硒诱导白血病细胞自噬和凋亡的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     实验室前期研究结果证实,超营养剂量的亚硒酸盐通过诱导白血病NB4细胞中保护性自噬向凋亡的转化促进细胞死亡,而具体机制不清,且亚硒酸盐在其他白血病细胞系中的作用机理仍不十分明确。本研究以亚硒酸钠为抗癌药物,研究其作用下白血病NB4细胞中保护性自噬下调的分子生物学机制,同时探索亚硒酸钠诱导其他白血病细胞(HL60细胞)的凋亡机理,在两株细胞的异种移植瘤裸鼠模型中验证硒的治疗效果及相关蛋白分子在瘤组织中的变化情况,为阐明蛋白分子位于自噬和凋亡信号网络的分子地位以及硒的临床应用提供实验依据。
     研究方法
     采用免疫印迹、间接免疫荧光标记LC3后进行点状聚集分析以及透射电镜观察自噬泡的方法检测细胞中自噬水平的变化。采用流式细胞术检测细胞的凋亡率和细胞周期进程变化。通过活细胞计数试剂盒-8检测细胞活力。免疫共沉淀、GST pull-down以及荧光共定位的方法证明蛋白质间相互作用。采用染色质免疫共沉淀的方法确定转录因子与靶基因启动子的相互结合。通过免疫印迹实验检测相关蛋白表达及磷酸化水平的变化。采用反转录PCR的方法检测相关蛋白转录水平的变化。通过特异性化学抑制剂的使用和转染双链小分子RNA及质粒的方法探究蛋白质的功能。构建异种移植瘤模型并通过TUNEL和苏木精-伊红染色的方法证明硒于体内的治疗效果。采用免疫组化及免疫印迹方法检测动物模型中相关蛋白的变化趋势。
     研究内容
     本研究以亚硒酸钠为抗癌药物,研究其作用下白血病细胞的死亡机理。探索无机硒处理NB4细胞后survivin-2B, IKK alpha, P73及UVRAG蛋白水平的变化趋势,确定这些蛋白分子本身对于细胞自噬和凋亡的调控方式以及这些蛋白之间的作用关系,通过探讨硒作用下NB4细胞中自噬和凋亡的转化关系,揭示survivin-2B及其相关通路在硒诱导NB4细胞死亡中所发挥的作用。最后,在实验室前期构建的NB4细胞的异种移植瘤裸鼠模型中验证硒在动物模型中的治疗效果及相关蛋白在细胞水平的变化趋势。
     与此同时,鉴于亚硒酸钠在其他白血病细胞中的作用机理仍不十分明确。我们采用另一种白血病细胞系(HL60细胞)为研究对象,发现硒还可以通过抑制白血病HL60细胞中微管的动态变化影响细胞周期进程,通过细胞周期激酶的活性变化调节凋亡相关分子,并最终诱导HL60细胞凋亡,最后,在新构建的HL60细胞的异种移植瘤裸鼠模型中,我们进一步验证硒的治疗效果、硒对微管的抑制作用及其对Mcl-1和cyclin Bl的调控方式。
     研究结果
     1、survivin-2B/IKK alpha/P73/UVRAG通路参与NB4细胞保护性自噬的调控。
     首先,我们验证NB4细胞中自噬水平发生下调的同时凋亡相关蛋白的活性明显上升,抑制自噬过程可以有效促进亚硒酸钠诱导的NB4细胞凋亡。与此同时,我们发现survivin-2B, IKK alpha,P73及UVRAG在硒处理的NB4细胞中均发生下调。进一步研究发现survivin-2B与IKK alpha之间存在相互作用并借此将IKK alpha稳定在细胞核内。细胞核内的IKK alpha可以进一步调控转录因子P73的稳定性并最终促进自噬起始蛋白UVRAG的表达。在NB4细胞的异种移植瘤模型实验中,我们证实硒具有较为明显的治疗效果,并且发现亚硒酸钠引起的survivin-2B, IKK alpha,P73及UVRAG变化与它们在体外实验的变化趋势基本一致。至此,我们的结果说明了survivin-2B在自噬网络的调节机理,同时也为亚硒酸钠的临床应用提供了理论基础。
     2、硒通过影响微管动态变化影响HL60细胞凋亡。
     我们首先在人白血病HL60细胞中确定了亚硒酸钠的生长抑制作用及凋亡诱导功能,明确20μM亚硒酸钠可有效诱导HL60细胞凋亡,且该凋亡过程与线粒体凋亡途径有关。进一步研究发现硒在细胞水平可有效抑制HL60细胞中微管的聚合并借此将HL60细胞捕获在细胞周期的G2/M期。在此过程中,G2/M期标志性蛋白梒---cyclin B1与激酶CDK1的相互作用增强,且转染cyclin B1特异性干扰序列以及抑制CDK1的激酶活性均可以明显抑制线粒体抗凋亡蛋白Mcl-1的下调。最后,我们在HL60细胞异种移植瘤裸鼠模型中,从裸鼠组织水平验证硒的治疗效果、硒对于微管的抑制功能及cyclin B1和Mcl-1在细胞水平的变化趋势。至此,我们分别从体内及体外证实亚硒酸钠的微管解聚作用是其诱导HL60细胞死亡的重要原因。
     研究结论
     1、survivin-2B通过核内积累IKK alpha进而调控P73稳定性及自噬起始蛋白UVRAG的表达,最终影响硒作用下NB4细胞中的自噬变化。
     2、亚硒酸钠可以调节HL60细胞中微管的动态变化,抑制HL60细胞的周期进程,通过上调周期蛋白cyclin B1进一步促进抗凋亡蛋白Mcl-1的减少,最终引发HL60细胞凋亡。
Objective
     Previous study had discovered super-nutritional selenite induced leukemia NB4cells death through switching protective autophagy to apoptosis and this mechanism was unclear, while in other leukemia cell lines the anti-tumor effect of selenite was still unknown. In this investigation, selenite was used as an anti-tumor agent and the mechanisms by which selenite inhibited autophagy in NB4cells were explored. Additionally, we also determined the mechanisms by which selenite induced apoptosis in other leukemia cell lines. Finally, we established two leukemia cells bearing nude mice models and confirmed selenite therapeutic effects and some proteins alterations in vitro. All of the results helped us explore the regulatory status of some molecules in autophagy network and also supported the theoretical and experimental basis of selenite clinical application.
