硅酸铝板抑制管内气体爆炸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究预混气体燃烧火焰在管道中的传播及管道内衬有可抑制燃烧爆炸材料对传播火焰的抑制作用,对工业阻火器的设计与应用,以及管道或开敞空间中可燃气体的防燃抑爆等,均具有重要的意义。本课题以内壁衬有多孔、可压缩材料硅酸铝板管道内燃烧火焰和压力波的变化作为研究对象,旨在为可燃气体燃烧爆炸的防治以及阻火器的设计应用提供依据。本文主要工作和结论如下:
     (1)建立了抑制燃烧爆炸的实验系统。该系统配以高频数据采集系统,可以实时检测压力、火焰速度等参数。抑制爆炸的结构为硅酸铝板。
     (2)进行了乙炔/空气混合气和丙烷/空气混合气爆燃波在管内传播与抑制的实验研究。实验条件如下:乙炔浓度为化学计量比(7.75%),丙烷浓度为化学计量比(3.95%),爆炸初压为常压,管道内径为81mm,长度为2.2m,点火端密闭,出口端开放,实验研究了硅酸铝板结构对管内传播的爆燃火焰的抑制能力。
     (3)实验研究了多孔可压缩吸收材料硅酸铝板的长度变化对管内火焰传播速度和超压抑制作用的影响。得到了火焰传播速度、超压与硅酸铝板长度之间关系的经验公式。随着硅酸铝板长度的增加,火焰的传播速度和超压都不断减小。
     (4)实验研究了硅酸铝板厚度对火焰速度和超压的影响。长度值较小时,随厚度增加,火焰传播速度和超压出现先降低后增加的现象,即存在最佳抑制厚度;当长度超过一定值后,火焰速度和超压都随厚度增加而减小。得到了实验条件下的经验公式。
     (5)将燃烧火焰和超压有机的结合在一起,提出了爆炸能的重要概念,用来表示燃烧气体爆炸过程中的能量。同时将硅酸铝板的长度和厚度综合起来用体积来评价其抑爆性能。体积越大,爆炸能越小,抑爆性能越好。
The experimental investigations into premixed flame propagation in pipes or channels are great important for design and application of flame anesters, and deflagration suppression of flammable gas clouds in vessels or unconfined space. Aiming to provide theoretical references for deflagration suppression and the design of flame arresters, experimental investigations are carried out to analyze the flame and pressure wave propagation in tube lining with porous materials of aluminium silicate board on the tube wall in this paper. The main work and conclusions in this paper are as follow:
    (1) In experimental investigation, experimental apparatus that can measure pressure, and flame speed instantaneously are built, and high frequency data acquisition system is set up. The construction of explosion suppression is aluminium silicate board.
    (2) With premixed acetylene-air gases and propane-air gases, experimental investigations about explosion waves propagating and suppression in tube are dealt with. Experimental conditions are set as follow: Stoichiometric rate and atmospheric pressure are used for initial concentration of acetylene (7.75%), propane (3.95%) and initial pressure; the inside dameter and length of tube, which is closed at ignition end and open at the other, are 81 mm and 2.2 m respectively; The experimental investigations are carried out to analyze the suppression effect of aluminium silicate board on flame propagation in tubes.
    (3) The effects of construction of the length changes of aluminium silicate board on flame propagation speed and explosion overpressure in tube are analyzed. Empirical formulas about relationship between flame propagation speed, overpressure and the length of aluminium silicate board are obtained. With the increase of length, flame propagation speed and overpressure decrease.
    (4) In addition, the effects of the thickness of aluminium silicate board on flame propagation speed and overpressure are also analyzed. When the length value is set small, the phenomenon that the value of flame propagation speed and overpressure are first restrained to reduce and then increase as thickness increases, and best suppressive thickness is existed; With the increase of length and thicness, flame
引文
[1] Gugan K. Unconfined vapor cloud explosion of chemical engineers in accidention with George Godruin Ltd. Rugby, U.K.,1987.
    [2] 赵衡阳.气体和粉尘爆炸原理.北京:北京理工大学出版社,1996.
    [3] 胡双启,张景林.燃烧与爆炸.兵器工业出版社,1992.
    [4] Chapman W R, Wheeler R V. The propogation of flame in mixtures of methane and air. Flame. J. Chem. soc, 1926, 2139-2147.
    [5] Hijertager B H, Fuher K, Parker S J. Flame acceleration of propane-air in a large-scale obstructed tube. Explosions and Detonations, 1984, 94: 504-522.
