Rudling (Eds.), Zirconium inthe Nuclear Industry:14th International Symposium, ASTM STP1467, American Society forTesting and Materials,2005:25-50.
    [134] G.C. Kaschner, G.T. Gray Iii. The influence of crystallographic texture and interstitialimpurities on the mechanical behavior of zirconium [J]. Metall. Mater. Trans. A.2000,31A:1997-2003.
    [135] A.M. Garde, R.E. Reed-Hill. The importance of mechanical twinning in the stress-strainbehavior of swaged high purity fine-grained titanium below424oK [J]. Metall. Trans.1971,2:2885-2888.
    [136] I.M. Lifshitz, V.V. Slyozov. The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids.1961,19:35-50.
    [137] G.W. Greenwood. The growth of dispersed precipitates in solutions [J]. Acta Metall.1956,4:243-248.
    [138] M. Kahlweit. Ostwald ripening of precipitates [J]. Adv Colloid Interfac.1975,5:1-35.
    [139] M. Kahlweit. Further considerations on aging (Ostwald Ripening)[J]. Scipta Metall.1976,10:601-603.
    [140] M. Kahlweit. Further considerations on the theory of aging (Ostwald Ripening)[J]. Berichteder Bunsengesellschaft fur physikalische Chemie.1974,78:997-1001.
    [141] J.P. Gros, J.F. Wadier. Precipitate growth kinetics in Zircaloy-4[J]. J. Nucl. Mater.1990,172:85-96.
    [142] A.R. Massih, T. Andersson, P. Witt, M. dahlb ck, M. Limb ck. Effect of quenching rate on theβ to α phase transformation structure in zirconium alloys [J]. J. Nucl. Mater.2003,322:138-151.
    [143] B.F. Luan, L.J. Chai, J.W. Chen, M. Zhang, Q. Liu. Growth behavior study of second phaseparticles in a Zr-Sn-Nb-Fe-Cr-Cu [J]. J. Nucl. Mater.2012,423:127-131.
    [144] H.K. Yueh, B. Cox. Cathodoluminescence imaging of oxidised zirconium alloys [J]. J. Nucl.Mater.2004,324:203-214.
    [145] D. Hudson, G.D.W. Smith. Initial observation of grain boundary solute segregation in azirconium alloy (ZIRLO) by the three dimensional atom probe [J]. Scr. Mater.2009,61:411-414.
    [146] C.P. Ramos, M.S. Granovsky, C. Saragovi. Mossbauer spectroscopy characterization ofZr-Nb-Fe phases [J]. Physica B.2007,389:67-72.
    [147] C. Ramos, C. Saragovi, M.S. Granovsky. Some new experimental results on the Zr-Nb-Fesystem [J]. J. Nucl. Mater.2007,366:198-205.
    [148] T. Takasugi, M. Yoshida, S. hanada. Deformability improvement in C15NbCr2intermetallicsby addition of ternary elements [J]. Acta Mater.1996,44:669-674.
    [149] K.S. Kumar, P.M. Hazzledin. Polytypic transformations in Laves phases.[J]. Intermetallics.2004,12:763-770.
    [150] M.F. Chisholm, S. Kumar, P. Hazzledine. Dislocations in complex materials.[J]. Science.2005,307:701-703.
    [151] J. Sun, B. Jiang. Ab initio calculation of the phase stability, mechanical properties andelectronic structure of ZrCr2Laves phase compounds.[J]. Philos. Mag.2004,84:3133-3144.
    [152] R.S. Qiu, B.F. Luan, L.J. Chai, X.Y. Zhang, Q. Liu. Precise determination of the α→α+βphase transformation temperature of Zr-1.0Sn-0.3Nb-0.3Fe alloy [J]. Sci. China Technol. Sci.2013,56:60-65.
    [153]梁建烈,唐轶媛,严嘉琳,朱其明,庄应烘,文国富. Zr-Sn-Nb-Fe合金金属间化合物及其相变温度的研究[J].材料热处理学报,2009,30:32-35.
    [154] J.L. Liang, Y.Y. Tang, L.Q. Nong, J.L. Yan, Y.H. Zhuang. Intermetallics and phasetransformations of the Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr alloy [J]. Rare Met.2008,27:468-472.
    [155] T. Forgeron, J.C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J.P. Mardon, C. Bernaudat.Experiment and modeling of advanced fuel rod cladding behavior under LOCA conditions:alpha-beta phase transformation kinetics and EDGAR methodology [C]. Zirconium in theNuclear Industry: Twelfth International Symposium, ASTM STP1354,2000:256-278.
    [156] D. Arias, R. Castillo Guerra. Phase transition temperature in zircaloy-2[J]. J. Nucl. Mater.1987,144:196-199.
    [157] Y.T. Zhu, J.H. Devletian. Determination of equilibrium solid-phase transition temperatureusing DTA [J]. Metall. Trans. A.
    [158] Y.T. Zhu, T. C. Lowe. Application of, and precautions for the use of, the rule of additivity inphase transformation [J]. Metall. Mater. Trans. B.2000,31B:675-682.
    [159] Y.T. Zhu, J.H. Devletian. Preciese determination of isomorphous and eutectoid transformationtemperatures in binary and ternary Zr alloys [J]. J. Mater. Sci.1991,26:6218-6222.
    [160] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe. Electron channeling contrast imaging of twins anddislocations in twinning-induced plasticity steels under controlled diffraction conditions in ascanning electron microscope [J]. Scr. Mater.2009,61:737-740.
    [161] D.C. Joy, D.E. Newbury, D.L. Dacidson. Electron channeling patterns in the scanning electronmicroscope [J]. J. Appl. Phys.1982,53:R81-R122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700