机载中空纤维膜分离性能及民机燃油箱冲洗惰化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
民机一般采用惰性气冲洗方法对飞机燃油箱进行惰化保护,该方法利用空气分离模块(ASM—Air Separation Module)产生富氮气体(NEA—Nitrogen Enriched Air),并将富氮气体通入燃油箱上部空间,用以稀释油箱上部气相空间原有的及由于飞机爬升或晃动而从燃油溢出到气相空间的氧气。
     针对民机油箱惰化技术的研究任务要求,论文通过搭建一个实验平台,对空气分离模块在不同条件下的工作性能进行实验;并通过整理实验数据获得膜工作温度、ASM进气压力和飞行高度对ASM工作性能的影响;基于已有的实验数据,利用人工神经网络方法模拟和预测了其它ASM模块的工作性能,获得各参数单独变化对ASM工作性能的影响。文章还建立了燃油气液界面的频率传质模型,并将此模型计算结果和FAA所公布的实验结果进行对比,验证了其有效性;在此基础上,利用该频率传质模型,分析了载油率对燃油箱上部空间氧浓度变化的影响规律;同时,也就飞机在地面滑行阶段,不同氧浓度NEA惰化效果进行了模拟,研究结果表明:7%氧浓度NEA是滑行-起飞阶段对飞机燃油箱进行冲洗的最优浓度。
The technology of flush inerting is generally used to protect fuel tank of civil aircrafts. First, Nitrogen Enriched Air (NEA) is generated by using air separation module (ASM-Air Separation Module); then Nitrogen Enriched Air air is passed into the upper space of the fuel tank, which dilutes the original oxygen in fuel tank of the upper gas space and the extra oxygen spilled from the oil due to the climbing or rocking of the aircraft.
     For requirements of civil aircraft fuel tank inerting technology, an experimental platform for the air separation module performance is built, and experiments under various operating conditions of ASM are carried out. It is revealed that the performance of ASM is mainly influenced by the operating temperature, inlet pressure or the altitude; based on the available experimental data, the Neural Network method is induced to independently simulate and predict the performance of ASM. In this thesis, a new mathematical model named Frequency-Mass Transfer Model is proposed to describe the mass transfer through the gas-liquid phase interface, and the calculating results are are compared with the experimental data of FAA, and its effectiveness is verified; by using the Frequency-Mass Transfer Model, mass transfer of oxygen and nitrogen in the fuel tank during climb and cruise is calculated, and the calculating results are compared with experimental data of A320. Fuel loading effects on the changes of oxygen concentration in the upper space of the fuel tank is also studied. The inerting effect is calculated under different concentration of NEA, which shows that 93% NEA is the optimal choice when the aircraft taxis on the ground.
引文
[1]刘小芳,刘卫华.飞机供氧和燃油箱惰化技术概况[J].北华航天工业学院学报, 2008(3): 4~7.
    [2]王小平,肖再华.飞机燃油箱氮气惰化的机理分析及应用[J].航空科学技术, 2008(6): 24~26.
    [3]王震.飞机燃油箱防爆及抑爆材料应用技术[J].航空科学技术, 2002(3): 33~35.
    [4]闫红敏,江平,高永庭.军用飞机机载制氮系统研究[J].沈阳航空工业学院学报, 2005(5): 12~14.
    [5]江平,李晓光,高永庭.燃油箱中空充填网状聚氨酯泡沫抑爆原理[J].沈阳航空工业学院学报, 2003(4): 13~15.
    [6] M, W.. The Effect of Fuel on an Inert Ullage in a Commercial Transport Airplane Fuel Tank. [R].DOT/FAA/AR-05/25,July,2005.
    [7] M, W.. Limiting Oxygen Concentration Required to Inert Jet Fuel Vapors Existing at Reduced Fuel Tank Pressures. [R].DOT/FAA/AR-04/35,July,20041002.
    [8] Haddad, J.. Service Experience with Liquid Nitrogen Fuel Tank Inerting System in FAA DC-9 aircraft., [R].DOT/FAA/AR-72/35,July, 19722021.
    [9] J, K.K.. The F-16 Halon Tank Inerting Systems[M]. 1981:12~15.
    [10] Johnson, R.L., JosePh B Gillerman. Aircraft Fuel Tank Inerting System.[J] Airesearch manufacturing company,1983(5):154~176,.
    [11]肖华军,袁修干.机载分子筛制氧技术发展的现状与动向.航空科学技术[J], 1997(1): 26-28.
    [12] Reynolds Thomas L, E.T.I., Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System(OBIGGS/OBOGGS)Study Part2:Gas Separation Technolog-State Of The Art. [R].DOT/FAA/AR-01/05,July,200106211.
    [13]富海涛. PPESK纺丝液相分离行为与气体分离膜结构性能的关系[J].高分子学报, 2007(7): 615~620.
    [14]杨永强,高性能中空纤维超滤膜结构和性能研究[J].现代化工, 2005(5): 44~47.
    [15]张厚琼,王朝阳,罗炫.溶液浇铸法制备氘代聚乙烯薄膜[J].强激光与粒子束, 2008(9): 1487~1490.
    [16]朱瑾瑜等,有机/无机复合介孔膜的合成及其生物酶吸附行为研究[J].化学学报, 2010(21): 2231~2237.
    [17]张莉,张立志与裴丽霞,共混氧氮分离膜的研究进展[J].化工进展, 2008(12): 1917-1922.
    [18] T.C.Knight,J.E.Ritter.The AH-64A Nitrogen Inerting system[J]. AIAA-84-2480,Oct.1984.
