Lactobacillus casei AST18抗真菌代谢产物分析及抑菌作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lb. casei AST18是本实验室筛选到的一株对食品腐败真菌具有良好抑制作用的乳酸菌菌株。在获得此菌株基础上,本论文对发酵液中成分进行了初步分离纯化,利用液相质谱对分离纯化部分进行了鉴定;结合不同时间段发酵液的抑菌效果,采用代谢组学技术和思路,利用核磁共振及液质联用对发酵液中主要差异代谢物进行分析;并以产黄青霉为指示菌株,研究Lb. casei AST18对产黄青霉的抑制作用,推测其在产黄青霉体内的作用方式;利用N+注入对Lb. casei AST18进行诱变,以期获得具有更加良好抗真菌效果的乳酸菌菌株;最后利用诱变后的正突变菌株,将其作为干酪附属发酵剂应用到干酪制作中,并考察其对干酪贮藏期内主要理化指标及感官品质的影响,对Lb. casei AST18(1-3)作为附属发酵剂在干酪中抑菌情况进行了研究,论证了其应用在干酪防霉上的可行性,为其在干酪中的应用打下理论基础。
     本研究主要结论如下:
     (1)发酵液中除乳酸外,存在大量其它分子量小于1000Da的抑真菌物质。本实验初步分离纯化具有抑菌性能的5部分物质,并通过液质联用对其进行分析,检测到潜在抗真菌物质主要为:乳酸、乙酸等小分子有机酸、小分子酯类、芳香杂环类物质、生物碱以及多种含苯环的小分子有机物。实验证明,乳酸菌发酵液抑真菌性能是由多种小分子化合物协同作用的效果。
     (2)通过不同时间发酵液抑菌效果及结合代谢组学技术分析发现,在乳酸菌发酵初期抑菌效果增长主要是由于乳酸、乙酸的大量产生对霉菌造成的抑制;在乳酸菌稳定期之后,通过液质代谢组学手段结合第二章实验分析结果发现,对抑菌效果的增长起较大贡献作用的主要物质有:肉桂酸、羟基肉桂酸(香豆酸)、L-3-苯乳酸、苯乳酸、苯乙酸、对香豆酸、壬二酸、水杨酸、4-羟基苯甲酸、(R)2,3-二羟基-3-甲基戊酸、甲羟戊酸、cyclo(L-Leu-L-Pro)等。
     (3)Lb. casei AST18对青霉、曲霉、镰刀霉均有抑制效果,可以抑制菌丝生长及孢子萌发,同时导致青霉属菌落生长形态异常;Lb. casei AST18引起了P. chrysogenum自噬性死亡,观察到的主要变化过程为:液泡增大,同时部分细胞质凝集颜色加深;在液泡边缘出现包裹大量细胞质的自噬小体并慢慢进入液泡,在液泡中被消化;在衰亡后期的菌体中,细胞中只剩下大量的双层膜,观察不到任何细胞器结构。
     (4)Lb. casei AST18(1-3)作为辅助发酵剂添加到切达干酪中,对切达干酪感官品质影响较小,能够增加干酪水解度,增加干酪中乳杆菌数,且能够使干酪具有良好的防霉效果。
Lb. casei AST18was screened in our laboratory because of its excellent antifungal activity. In thisresearch, we used a series of separation and purification methods and obtained several antifungalfermentation parts. Then we used UPLC-Q-TOF to detect the antifungal substances in the separatedparts. On this basis, we use the metabolomics technology to collect the data of the culture with differentfermrntation time. Then we used multivariate statistical analysis to analyze the main difference betweenthe fermentation culture, in order to obtain the information of the antifungal substances. We analyzedthe antifungal spectrum and the effect of Lb. casei AST18to the growth morphology of P.chrysogenum, which was used as indictor fungals. Double flat antagonize method was used to study theantifungal activities of Lb. casei AST18. SEM and TEM were used to study the ultrastructure inside thefungal and to speculate the action mode of Lb. casei AST18on P. chrysogenum. We used N+Implantation Mutation Breeding (IMB) to process Lb. casei AST18in order to obtain a stain with betterantifungal effect and use the strain in the actual production industry. At last, we used the mutant strainas adjunct fermentation culture in Cheddar. We analyzed the main physicochemical and sensoryqualities of the cheese during the storage period. The antifungal activities of Lb. casei AST18(1-3)as aadjunct culture in Cheddar was evaluated. This experiment lay a theoretical foundation of antifungalLAB in the cheese production industry.