     Methods
     Western blots, indirectly labeling LC3and calculating the ratio of dots positive cells and transmission electron microscopy were used to detect the alteration of autophagy. Flow cytometry was used to analyze the change of apoptosis ratio and cell cycle distribution. To measure the cell viability, cell counting kit-8was purchased. Protein interaction was determined with immunoprecipitation, GST pull-down assay and immunofluorescence. To investigation the interaction between transcription factor and DNA sequence, chromatin immunoprecipitation was performed. Revers transcription-polymerase chain reaction was used to test the change of mRNA level. Special inhibitors uses and transfection of siRNA and plasmids were used to investigate the protein function. Leukemia cells bearing nude mice model was established to detect selenite therapeutic effects through TUNEL technology and hematoxylin-eosin staining assay. Immunohistochemistry and western blots were carried out to detect alterations of some proteins in vivo.
     Contents
     In this study, we investigated the mechanisms of selenite-induced leukemia cells death. On the one hand, we detected the alterations of survivin-2B, IKK alpha, P73and UVRAG, the relationship between these proteins and the role of them in autophagy process in selenite-treated NB4cells. And then, we concluded their function in cell fate determination through exploring the relationship between autophagy and apoptosis. Finally, we confirmed selenite anti-tumor activity and alterations of these proteins in a nude mice model which had been demonstrated previously.
     Additionally, because effects of selenite on other leukemia cells were unknown, we investigated the apoptotic mechanisms in HL60cells. In this study, we also found selenite could affect the dynamics of microtubule and further inhibited HL60cycle distribution. Further experiments indicated the alteration of the CDK activity should be responsible for the change of apoptosis-related proteins. Finally, we also established an HL60cells bearing nude mice model to confirm selenite anti-tumor activity, its microtubule inhibitory effects and alterations of cyclin Bl and Mcl-1.
     Results
     Sunivin2B/IKK alpha/P73/UVRAG axis involved in the regulation of protective autophagy in NB4cells.
     First of all, we confirmed autophagy was down-regulated in selenite-treated NB4cells and inhibition of autophagy could promote selenite-induced apoptosis. Further experiments found survivin-2B interacted with IKK aloha and further accumulated it in the nucleus. The nuclear IKK alpha stabilized P73which promoted the expression of UVRAG, known as the initiator of autophagy. Finally, selenite was proved to have anti-tumor activity and alter these proteins just as it was indicated in vitro. Collectively, our results discovered the regulatory status of survivin-2B in the network of autophagy and provided a experimental basis for the selenite clinical application.
     Selenite induced apoptosis in HL60cells through altering microtubule dynamics At first, we determined the growth inhibitory effects and apoptosis induction energy of selenite in HL60cells and made sure that20μM selenite induced apparent apoptosis in HL60cells which was related with mitochondrial apoptotic pathway. Then, we also discovered selenite prevented microtubule assembly and arrested HL60cells at G2/M phase. In this process, increases of cyclin B1interacted with CDK1. And either transfection of siRNA targeting cyclin B1or inactivation of CDK1could reverse the down-regulation of anti-apoptotic Mcl-1.Finally, in HL60cells bearing nude mice model, selenite anti-tumor activity, its microtubule inhibitory effects and the alterations of cyclin B1and Mcl-1were confirmed. Collectively, both of in vitro and in vivo experiments confirmed selenite depolymerized microtubule by which selenite induced HL60cells death.
     Conclusions
     1、Survivin-2B accumulated IKK alpha in the nucleus which further regulated the stability of P73and UVRAG expression by which selenite regulated autophagy in selenite-treated NB4cells.
     2、Selenite regulated the microtubule dynamics and inhibited cell cycle distribution which finally resulted in the cyclin B1-dependent degradation of Mcl-1and apoptosis in HL60cells.
引文
[1]M. Greaves. Molecular genetics, natural history and the demise of childhood leukaemia [J]. Eur J Cancer,1999 Dec;35(14):1941-1953.
    [2]Braham-Jmili N, Sendi-Senana H, Labiadh S, Ben Abdelali R, Ben Abdelaziz A, Khelif A, Saad A, Kortas M. [Haematological characteristics, FAB and WHO classification of 153 cases of myeloid acute leukaemia in Tunisia] [J]. Ann Biol Clin (Paris),2006 Sep-Oct;64(5):457-465.
    [3]Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E, Cork A, Huh YO, Trujillo J, Deisseroth AB. Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia [J]. Blood,1992 Aug 1;80(3):582-586.
    [4]Mi JQ, Li JM, Shen ZX, Chen SJ, Chen Z. How to manage acute promyelocytic leukemia [J]. Leukemia,2012 Aug;26(8):1743-1751.
    [5]Yang J, Ikezoe T, Nishioka C, Yokoyama A. Over-expression of Mcl-1 impairs the ability of ATRA to induce growth arrest and differentiation in acute promyelocytic leukemia cells [J]. Apoptosis,2013 Nov;18(11):1403-15.
    [6]Trocoli A, Mathieu J, Priault M, Reiffers J, Souquere S, Pierron G, Besancon F, Djavaheri-Mergny M. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells [J]. Autophagy,2011 Oct;7(10):1108-1114.
    [7]Chen TY, Xu F, Kong YY, Wen F, Xie FY, Wan LG, Zhang ZL. [Effect of curcumin combined with ATRA on differentiation of ATRA-resistant acute promyelocytic leukemia cells] [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2013 Aug;21(4):895-898.
    [8]Jiang G, Tang T, Bi K. [Drug resistance of acute promyelocytic leukemia (APL) to all-trans retinoic acid (ATRA) and its reversion] [J]. Zhonghua Zhong Liu Za Zhi, 2000 Mar;22(2):154-157.
    [9]Rao Y1, Li R, Zhang D. A drug from poison:how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered [J]. Sci China Life Sci, 2013 Jun;56(6):495-502.
    [10]Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders [J]. IUBMB Life,2014 Mar 25. doi:10.1002/iub.1262.
    [11]Brozmanova J, Manikova D, Vlckova V, Chovanec M. Selenium:a double-edged sword for defense and offence in cancer [J]. Arch Toxicol,2010 Dec;84(12):919-938.
    [12]Zeng H. Selenite and selenomethionine promote HL-60 cell cycle progression [J]. J Nutr,2002 Apr;132(4):674-679.
    [13]Shi K, Jiang Q, Li Z, Shan L, Li F, An J, Yang Y, Xu C. Sodium selenite alters microtubule assembly and induces apoptosis in vitro and in vivo [J]. J Hematol Oncol, 2013 Jan 17;6:7.