    [6] Fairweather M, Hargrave G K, Ibrahim S S and Walker D G. Studies of premixed flame propagation in explosion tubes. Combustion and Flame, 1999, 116: 504-518.
    [7] Dunn-Rankin D, Mccann M A. Overpressure from nondetonating baffle-accelerated turbulent flame in tubes. Combustion and Flame, 2000, 120: 504-514.
    [8] 周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动.爆炸与冲击,2000,20(2):137-141.
    [9] Bradley D, Cresswell T M. Flame acceleration due to flame-induced instabilities in large-scale explosions. Combustion and Flame, 2001, 124: 551-559.
    [10] Moen I O, Lee J H, Hijertager B H, Fuhre K and Eckhoff R K. Pressure development clue to turbulent flame propagation in large-scale methane-air explosions. Combustion and Flame, 1982, 47: 31-52.
    [11] Knystautas R, Lee J H, Guirao C et al. Measurements of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter. Dynamics of Shock Wave. Explosions and Detonations, 1984, 94: 23-27.
    [12] 胡栋,龙属川等.可燃性气体爆炸极限和爆燃转变成爆轰的研究.爆炸与冲击,19(3):266-275.
    [13] 徐守彬.水平激波管实验系统的建立及民用液化石油气燃烧转爆轰的初步研究:(学位论文).北京理工大学,1997.
    [14] 林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究.煤炭学报,1999,24(1):56-58.
    [15] 余立新,孙文超,吴承康.氢/空气火焰在半开口有障碍管道中的传播特性.燃烧科学与技术,2002,8(1):27-30.
    [16] Leyer J C. An Experimental study of pressure fields by exploding cylindrical clouds. Combustion and Flame, 1982, 48: 251-263.
    [17] Hoff A B M. An experimental study of the ignition of natral gas in a simulated pipeline rupture. Combustion and Flame, 1983, 49: 51-58.
    [18] Zeeuwen J P, Wan Wingerden C J M and Dauwe R M. Experimental investigation in the blast effect produced by unconfined vapor cloud explosions. 4th Int. Symp. Loss prevention and safety promotion in the process industries. Harrogate. UK. Icheme Symp, 1983, 80: 20-29.
    [19] Sichel M. Simple analysis of blast initiation of detonations. Acta Astronautica. 1977, 4: 409-424.
    [20] Gvozdeva L G et al. Normal shock waves reflection on porous compressible materials. ATAA, 1986, 106: 155-165.
    [21] Dupre G et al. Propagation of detonation waves in acoustic absorbing walled tube. ATAA, 1988, 114: 248-263.
    [22] Vasil' ev A A. Near limiting detonation in channels with porous walls. Combustion Explosion and Shock Waves, 1994, 30: 101-106.
    [23] Teodoreczyk A, et al. Detonation Attenuation by Foams and Wire Meshes lining the Walls. Shock Waves, 1994.
    [24] 凯思,顾根.容器外可燃蒸气云的爆炸.北京:化学工业出版社,1986.
    [25] Moen I O, Bjerketvedt D B, Jenssen A and Thibault P A. Transition to detonation in a large fuel-air cloud. Combustion and Flame, 1985, 61: 285-291.
    [26] 陈林顺.沸腾液体膨胀蒸气爆炸和蒸气云爆炸事故的分析和模拟:(博士学位论文).北京:北京理工大学,2001.
    [27] 林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究.煤炭学报,1999,24(1):56-58.
    [28] 毕明树,丁信伟,贺匡国.容器容积和长径比对可燃气体爆炸强度的影响.化工机械.1993.20(1):29-32.
    [29] Kuhl A L, Oppenheim A K. Pressure waves generated by steady flames, 14th Symposium (International) on Combustion. The Combustion Institute, 1973, 1201-1215.
    [30] Dabora E K. Variable energy blast waves. J. AIAA, 1972, 10: 1384-1385.
    [31] Gurirao C M, Bach G G and Lee J H. Pressure waves generated by spherical flames, Combustion and Flame, 1976, 127: 341-351.
    [32] 徐胜利,糜仲春,汤明钧.无约束云雾产生爆炸场的数值模拟.南京理工大学学报,1994,5:1-7.
    [33] 徐胜利,岳鹏涛,彭金华.多爆源云雾爆炸波相互作用的三维数值研究.爆炸与冲击,2000,20(1):1-6.
    [34] 姚海霞,范宝春,李鸿志.障碍物诱导的湍流加速火焰流场的数值模拟.南京理工大学学报,1999,23(2):109-112.
    [35] 肖林.气体爆炸抑制技术的研究:(硕士学位论文).太原:华北工学院,1997.