     The main conclution were as follows:
     (1) There are serveal low molecular substance exist in fermentation culture of LAB except lacticacid; the main antifungal substance in the culture detected by UPLC-Q-TOF was organic acid,nitrogen-containing small molecule compounds and small molecule esters. The antifungal activities ofLAB was a synergistic effect of all this substances. The antifungal substances detected in thisexperiment which have been reported was: Lactic acid, acetic acid, citric acid, benzoic acid, cinnamicacid, salicylic acid, azelaic acid, succinic acid, sialic acid and phenyllactic Acid.
     (2) Through the analysis of antifungal activities and the metabolic footprinting, the increasedantifungal activities of the fermentation culture during the prophase was caused by lactic acid; after thestable period, the increased antifungal activities was caused by Nitrogen-containing small moleculecompounds and other orginic acid..
     (3) Lb. casei AST18caused the autophagic death of P. chrysogenum. The main changes weobserved during the process was as follows:
     The vacoule enlarged to the entire cell; part of the cytoplasmic aggregated and the color wasdeepened; autophagosomes contained cytoplasm entered into the vacoule; and then the autophagosomeswas digested in the vacoule; when the color of colony was grayish brown, there was no organelles left inthe cell, only bilayer structure left; the autophagic death should be verified by genetic level.
     (4) The use of Lb. casei AST18(1-3)as adjunct culture in Cheddar has little effect on the sensoryquality of the cheese. It can increase the degree of hydrolysis and Lactobacillus count, and also it has a good antifungal effect in the cheese.
引文
1.陈超,沐万孟,江波,张涛,李兴峰.苯乳酸发酵液脱色体系中活性炭吸附的研究[J].食品工业科,2008,29(3):59-62
    2.陈慧梅,刘志红.代谢组学及其研究方法和应用[J].肾脏病与透析肾移植杂志,2005,14(1):59-64.
    3.方芳.产细菌素乳酸菌的筛选、细菌素的纯化及其特性研究.方芳硕士学位论文.呼和浩特:内蒙古农业大学,2008
    4.何庆华.基于核磁共振的代谢组学方法子啊营养与食品安全中的应用.何庆华博士学位论文.长沙:中国科学院亚热带农业生态研究所,2008
    5.贺银凤.酸马奶酒中微生物的分离鉴定及抗菌因子的研究.贺银凤博士学位论文.呼和浩特:内蒙古农业大学,2008
    6.胡萍.乳链菌肽对搅拌型酸奶保质期的应用研究[J].中国乳业,2003,9:30-32.
    7.冀林立.传统乳制品中产γ-氨基丁酸乳酸菌的筛选、鉴定及发酵条件优化.冀林立硕士学位论文.呼和浩特:内蒙古农业大学,2008
    8.李国富,天然食品防腐剂的研究和开发[J].食品机械,1996,12:36-37
    9.李燕芸,尹振晏.食品防腐保鲜剂的现状和发展[J].北京石油化工学院学,2003,11(4):18-23
    10.李滢冰,陈孝荣,王琳,孟军.天然防腐剂的发展与应用[J].食品研究与开发,2000,21:9-10
    11.李兆龙.国外新开发的几种天然食品防腐剂[J].食品科技动态,1989,16:8-1l
    12.李红娟.抗真菌乳酸菌的筛选及特性研究.李红娟硕士学位论文.北京:中国农业科学院,2011
    13.李红娟,刘鹭,张书文,等.抗真菌乳酸菌的筛选鉴定及发酵特性[J].中国乳品工业,2011,39(3):4-6
    14.刘昌孝.代谢组学的发展与药物研究开发[J].天津药学,2005,17(2):1-6.
    15.刘凤丽.乳酸菌SK007生物合成苯乳酸的研究.刘凤丽硕士学位论文.无锡:江南大学,2008
    16.刘毅,宁正祥.天然食品防腐剂一抗菌肽[J].食品科学,1999,11:18-21
    17.刘云鹏.新疆传统酸马奶中乳杆菌降胆固醇特性的研究.刘云鹏硕士学位论文.呼和浩特:内蒙古农业大学,2008
    18.沐万孟,周宏敏,刘凤丽,李兴峰,陈超,罗昭锋,江波.苯乳酸的快速检测研究.食品与发酵工业,2008,34(11):135-138
    19.潘利华,夏云梯,朱克美.Nisin对酸奶品质的影响研究[J].合肥工业大,2002,25(4):619-623
    20.彭冬英.保鲜菌HOLDBACK(TM)YM-C应用于延长酸奶货架期的研究.彭冬英硕士学位论文.南昌:南昌大学,2009
    21.乔长晟,王玲,朱晓红等.新型天然食品防腐剂的现状与发展趋势[J].宁夏农学院学报,2001,22(4):60-64
    22.孙洁.乳酸菌发酵剂菌株的自溶特性及机理研究.孙洁博士学位论文.北京:中国农业科学院,2010
    23.王本旭.家蝇幼虫中耐高温DNA酶活性蛋白的提取纯化及其初步鉴定[D].2002
    24.王希春,何成华,刘海明,张海彬.真菌毒素的污染、危害及其检测技术[J].畜牧与兽医.2009,41(8):104-106
    25.魏小雁.产葡聚糖明串珠菌的特性及其葡聚糖合成条件研究.魏小雁硕士学位论文.呼和浩特:内蒙古农业大学,2008
    26.吴方丽.丙烷脒对番茄灰霉病菌的抑菌机理初探[D].西安:西北农林科技大学,2008.