    [14]Cao TM, Hua FY, Xu CM, Han BS, Dong H, Zuo L, Wang X, Yang Y, Pan HZ, Zhang ZN. Distinct effects of different concentrations of sodium selenite on apoptosis, cell cycle, and gene expression profile in acute promyeloytic leukemia-derived NB4 cells [J]. Ann Hematol,2006 Jul;85(7):434-442.
    [15]An JJ, Shi KJ, Wei W, Hua FY, Ci YL, Jiang Q, Li F, Wu P, Hui KY, Yang Y, Xu CM. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo [J]. Cell Death Dis,2013 Dec 19;4:e973. doi:10.1038/cddis.2013.475.
    [16]Li F, Jiang Q, Shi KJ, Luo H, Yang Y, Xu CM. RhoA modulates functional and physical interaction between ROCK1 and Erk1/2 in selenite-induced apoptosis of leukaemia cells [J]. Cell Death Dis,2013 Jul 4;4:e708. doi:10.1038/cddis.2013.243.
    [17]Luo H, Yang Y, Huang F, Li F, Jiang Q, Shi K, Xu C. Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis [J]. Cancer Lett,2012 Feb 1;315(1):78-85.
    [18]Luo H, Yang Y, Xu CM. [Effects of sodium selenite on the expressions of beta-catenin and its target cyclin D1 in colorectal cancer cells HCT 116 and SW480] [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2011 Dec;33(6):654-658.
    [19]Luo H, Yang Y, Duan J, Wu P, Jiang Q, Xu C.PTEN-regulated AKT/Fox03a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells [J]. Cell Death Dis,2013 Feb 7;4:e481. doi:10.1038/cddis.2013.3.
    [20]Guan L, Huang F, Li Z, Han B, Jiang Q, Ren Y, Yang Y, Xu C. P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis [J]. BMB Rep,2008 Oct 31;41(10):745-750.
    [21]Li ZS, Shi KJ, Guan LY, Jiang Q, Yang Y, Xu CM. Downregulation of protein kinase Ca was involved in selenite-induced apoptosis of NB4 cells [J]. Oncol Res, 2010;19(2):77-83.
    [22]Li ZS, Yang Y, Xu CM. [Mechanism for downregulation of cytochrome c oxidase subunit IV in NB4 cells induced by sodium selenite] [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2009 Dec;31(6):686-691.
    [23]Guan L, Jiang Q, Li Z, Huang F, Ren Y, Yang Y, Xu C. The subcellular distribution of MnSOD alters during sodium selenite-induced apoptosis [J]. BMB Rep, 2009 Jun 30;42(6):361-366.
    [24]Yang Y, Huang F, Ren Y, Xing L, Wu Y, Li Z, Pan H, Xu C. The anticancer effects of sodium selenite and selenomethionine on human colorectal carcinoma cell lines in nude mice [J]. Oncol Res,2009;18(1):1-8.
    [25]Jiang Q, Wang Y, Li T, Shi K, Li Z, Ma Y, Li F, Luo H, Yang Y, Xu C. Heat shock protein 90-mediated inactivation of nuclear factor-κB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells [J]. Mol Biol Cell,2011 Apr 15;22(8):1167-1180.
    [26]Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics:Targeting the apoptotic pathway [J]. Crit Rev Oncol Hematol,2013 Dec 18. pii: S1040-8428(13)00267-00269.
    [27]Yang R, Cui HJ, Wang H, Wang Y, Liu JH, Li Y, Lu Y N-Stearoyltyrosine Protects Against Glutamate-Induced Oxidative Toxicity by an Apoptosis-Inducing Factor (AIF)-Mediated Caspase-Independent Cell Death Pathway [J]. J Pharmacol Sci, 2014 Feb 19;124(2):169-179.
    [28]Lii CX, Fan TJ, Hu GB, Cong RS. Apoptosis-inducing factor and apoptosis [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2003 Oct;35(10):881-885.
    [29]Kim R, Emi M, Tanabe K. Caspase-dependent and-independent cell death pathways after DNA damage (Review) [J]. Oncol Rep,2005 Sep;14(3):595-599.
    [30]Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death [J]. Oncogene,2004 Apr 12;23(16):2785-2796.
    [31]Kitagawa K, Niikura Y. Caspase-independent mitotic death (CIMD) [J]. Cell Cycle,2008 Apr 15;7(8):1001-1005.
    [32]Li Z, Meng J, Xu TJ, Qin XY, Zhou XD. Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway [J]. Eur Rev Med Pharmacol Sci,2013 Aug;17(16):2166-2171.
    [33]Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V, De Giorgi F. Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis [J]. Cell Res,2009 Dec; 19(12):1363-1376.
    [34]Han B, Ren Y, Guan L, Wei W, Hua F, Yang Y, Yang T, Cao T, Dong H, Pan H, Xu C. Sodium selenite induces apoptosis in acute promyelocytic leukemia-derived NB4 cells through mitochondria-dependent pathway [J]. Oncol Res, 2009;17(8):373-381.
    [35]Huang F, Nie C, Yang Y, Yue W, Ren Y, Shang Y, Wang X, Jin H, Xu C, Chen Q. Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells [J]. Free Radic Biol Med,2009 Apr 15;46(8):1186-1196.
    [36]Takahashi H, Chen MC, Pham H, Matsuo Y, Ishiguro H, Reber HA, Takeyama H, Hines OJ, Eibl G. Simultaneous knock-down of Bcl-xL and Mcl-1 induces apoptosis through Bax activation in pancreatic cancer cells [J]. Biochim Biophys Acta,2013 Dec;1833(12):2980-2987.
    [37]Kim YJ, Jung EB, Seo SJ, Park KH, Lee MW, Lee CS. Quercetin-3-O-(2"-galloyl)-a-1-rhamnopyranoside prevents TRAIL-induced apoptosis in human keratinocytes by suppressing the caspase-8-and Bid-pathways and the mitochondrial pathway [J]. Chem Biol Interact,2013 Aug 25;204(3):144-152.
    [38]Zhang HT, Wu J, Wen M, Su LJ, Luo H. Galangin induces apoptosis in hepatocellular carcinoma cells through the caspase 8/t-Bid mitochondrial pathway [J]. J Asian Nat Prod Res,2012;14(7):626-633.
    [39]Abhari BA, Cristofanon S, Kappler R, von Schweinitz D, Humphreys R, Fulda S. RIP1 is required for IAP inhibitor-mediated sensitization for TRAIL-induced apoptosis via a RIP1/FADD/caspase-8 cell death complex [J]. Oncogene,2013 Jul 4;32(27):3263-3273.