    [19] Anderson,C.L..Vulnerability Methodology and Protective Measures for Aircraft Fire and Explosion Hazards. Volume 3. On-Board Inert Gas Generator System (OBIGGS)studies. Part 1. OBIGGS Ground Performance Tests[R].ADA167357,January,1986.
    [20] W.L.Vannice and A.F.Grenich.Fighter Aircraft OBIGGS (On-Board Inert Gas Generation System) Study, Volume 1[R].ADA183690,June,1987.
    [21] Howell, T..Fighter Aircraft OBIGGS (On-Board Inert Gas Generation System) Study. Volume2[R].ADA183781,June,1987.
    [22] Michael B.,William M. C..Inerting of a Vented Aircraft Fuel Tank Test Article With Nitrogen-Enriched Air[R].DOT/FAA/AR-01/6,April,2001.
    [23] Cavage,William M..Ground-Based Inerting of a Boeing 737 Center Wing Fuel Tank[J]SAE Conference Paper 2001-01-2656,September 2001.
    [24] Burns,Michael and Cavage,William M..Ground and Flight Testing of a Boeing 737 Center Wing Fuel Tank Inerted with Nitrogen-Enriched Air[R].FAA William J.Hughes Technical Center,Atlantic City International Airport,NJ,DOT/FAA/AR-01/63,August 2001.
    [25] Cavage,William M.and Kils,Ole.Inerting a B-747SP Center Wing Tank Scale Model with Nitrogen Enriched Air[R].FAA Report DOT/FAA/AR-02/51,May,2002.
    [26] Reynolds, Thomas L.,Bailey,etal.Onboard inert gas generation system/onboard oxygen gas generation system(OBIGGS/OBOGGS)study part1:Aircraft system requirement[R].NASA/ CR-2001-210903 PT1,May,2001.
    [27] Scott A Manatt.Design、fabrication and testing of a full-scale breadboard nitrogen generator for fuel tank inerting application[R].FAA-RD-77-147.U S department of transportation federal aviation administration.September,1977.
    [28] George H.,McDonald,etal.Catalytic reactor for Inerting of aircraft fuel tanks[R].ADA000939. Airesearch manufacturing company.June,1974.
    [29] MacDonald,J.A.and Wyeth,H.W.G..Fire and Explosion Protection of Fuel Tank Ullage[R]. Ministry of Aviation Supply,Engineering Physics Department,Royal Aircraft Establishment,England.
    [30] Kuchta,Joseph M..Oxygen Dilution Requirements for Inerting Aircraft Fuel Tanks[J]. Second Conference on Fuel System Fire Safety,Federal Aviation Administration,May 1970.
    [31] Warella Browall,etal.Feasibility of adapting a thin film permeable membrane to jet transport fuel tank inerting system[R].ADA003799.Federal aviation administration,January,1975.
    [32] Klueg,E.P.,McAdoo,W.C.,and Neese,W.E..Performance of a DC-9 Aircraft Liquid Nitrogen FuelTank Inerting System.FAA Report FAA-RD-72-53,August 1972.
    [33]刘猛,王浚.一种富氧中空纤维膜组件的温度特性[J].北京航空航天大学学报, 2004(3): 280~282.
    [34] W. J. Yagle, F.F.T., Performance Tests of Two Inert Gas Generator Concepts for Airplane Fuel Tank inerting[R].DOT/FAA/AR-01/05,April,200516231.
    [35]魏关锋,气体膜分离中非理想现象的研究[D]. 2006,大连理工大学.
    [36] Allan Abramowitz, P.B.. Characterization of an Oxygen/Nitrogen Permeable Membrane System[R]. DOT/FAA /AR-96/05,June,199616205.
    [37] Michael Burns, W.M.C.R.. Flight-Testing of the FAA Onboard Inert Gas Generation System on an Airbus A320[R]. DOT/FAA /AR-04/05,July,20049873.
    [38]穆文全,廖晓峰,虞厥邦.基于遗传算法和BP算法的多层感知机杂交训练算法[J].电子科学学刊, 1997(2): 190~194.
    [39]解海涛,孙建红.基于改进BP神经网络的民用航空器SDR数量预测[J].江苏航空, 2008(4): 7~9.
    [40]冯诗愚,刘卫华,蒋军昌等.洗涤效率对飞机燃油箱惰化过程的影响分析[J].航空动力学报, 2010(11): 2457~2463.
    [41] COORDINATING RESEARCH COUNCIL.HANDBOOK OF AVIATION FUEL PROPERTIES[M]. 2004:86~107.
    [42] H.Φ.杜博夫金,ΙΟ.Π.马苏尔,B.Γ.马拉尼切娃等.喷气燃料性能手册[M].常汝揖译.北京:航空工业出版社,1990:1~276.
    [43] Morrison, W.M.C.M., Development and Testing of the FAA Simplified Fuel Tank Inerting System[R]. DOT/FAA /AR-04/05,May20040104.
    [44] Michael Burns, W.M.C., Inerting of a Vented Aircraft Fuel Tank Test Article With Nitrogen-Enriched Air. [R]. DOT/FAA /AR-01/05,May,20010104.
    [45] Cavage, W.M.. Ground-Based Inerting of Commercial Transport Aircraft Fuel Tanks[J]. NATO UNCLASSIFIED, 2002(13):34~45.
    [46] Cavage, W.M., Modeling In-Flight Inert Gas Distribution in a 747 Center Wing Fuel Tank[R]. DOT/FAA /AR-05/09,May20050209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700