    27.姚自奇,庄艳玲,温凯.纳他霉素在酸奶制品中的应用[J].中国食品添加剂开发应用,2007,1:168-171
    28.易华西,张兰威,杜明,韩雪.乳酸菌细菌素抗菌潜力挖掘研究进展[J].中国食品添加剂,2010,1:73-76
    29.张百刚,张宝善.生物防腐剂在食品加工中的应用研究[J].食品研究与开发,2004,25(6):127-128
    30.张书文.抗氧化乳酸菌的筛选及其特性研究.张书文硕士学位论文.呼和浩特:内蒙古农业大学,2009
    31.沈娟,别小妹,陆兆新,吕凤霞,朱筱玉.(2006). N+注入诱变芽孢杆菌选育高产抗菌物质菌株.核农学报,20(4),296–298
    32.宋道军,姚建铭,吴丽芳,王纪,涂友斌,余增亮.(1999).离子注入对微生物细胞的刻蚀与对DNA的损伤及修复.科学通报,44(18),330–334
    33.宋道军..离子注入效应研究.核技术,1999,22(3):129–132
    34.汪伟明.微生物诱变育种技术–离子注入法.科技信息2007,,20:14–20
    35.姚建明,王纪,王相勤,袁成凌,王文生,余增亮.(2000),离子注入花生四烯酸产生菌诱变选育.生物工程学报,2000,16(4),478–481
    36.余增亮.离子注入生物学研究述评.安徽农业大学学报.1994,,21(30),221–226
    37.李荣杰.微生物诱变育种方法研究进展.河北农业科学.2009,13(10),73–76,78
    38.隋欣,陈历俊,任发政,2009.热激修饰瑞士乳杆菌对Cheddar干酪成熟的影响.农业机械学报40,135-139,164.
    39.孙卓切达干酪促熟方法及其质量控制技术研究.孙卓硕士学位论文.青岛:青岛农业大学,2011
    40.支海娟.基于NMR款冬植物代谢组学研究.支海娟硕士学位论文.太原:山西大学,2012
    41. Adebayo, C.O., Aderiye, B.I.,2011. Suspected mode of antimycotic action of brevicin SG1againstCandida albicans and Penicillium citrinum. Food Control22,1814-1820.
    42. Armaforte, E., Carri, S., Ferri, G., Caboni, M.F.,2006. High-performance liquid chromatographydetermination of phenyllactic acid in MRS broth. Journal of Chromatography A1131,281-284.
    43. Atanassova, M., Choiset, Y., Dalgalarrondo, M., Chobert, J.M., Dousset, X., Ivanova, I., Haertle, T.,2003. Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeastcompound produced by Lactobacillus paracasei subsp paracasei strain M3. International Journal ofFood Microbiology87,63-73.
    44. Avis, T.J., Belanger, R.R.,2001. Specificity and mode of action of the antifungal fatty acidcis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Applied and EnvironmentalMicrobiology67,956-960.
    45. Baek, E., Kim, H., Choi, H., Yoon, S., Kim, J.,2012. Antifungal Activity of Leuconostoc citreum andWeissella confusa in Rice Cakes. Journal of Microbiology50,842-848.
    46. Batish, V.K., Lal, R., Grover, S.,1990. Effect of pH, heat treatment and proteolytic enzymes on crudeantifungal substance (AFS) produced by lactic acid bacteria.
    47. Batish, V.K., Roy, U., Lal, R., Grover, S.,1997. Antifungal attributes of lactic acid bacteria-A review.Critical Reviews in Biotechnology17,209-225.
    48. Bergsson, G., Arnfinnsson, J., Steingrimsson, O., Thormar, H.,2001. In vitro killing of Candidaalbicans by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy45,3209-3212.
    49. Black, B.A., Zannini, E., Curtis, J.M., Gaenzle, M.G.,2013. Antifungal Hydroxy Fatty Acids Producedduring Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread.Applied and Environmental Microbiology79,1866-1873.