    [40]Lee KW, Chung KS, Seo JH, Yim SV, Park HJ, Choi JH, Lee KT. Sulfuretin from heartwood of Rhus verniciflua triggers apoptosis through activation of Fas, Caspase-8, and the mitochondrial death pathway in HL-60 human leukemia cells [J]. J Cell Biochem,2012 Sep;113(9):2835-2844.
    [41]Yang C, Liu HZ, Fu ZX. PEG-liposomal oxaliplatin induces apoptosis in human colorectal cancer cells via Fas/FasL and caspase-8 [J]. Cell Biol Int,2012 Mar 1;36(3):289-296.
    [42]Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease [J]. Nat Rev Drug Discov,2013 Sep;12(9):703-719.
    [43]Hsin IL, Hsiao YC, Wu MF, Jan MS, Tang SC, Lin YW, Hsu CP, Ko JL. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells [J]. Toxicol Appl Pharmacol,2012 Sep 15;263(3):330-337.
    [44]Lin JP, Yang JS, Chang NW, Chiu TH, Su CC, Lu KW, Ho YT, Yeh CC, Mei-Dueyang, Lin HJ, Chung JG. GADD153 mediates berberine-induced apoptosis in human cervical cancer Ca ski cells [J]. Anticancer Res,2007 Sep-Oct;27(5A):3379-3386.
    [45]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress [J]. Cell Death Differ.2004 Apr;11(4):381-389.
    [46]McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bc12 and perturbing the cellular redox state [J]. Mol Cell Biol,2001 Feb;21(4):1249-1259.
    '[47] Komatsu S, Miyazawa K, Moriya S, Takase A, Naito M, Inazu M, Kohno N, Itoh M, Tomoda A. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells [J]. Int J Oncol,2012 Apr;40(4):1029-1039.
    [48]Guan L, Han B, Li J, Li Z, Huang F, Yang Y, Xu C. Exposure of human leukemia NB4 cells to increasing concentrations of selenite switches the signaling from pro-survival to pro-apoptosis [J]. Ann Hematol,2009 Aug;88(8):733-742.
    [49]Guan L, Han B, Li Z, Hua F, Huang F, Wei W, Yang Y, Xu C. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells [J]. Apoptosis,2009 Feb;14(2):218-225.
    [50]Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis [J]. Cell Death Differ,2011 Apr;18(4):571-580.
    [51]Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer:molecular mechanisms and potential therapeutic targets [J]. Biochim Biophys Acta,2013 Aug; 1836(1):15-26.
    [52]Takahashi Y, Meyerkord CL, Hori T, Runkle K, Fox TE, Kester M, Loughran TP, Wang HG. Bif-1 regulates Atg9 trafficking by mediating the fission of Golgi membranes during autophagy [J]. Autophagy,2011 Jan;7(1):61-73.
    [53]Liang C., Feng P, Ku B, Oh BH, Jung JU. UVRAG:a new player in autophagy and tumor cell growth [J]. Autophagy,2007 Jan-Feb;3(1):69-71.
    [54]Sun Q, Fan W, Zhong Q. Regulation of Beclin 1 in autophagy [J]. Autophagy, 2009 Jul;5(5):713-716.
    [55]Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ. Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment [J]. ACS Nano,2011 Nov 22;5(11):8629-8639.
    [56]Zhao D, Yuan H, Yi F, Meng C, Zhu Q. Autophagy prevents doxorubicin-induced apoptosis in osteosarcoma [J]. Mol Med Rep,2014 May;9(5):1975-1981.
    [57]Shi K, An J, Shan L, Jiang Q, Li F, Ci Y, Wu P, Duan J, Hui K, Yang Y, Xu C. Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells [J]. Cell Death Dis,2014 Feb 20;5:e1071.
    [58]Kralova V1, Benesova S, Cervinka M, Rudolf E. Selenite-induced apoptosis and autophagy in colon cancer cells [J]. Toxicol In Vitro,2012 Mar;26(2):258-268.
    [59]Ren Y, Huang F, Liu Y, Yang Y, Jiang Q, Xu C. Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells [J]. BMB Rep,2009 Sep 30;42(9):599-604.
    [60]Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy [J]. Chin J Cancer,2013 Mar;32(3):121-9.
    [61]Rubinstein AD, Kimchi A. Life in the balance-a mechanistic view of the crosstalk between autophagy and apoptosis [J]. J Cell Sci,2012 Nov 15;125(Pt 22):5259-5268.
    [62]Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, Xu C. ATF4 activation by the p38MAPK-eIF4E axis mediates apoptosis and autophagy induced by selenite in Jurkat cells [J]. FEBS Lett,2013 Aug 2;587(15):2420-2429.
    [63]Jiang Q, Li F, Shi K, Yang Y, Xu C. Sodium selenite-induced activation of DAPK promotes autophagy in human leukemia HL60 cells [J]. BMB Rep,2012 Mar;45(3):194-199.
    [64]Wang Q, Chen Z, Diao X, Huang S. Induction of autophagy-dependent apoptosis by the survivin suppressant YM155 in prostate cancer cells [J]. Cancer Lett,2011 Mar 1;302(1):29-36.
    [65]Niu TK, Cheng Y, Ren X, Yang JM. Interaction of Beclin 1 with survivin regulates sensitivity of human glioma cells to TRAIL-induced apoptosis [J]. FEBS Lett,2010 Aug 20;584(16):3519-3524.
    [66]Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L, Pires I, Hammond E, Ragoussis I, Harris AL. Regulation of autophagy by ATF4 in response to severe hypoxia [J]. Oncogene,2010 Aug 5;29(31):4424-4435.
    [67]Su M, Mei Y, Sinha S. Role of the Crosstalk between Autophagy and Apoptosis in Cancer [J]. J Oncol,2013;2013:102735.
    [68]Kim EH, Kim SU, Shin DY, Choi KS. Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP [J]. Oncogene, 2004 Jan 15;23(2):446-456.
    [69]Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis [J]. Cell Death Differ, 2004 Aug;11(8):915-923.
    [70]Smolewski P, Robak T. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies [J]. Curr Mol Med,2011 Nov;11(8):633-649.
    [71]Zangemeister-Wittke U, Simon HU. An IAP in action:the multiple roles of survivin in differentiation, immunity and malignancy [J]. Cell Cycle,2004 Sep;3(9):1121-1123.