    [36] 谭迎新.可燃气体爆炸特性试验装置的电气控制设计与制作:(硕士学位论文).太原:华北工学院,1991.
    [37] 蔡凤英,谈宗山,孟赫,蔡仁良.化工安全工程.北京:科学出版社,2001.29.
    [38] 傅献彩,陈瑞华.物理化学(上册).北京:人民教育出版社,1979.130-145.
    [39] Hynes R G et al. Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane. Combustion and Flame, 1998, 113: 554-565.
    [40] Babushok V et al. Chemical limits to flame inhibition. Combustion and Flame, 1998,115: 551-560.
    [41] 范维澄,刘乃安.火灾安全科学:一个新兴交叉的工程科学领域.中国工程科学,2001,3(1):6-14.
    [42] 陆守香,何杰,于春红,秦友花.水抑制瓦斯爆炸的机理研究.煤炭学报,1998.
    [43] 秦友花,沈兆武,陆守香,张立,郭子如.水雾对气体火焰传播特性影响的实验研究,2001,8.
    [44] 谢波,范宝春,王克全.大型通道中被动式水雾抑爆效果的实验研究.实验力学,2002,12.
    [45] Edwards K L. Material and constructions used in devices to prevent the spread of flames in pipelines and vessels. Material and Design, 1999, 20: 245-252.
    [46] 胡畔.石化装置设计中阻火器的选用.炼油设计,2002,32(6).
    [47] Masao Maekawa. Flame quenching by rectangular channels as a function of channel length for methane-air mixture. Combustion Science and Technology, 1975, 11: 141-145.
    [48] Iida N. Premixed flame propagation into a narrow channel at a high speed. Combustion and Flame, 1985, 60: 245-267.
    [49] 津田健,北條英光.多層金網形消炎性能.安全工学,1989.28(5):279-284.
    [50] 周凯元等.波纹板阻火器对爆燃火焰淬熄作用的实验研究.中国科学技术大学学报,1997,27(4):449-454.
    [51] 周凯元等.气体爆燃火焰在狭缝中的淬熄.火灾科学,1998,8(1):22-33.
    [52] Mihalik G, Continillo. Experimental and numerical study of flammability limits of gaseous mixture in porous media. Experimental Thermal and Fluid Science, 2000, 21: 117-123.
    [53] Hackert C L. Effects of thermal boundary conditions on flame shape and quenching in ducts. Combustion and Flame, 1998, 112: 73-84.
    [54] Reddy K V, Fujiwara T and Lee J H. Mem. Fac. Nagoya Univ, 1988.
    [55] Vanwingerden C J M, Zeeven J P. On the role of acoustically driven flame instabilities in vented gas explosions and their elimination. Combustion and Flame, 1983, 51: 109-111.
    [56] 王宝兴,李振彦.可燃气体爆炸泄压过程中声振动不稳定燃烧压力峰减弱方法的研究.爆炸与冲击,1989,9(2):130-136.
    [57] 王宝兴.金属爆炸减压板应用中须注意的事项.消防技术与产品信息,2004,3:31-33.
    [58] 南子江,宋爱英,曹法和,范秉元.铝合金抑爆材料抑爆性能研究.兵器材料科学与工程,2001,24(4):19-22.
    [59] 田宏,高旭,高永庭.燃油箱填充用防火抑爆网状泡沫材料.火灾科学,2000,9(2):37-42.
    [60] 郭长铭,周光泉,王正道.气相爆轰波在收缩管道中的传播.爆炸与冲击,1998,18(1):21-27.
    [61] 郭长铭,张德良,谢巍.气相爆轰波在障碍物上Mach反射后流场的分析.中国科技大学学报,2000,30(6):686-691.
    [62] 郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究.爆炸与冲击,2000,20(4):289-295.
    [63] 郭长铭,陈志刚.多孔钢板对气相爆轰波传播影响的实验研究.实验力学,2000,15(4):400-407.
    [64] Radulescu M I and Lee J H S. The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combustion and Flame, 2002, 131: 29-46.
    [65] 居江宁,吴文权,吴中立,邵辉.TVD方法在瓦斯爆炸可压缩流场中的应用.淮南工业学院学报,2000,9:19-24.
    [66] 居江宁,吴文权.巷道瓦斯爆炸二次反冲的数值模拟.上海理工大学学报,1999,1:39-42.
    [67] 喻健良,刘润杰,毕明树,王淑兰.网孔结构和可压缩材料抑制爆炸波的研究评述.化学工业与工程技术,2002,23(91):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700