    [72]Cheung CH, Huang CC, Tsai FY, Lee JY, Cheng SM, Chang YC, Huang YC, Chen SH, Chang JY. Survivin-biology and potential as a therapeutic target in oncology [J]. Onco Targets Ther,2013 Oct 16;6:1453-1462.
    [73]Altieri DC. Targeting survivin in cancer [J]. Cancer Lett,2013 May 28;332(2):225-228.
    [74]McKenzie JA, Liu T, Goodson AG, Grossman D. Survivin enhances motility of melanoma cells by supporting Akt activation and{alpha}5 integrin upregulation [J]. Cancer Res,2010 Oct 15;70(20):7927-7937.
    [75]Suzuki A, Ito T, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, Akahane K, Nakano T, Miura M, Shiraki K. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death [J]. Oncogene,2000 Mar 2; 19(10):1346-1353.
    [76]Chu J, Wu S, Xing D. Survivin mediates self-protection through ROS/cdc25c/CDK1 signaling pathway during tumor cell apoptosis induced by high fluence low-power laser irradiation [J]. Cancer Lett,2010 Nov 28;297(2):207-219.
    [77]Altieri DC, The case for survivin as a regulator of microtubule dynamics and cell-death decisions [J]. Curr Opin Cell Biol,2006 Dec;18(6):609-615.
    [78]Beardmore VA, Ahonen LJ, Gorbsky GJ, Kallio MJ. Survivin dynamics increases at centromeres during G2/M phase-transition and is regulated by microtubule-attachment and Aurora B kinase activity [J]. J Cell Sci,2004 Aug 15;117(Pt 18):4033-4042.
    [79]Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin S, Marchisio PC, Symons M, Altieri DC. Regulation of microtubule stability and mitotic progression by survivin [J]. Cancer Res,2002 May 1;62(9):2462-2467.
    [80]He XF, Wen DG, Hou JQ, He J, Cen JN. [Expressions of survivin and the splice variants survivin-2B and survivin-DeltaEx3 in bladder cancer and their clinical significance] [J]. Ai Zheng,2009 Nov;28(11):1209-1213.
    [81]Cho GS, Ahn TS, Jeong D, Kim JJ, Kim CJ, Cho HD, Park DK, Baek MJ. Expression of the survivin-2B splice variant related to the progression of colorectal carcinoma [J]. J Korean Surg Soc,2011 Jun;80(6):404-411.
    [82]Fortugno P, Beltrami E, Plescia J, Fontana J, Pradhan D, Marchisio PC, Sessa WC, Altieri DC. Regulation of survivin function by Hsp90 [J]. Proc Natl Acad Sci U SA,2003 Nov 25;100(24):13791-13796.
    [83]Ling X, Cheng Q, Black JD, Li F. Forced expression of survivin-2B abrogates mitotic cells and induces mitochondria-dependent apoptosis by blockade of tubulin polymerization and modulation of Bcl-2, Bax, and survivin [J]. J Biol Chem,2007 Sep 14;282(37):27204-27214.
    [84]Moore AS, Alonzo TA, Gerbing RB, Lange BJ, Heerema NA, Franklin J, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S. BIRC5 (survivin) splice variant expression correlates with refractory disease and poor outcome in pediatric acute myeloid leukemia:a report from the Children's Oncology Group [J]. Pediatr Blood Cancer,2014 Apr;61(4):647-652.
    [85]Wagner M, Schmelz K, Wuchter C, Ludwig WD, Dorken B, Tamm I. In vivo expression of survivin and its splice variant survivin-2B:impact on clinical outcome in acute myeloid leukemia [J]. Int J Cancer,2006 Sep 15;119(6):1291-1297.
    [86]Zhu N, Gu L, Findley HW, Li F, Zhou M. An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy [J]. Oncogene,2004 Sep 30;23(45):7545-7551.
    [87]Wang YF, Zhang W, He KF, Liu B, Zhang L, Zhang WF, Kulkarni AB, Zhao YF, Sun ZJ. Induction of autophagy-dependent cell death by the survivin suppressant YM155 in salivary adenoid cystic carcinoma [J]. Apoptosis,2014 Apr;19(4):748-758.
    [88]Nogales E, Wang HW. Structural intermediates in microtubule assembly and disassembly:how and why? [J]. Curr Opin Cell Biol,2006 Apr;l 8(2):179-184.
    [89]Topham CH, Taylor SS. Mitosis and apoptosis:how is the balance set? [J]. Curr Opin Cell Biol,2013 Dec;25(6):780-785.
    [90]Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment [J]. J Clin Oncol,2006 Apr 10;24(11):1770-1783.
    [91]Buolamwini JK. Cell cycle molecular targets in novel anticancer drug discovery [J]. Curr Pharm Des,2000 Mar;6(4):379-392.
    [92]Kim TJ1, Lim Y, Kim DW, Kwon JS, Son JH, Jin YR, Son DJ, Jung JC, Avery MA, Hong JT, Yun YP. Epothilone D, a microtubule-stabilizing compound, inhibits neointimal hyperplasia after rat carotid artery injury by cell cycle arrest via regulation of G1-checkpoint proteins [J]. Vascul Pharmacol,2007 Oct;47(4):229-237.
    [93]Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis [J]. Apoptosis,2003 Oct;8(5):413-450.
    [94]Doma E, Chakrabandhu K, Hueber AO. A. novel role of microtubular cytoskeleton in the dynamics of caspase-dependent Fas/CD95 death receptor complexes during apoptosis [J]. FEBS Lett,2010 Mar 5;584(5):1033-1040.
    [95]Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC, Chung JG. MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells [J]. J Pharmacol Exp Ther,2010 Aug;334(2):477-488.
    [96]Yoshida K, Ozaki T, Furuya K, Nakanishi M, Kikuchi H, Yamamoto H, Ono S, Koda T, Omura K, Nakagawara A. ATM-dependent nuclear accumulation of IKK-alpha plays an important role in the regulation of p73-mediated apoptosis in response to cisplatin [J]. Oncogene,2008 Feb 14;27(8):1183-1188.
    [97]Furuya K, Ozaki T, Hanamoto T, Hosoda M, Hayashi S, Barker PA, Takano K, Matsumoto M, Nakagawara A. Stabilization of p73 by nuclear IkappaB kinase-alpha mediates cisplatin-induced apoptosis [J]. J Biol Chem,2007 Jun 22;282(25):18365-18378.
    [98]Rosenbluth JM, Pietenpol JA. mTOR regulates autophagy-associated genes downstream of p73 [J]. Autophagy,2009 Jan;5(1):114-116.
    [99]Kenzelmann Broz D, Spano Mello S, Bieging KT, Jiang D, Dusek RL, Brady CA, Sidow A, Attardi LD. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses [J]. Genes Dev,2013 May 1;27(9):1016-1031.
    [100]Rosenbluth JM, Mays DJ, Jiang A, Shyr Y, Pietenpol JA. Differential regulation of the p73'cistrome by mammalian target of rapamycin reveals transcriptional programs of mesenchymal differentiation and tumorigenesis [J]. Proc Natl Acad Sci U S A,2011 Feb 1;108(5):2076-2081.
    [101]Shilo S, Tirosh O. Selenite activates caspase-independent necrotic cell death in Jurkat T cells and J774.2 macrophages by affecting mitochondrial oxidant generation [J]. Antioxid Redox Signal,2003 Jun;5(3):273-279.
    [102]Leynadier D, Peyrot V, Codaccioni F, Briand C. Selenium:inhibition of microtubule formation and interaction with tubulin [J]. Chem Biol Interact, 1991;79(1):91-102.
    [103]Wei X, Li CG, Li T, Nong S, Yan WJ. [Solanum lyratum Thunberg alkaloid induces human lung adenoearcinoma A549 cells apoptosis by inhibiting NF-kappaB signaling pathway] [J]. Zhong Yao Cai,2013 May;36(5):787-790.
    [104]Yadav VR, Prasad S, Gupta SC, Sung B, Phatak SS, Zhang S, Aggarwal BB. 3-Formylchromone interacts with cysteine 38 in p65 protein and with cysteine 179 in IκBα kinase, leading to down-regulation of nuclear factor-κB (NF-κB)-regulated gene products and sensitization of tumor cells [J]. J Biol Chem,2012 Jan 2;287(1):245-256.
    [105]Sun ZJ, Chen G, Hu X, Zhang W, Liu Y, Zhu LX, Zhou Q, Zhao YF. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma:its inhibition by quercetin [J]. Apoptosis,2010 Jul;15(7):850-863.
    [106]Yamamoto Y, Verma UN, Prajapati S, Kwak YT, Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression [J]. Nature,2003 Jun 5;423(6940):655-659.
    [107]Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression [J]. Nature,2003 Jun 5;423(6940):659-663.
    [108]Li L, Ruan Q, Hilliard B, Devirgiliis J, Karin M, Chen YH. Transcriptional regulation of the Thl7 immune response by IKK(alpha) [J]. J Exp Med,2011 Apr 11;208(4):787-796.
    [109]Comb WC, Cogswell P, Sitcheran R, Baldwin AS. IKK-dependent, NF-κB-independent control of autophagic gene expression [J]. Oncogene,2011 Apr 7;30(14):1727-1732.
    [110]Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G. IKK connects autophagy to major stress pathways [J]. Autophagy,2010 Jan;6(1):189-191.
    [111]Bitomsky N, Hofmann TG. Apoptosis and autophagy:Regulation of apoptosis by DNA damage signalling-roles of p53, p73 and HIPK2 [J]. FEBS J,2009 Nov;276(21):6074-6083.
    [112]He Z, Liu H, Agostini M, Yousefi S, Perren A, Tschan MP, Mak TW, Melino G, Simon HU. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene [J]. Cell Death Differ,2013 Oct;20(10):1415-1424.
    [113]Humbert M, Mueller C, Fey MF, Tschan MP. Inhibition of damage-regulated autophagy modulator-1 (DRAM-1) impairs neutrophil differentiation of NB4 APL cells [J].Leuk Res,2012 Dec;36(12):1552-1556.
    [114]Rosenbluth JM, Pietenpol JA. mTOR regulates autophagy-associated genes downstream of p73 [J]. Autophagy,2009 Jan;5(1):114-116.
    [115]Crighton D, O'Prey J, Bell HS, Ryan KM. p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death [J]. Cell Death Differ, 2007 Jun;14(6):1071-1079.
    [116]Pirooz SD, He S, Zhang T, Zhang X, Zhao Z, Oh S, O'Connell D, Khalilzadeh P, Amini-Bavil-Olyaee S, Farzan M, Liang C. UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs [J]. Proc Natl Acad Sci U S A,2014 Feb 18;111(7):2716-2121.
    [117]Song Z, An L, Ye Y, Wu J, Zou Y, He L, Zhu H. Essential role for UVRAG in autophagy and maintenance of cardiac function [J]. Cardiovasc Res,2014 Jan 1:101(1):48-56.
    [118]He S, Ni D, Ma B, Lee JH, Zhang T, Ghozalli I, Pirooz SD, Zhao Z, Bharatham N, Li B, Oh S, Lee WH, Takahashi Y, Wang HG, Minassian A, Feng P, Deretic V, Pepperkok R, Tagaya M, Yoon HS, Liang C. PtdIns(3)P-bound UVRAG coordinates Golgi-ER retrograde and Atg9 transport by differential interactions with the ER tether and the beclin 1 complex [J]. Nat Cell Biol,2013 Oct;15(10):1206-1219.
    [119]Zhao Z, Ni D, Ghozalli I, Pirooz SD, Ma B, Liang C. UVRAG:at the crossroad of autophagy and genomic stability [J]. Autophagy,2012 Sep;8(9):1392-1393.
    [120]Liang C, Sir D, Lee S, Ou JH, Jung JU. Beyond autophagy:the role of UVRAG in membrane trafficking [J]. Autophagy,2008 Aug;4(6):817-820.
    [121]Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis [J]. Mol Cell Biol.2010 Feb;30(3):640-656.
    [1]Brozmanova J, Manikova D, Vlckova V, Chovanec M. Selenium:a double-edged sword for defense and offence in cancer [J]. Arch Toxicol,2010 Dec;84(12):919-938.
    [2]Chen J. An original discovery:selenium deficiency and Keshan disease (an endemic heart disease) [J]. Asia Pac J Clin Nutr,2012;21(3):320-326.
    [3]Luo XM, Wei HJ, Yang CL, Xing J, Qiao CH, Feng YM, Liu J, Liu Z, Wu Q, Liu YX, et al. Selenium intake and metabolic balance of 10 men from a low selenium area of China [J]. Am J Clin Nutr,1985 Jul;42(1):31-37.
    [4]Stacchini A, Coni E, Baldini M, Beccaloni E, Caroli S. Selenium intake with diet in Italy:a pilot study [J]. J Trace Elem Electrolytes Health Dis,1989 Dec;3(4):193-198.
    [5]Goncalves AC, Barbosa-Ribeiro A, Alves V, Silva T, Sarmento-Ribeiro AB. Selenium compounds induced ROS-dependent apoptosis in myelodysplasia cells [J]. Biol Trace Elem Res,2013 Sep;154(3):440-447.
    [6]Fu L, Liu Q, Shen L, Wang Y. Proteomic study on sodium selenite-induced apoptosis of human cervical cancer HeLa cells [J]. J Trace Elem Med Biol,2011 Jul;25(3):130-137.
    [7]Zou Y, Niu P, Yang J, Yuan J, Wu T, Chen X. The JNK signaling pathway is involved in sodium-selenite-induced apoptosis mediated by reactive oxygen in HepG2 cells [J]. Cancer Biol Ther,2008 May;7(5):689-696.
    [8]Li J, Zuo L, Shen T, Zhang ZN. [Sodium selenite-induced oxidative stress and apoptosis in human acute promyelocytic leukemia NB4 cells] [J]. Yao Xue Xue Bao, 2002 Sep;37(9):677-681.
    [9]Zeng H. Selenite and selenomethionine promote HL-60 cell cycle progression [J]. J Nutr,2002 Apr;132(4):674-679.
    [10]Yoon SO, Park SJ, Chung AS. Selenite inhibits apoptosis via activation of the PI3-K/Akt pathway [J]. Ann N Y Acad Sci,2002 Nov;973:221-223.
    [11]Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V. Role of apoptosis in disease [J]. Aging (Albany NY),2012 May;4(5):330-349.
    [12]Yang R, Cui HJ, Wang H, Wang Y, Liu JH, Li Y, Lu Y. N-Stearoyltyrosine Protects Against Glutamate-Induced Oxidative Toxicity by an Apoptosis-Inducing Factor (AIF)-Mediated Caspase-Independent Cell Death Pathway [J]. J Pharmacol Sci, 2014 Feb 19;124(2):169-179.
    [13]Yan C, Xin-Ming Q, Li-Kun G, Lin-Lin L, Fang-Ping C, Ying X, Xiong-Fei W, Xiang-Hong L, Jin R. Tetrandrine-induced apoptosis in rat primary hepatocytes is initiated from mitochondria:caspases and endonuclease G (Endo G) pathway [J]. Toxicology,2006 Jan 20;218(l):1-12.
    [14]Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K. Mitochondrial generation of reactive oxygen species and its role in aerobic life [J]. Curr Med Chem.2003 Dec;10(23):2495-2505.
    [15]Wang J, Yi J. Cancer cell killing via ROS:to increase or decrease, that is the question [J]. Cancer Biol Ther,2008 Dec;7(12):1875-1884.
    [16]Maldonado PD, Perez-De La Cruz V, Torres-Ramos M, Silva-Islas C, Lecona-Vargas R, Lugo-Huitron R, Blanco-Ayala T, Ugalde-Muniz P, Vazquez-Cervantes GI, Fortoul TI, Ali SF, Santamarfa A. Selenium-induced antioxidant protection recruits modulation of thioredoxin reductase during excitotoxic/pro-oxidant events in the rat striatum [J]. Neurochem Int,2012 Jul;61(2):195-206.
    [17]Huang F, Huang J, Lv Q, Yang Y, Wu G, Xu C. Selenite induces apoptosis in colorectal cancer cells through interaction with thioredoxin reductase [J]. BMB Rep, 2013 Dec 1.pii:2370.
    [18]Park SH, Kim JH, Chi GY, Kim GY, Chang YC, Moon SK, Nam SW, Kim WJ, Yoo YH, Choi YH. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species [J]. Toxicol Lett,2012 Aug 3;212(3):252-261.
    [19]Luo H, Yang Y, Duan J, Wu P, Jiang Q, Xu C. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to reactive oxygen species-mediated apoptosis in selenite-treated colorectal cancer cells [J]. Cell Death Dis,2013 Feb 7;4:e481.
    [20]Luo Hj Yang Y, Huang F, Li F, Jiang Q, Shi K, Xu C. Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of -catenin survival axis [J]. Cancer Lett,2012 Feb 1;315(1):78-85.
    [21]Li Z, Shi K, Guan L, Cao T, Jiang Q, Yang Y, Xu C. ROS leads to MnSOD upregulation through ERK2 translocation and p53 activation in selenite-induced apoptosis of NB4 cells [J]. FEBS Lett,2010 Jun 3;584(11):2291-2297.
    [22]Li Z, Meng J, Xu TJ, Qin XY, Zhou XD. Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway [J]. Eur Rev Med Pharmacol Sci,2013 Aug;17(16):2166-2171.
    [23]Han B, Ren Y, Guan L, Wei W, Hua F, Yang Y, Yang T, Cao T, Dong H, Pan H, Xu C. Sodium selenite induces apoptosis in acute promyelocytic leukemia-derived NB4 cells through mitochondria-dependent pathway [J]. Oncol Res, 2009;17(8):373-381.
    [24]Huang F, Nie C, Yang Y, Yue W, Ren Y, Shang Y, Wang X, Jin H, Xu C, Chen Q. Selenite induces redox-dependent Bax activation and apoptosis in colorectal cancer cells [J]. Free Radic Biol Med,2009 Apr 15;46(8):1186-1196.
    [25]Chen XJ, Duan FD, Zhang HH, Xiong Y, Wang J. Sodium selenite-induced apoptosis mediated by ROS attack in human osteosarcoma U2OS cells [J]. Biol Trace Elem Res,2012 Jan;145(1):1-9.
    [26]Rudolf E, Rudolf K, Cervinka M. Selenium activates p53 and p38 pathways and induces caspase-independent cell death in cervical cancer cells [J]. Cell Biol Toxicol, 2008 Apr;24(2):123-141.
    [27]Chen P, Wang L, Li N, Liu Q, Ni J. Comparative proteomics analysis of sodium selenite-induced apoptosis in human prostate cancer cells [J]. Metallomics,2013 May;5(5):541-550.
    [28]Wu P, Shi KJ, An JJ, Ci YL, Li F, Hui KY, Yang Y, Xu CM. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells [J]. Cell Death Dis,2014 Feb 27;5:e1085.
    [29]Leynadier D, Peyrot V, Codaccioni F, Briand C. Selenium:inhibition of microtubule-formation and interaction with tubulin [J]. Chem Biol Interact, 1991;79(1):91-102.
    [30]Xue W, Wang Z, Chen Q, Chen J, Yang H, Xue S. High selenium status in individuals exposed to arsenic through coal-burning in Shaanxi (PR of China) modulates antioxidant enzymes, heme oxygenase-1 and DNA damage [J]. Clin Chim Acta,2010 Sep 6;411(17-18):1312-1318.
    [31]Selvaraj V, Tomblin J, Yeager Armistead M, Murray E. Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage [J]. Ecotoxicol Environ Saf,2013 Jan;87:80-88.
    [32]Zou Y, Niu P, Gong Z, Yang J, Yuan J, Wu T, Chen X. Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells [J]. Front Med China,2007 Jul;1(3):327-332.
    [33]Thirunavukkarasu C, Premkumar K, Sheriff AK, Sakthisekaran D. Sodium selenite enhances glutathione peroxidase activity and DNA strand breaks in hepatoma induced by N-nitrosodiethylamine and promoted by phenobarbital [J]. Mol Cell Biochem,2008 Mar;310(1-2):129-139.
    [34]Letavayova L, Vlasakova D, Vlckova V, Brozmanova J, Chovanec M. Rad52 has a role in the repair of sodium selenite-induced DNA damage in Saccharomyces cerevisiae [J]. Mutat Res,2008 Apr 30;652(2):198-203.
    [35]Fujimoto Y, Morinaga K, Abe M, Kitamura T, Sakuma S. Selenite induces oxidative DNA damage in primary rat hepatocyte cultures [J]. Toxicol Lett,2009 Dec 15;191(2-3):341-346.
    [36]Pinson B, Sagot I, Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae [J]. Mol Microbiol,2000 May;36(3):679-687.
    [37]Shi K, Jiang Q, Li Z, Shan L, Li F, An J, Yang Y, Xu C. Sodium selenite alters microtubule assembly and induces apoptosis in vitro and in vivo [J]. J Hematol Oncol, 2013 Jan 17;6:7.
    [38]An JJ, Shi KJ, Wei W, Hua FY, Ci YL, Jiang Q, Li F, Wu P, Hui KY, Yang Y, Xu CM. The ROS/JNK/ATF2 pathway mediates selenite-induced leukemia NB4 cell cycle arrest and apoptosis in vitro and in vivo [J]. Cell Death Dis,2013 Dec 19;4:e973. doi:10.1038/cddis.2013.475.
    [39]Chen P, Wang L, Li N, Liu Q, Ni J. Comparative proteomics analysis of sodium selenite-induced apoptosis in human prostate cancer cells [J]. Metallomics,2013 May;5(5):541-550.
    [40]Guan L, Han B, Li Z, Hua F, Huang F, Wei W, Yang Y, Xu C. Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells [J]. Apoptosis,2009 Feb;14(2):218-225.
    [41]Guan L, Han B,Li J, Li Z, Huang F, Yang Y, Xu C. Exposure of human leukemia NB4 cells to increasing concentrations of selenite switches the signaling from pro-survival to pro-apoptosis [J]. Ann Hematol,2009 Aug;88(8):733-742.
    [42]Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease:biology and pharmacology [J]. Pharmacol Rev,2013 Aug 13;65(4):1162-1197.
    [43]Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells [J]. Cancer Res,2007 Jul 1;67(13):6314-6324.
    [44]Ren Y, Huang F, Liu Y, Yang Y, Jiang Q, Xu C. Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells [J]. BMB Rep,2009 Sep 30;42(9):599-604.
    [45]Shi K, An J, Shan L, Jiang Q, Li F, Ci Y, Wu P, Duan J, Hui K, Yang Y, Xu C. Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells [J]. Cell Death Dis,2014 Feb 20;5:e1071.
    [46]Jiang Q, Wang Y, Li T, Shi K, Li Z, Ma Y, Li F, Luo H, Yang Y, Xu C. Heat shock protein 90-mediated inactivation of nuclear factor-κB switches autophagy to apoptosis through becn1 transcriptional inhibition in selenite-induced NB4 cells [J]. Mol Biol Cell,2011 Apr 15;22(8):1167-1180.
    [47]Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy [J]. Nat Chem Biol,2012 Oct;8(10):831-838.
    [48]Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, Xu C. ATF4 activation by the p38MAPK-eIF4E axis mediates apoptosis and autophagy induced by selenite in Jurkat cells [J]. FEBS Lett,2013 Aug 2;587(15):2420-2429.
    [49]Park SH, Kim JH, Chi GY, Kim GY, Chang YC, Moon SK, Nam SW, Kim WJ, Yoo YH, Choi YH. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species [J]. Toxicol Lett,2012 Aug 3;212(3):252-261.
    [50]Kralova V, Benesova S, Cervinka M, Rudolf E. Selenite-induced apoptosis and autophagy in colon cancer cells [J]. Toxicol In Vitro,2012 Mar;26(2):258-268.
    [51]Caffrey PB, Frenkel GD. Prevention of carboplatin-induced resistance in human ovarian tumor xenografts by selenite [J]. Anticancer Res,2013 Oct;33(10):4249-4254.
    [52]Jonsson-Videsater K, Bjorkhem-Bergman L, Hossain A, Soderberg A, Eriksson LC, Paul C, Rosen A, Bjornstedt M. Selenite-induced apoptosis in doxorubicin-resistant cells and effects on the thioredoxin system [J]. Biochem Pharmacol,2004 Feb 1;67(3):513-522.
    [53]Tian J, Ning S, Knox SJ. Sodium selenite radiosensitizes hormone-refractory prostate cancer xenograft tumors but not intestinal crypt cells in vivo [J]. Int J Radiat Oncol Biol Phys,2010 Sep 1;78(1):230-236.
    [54]Tian J, Ning S, Knox SJ. Sodium selenite radiosensitizes hormone-refractory prostate cancer xenograft tumors but not intestinal crypt cells in vivo [J]. Int J Radiat Oncol Biol Phys,2010 Sep 1;78(1):230-236.
    [55]Olm E, Jonsson-Videsater K, Ribera-Cortada I, Fernandes AP, Eriksson LC, Lehmann S, RundlSf AK, Paul C, Bjornstedt M. Selenite is a potent cytotoxic agent for human primary AML cells [J]. Cancer Lett,2009 Sep 8;282(1):116-123.
    [56]Asfour IA, E1-Tehewi MM, Ahmed MH, Abdel-Sattar MA, Moustafa NN, Hegab HM, Fathey OM. High-dose sodium selenite can induce apoptosis of lymphoma cells in adult patients with non-Hodgkin's lymphoma [J]. Biol Trace Elem Res,2009 Mar;127(3):200-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700