    50. Broberg, A., Jacobsson, K., Strom, K., Schnurer, J.,2007. Metabolite profiles of lactic acid bacteria ingrass silage. Applied and Environmental Microbiology73,5547-5552.
    51. Brosnan, B., Coffey, A., Arendt, E.K., Furey, A.,2012. Rapid identification, by use of the LTQ Orbitraphybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Analytical andBioanalytical Chemistry403,2983-2995.
    52. Cizeikiene, D., Juodeikiene, G., Paskevicius, A., Bartkiene, E.,2013. Antimicrobial activity of lacticacid bacteria against pathogenic and spoilage microorganism isolated from food and their control inwheat bread. Food Control31,539-545.
    53. Coda, R., Cassone, A., Rizzello, C.G., Nionelli, L., Cardinali, G., Gobbetti, M.,2011. AntifungalActivity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation:Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread. Applied andEnvironmental Microbiology77,3484-3492.
    54. Coda, R., Rizzello, C.G., Nigro, F., De Angelis, M., Arnault, P., Gobbetti, M.,2008. Long-Term FungalInhibitory Activity of Water-Soluble Extracts of Phaseolus vulgaris cv. Pinto and Sourdough LacticAcid Bacteria during Bread Storage. Applied and Environmental Microbiology74,7391-7398.
    55. Coloretti, F., Carri, S., Armaforte, E., Chiavari, C., Grazia, L., Zambonelli, C.,2007. Antifungal activityof lactobacilli isolated from salami. Fems Microbiology Letters271,245-250.
    56. Corsetti, A., Gobbetti, M., Rossi, J., Damiani, P.,1998. Antimould activity of sourdough lactic acidbacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1.Applied Microbiology and Biotechnology50,253-256.
    57. Crowley, S., Mahony, J., van Sinderen, D.,2012. Comparative analysis of two antifungal Lactobacillusplantarum isolates and their application as bioprotectants in refrigerated foods. Journal of AppliedMicrobiology113,1417-1427.
    58. Dal Bello, F., Clarke, C.I., Ryan, L.A.M., Ulmer, H., Schober, T.J., Strom, K., Sjogren, J., van Sinderen,D., Schnurer, J., Arendt, E.K.,2007. Improvement of the quality and shelf life of wheat bread byfermentation with the antifungal strain Lactobacillus plantarum FST1.7. Journal of Cereal Science45,309-318.
    59. Dang, T.D.T., Vermeulen, A., Ragaert, P., Devlieghere, F.,2009. A peculiar stimulatory effect of aceticand lactic acid on growth and fermentative metabolism of Zygosaccharomyces bailii. FoodMicrobiology26,320-327.
    60. Delavenne, E., Mounier, J., Deniel, F., Barbier, G., Le Blay, G.,2012. Biodiversity of antifungal lacticacid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period.International Journal of Food Microbiology155,185-190.
    61. Dicks, L.M.T., Botes, M.,2010. Probiotic lactic acid bacteria in the gastro-intestinal tract: healthbenefits, safety and mode of action. Beneficial Microbes1,11-29.
    62. Dieuleveux, V., Lemarinier, S., Gueguen, M.,1998. Antimicrobial spectrum and target site ofD-3-phenyllactic acid. International Journal of Food Microbiology40,177-183.
    63. Digaitiene, A., Hansen, A.S., Juodeikiene, G., Eidukonyte, D., Josephsen, J.,2012. Lactic acid bacteriaisolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillussubtilis and fungi. Journal of Applied Microbiology112,732-742.
    64. Driehuis, F., Elferink, S., Van Wikselaar, P.G.,2001. Fermentation characteristics and aerobic stability ofgrass silage inoculated with Lactobacillus buchheri, with or without homofermentative lactic acidbacteria. Grass and Forage Science56,330-343.
    65. Elferink, S., Krooneman, J., Gottschal, J.C., Spoelstra, S.F., Faber, F., Driehuis, F.,2001. Anaerobicconversion of lactic acid to acetic acid and1,2-propanediol by Lactobacillus buchneri. Applied andEnvironmental Microbiology67,125-132.
    66. Falguni, P., Shilpa, V., Mann, B.,2010. Production of proteinaceous antifungal substances fromLactobacillus brevis NCDC02. International Journal of Dairy Technology63,70-76.
    67. Ferreira, M.E.D., Colombo, A.L., Paulsen, I., Ren, Q., Wortman, J., Huang, J., Goldman, M.H.S.,Goldman, G.H.,2005. The ergosterol biosynthesis pathway, transporter genes, and azole resistance inAspergillus fumigatus. Medical Mycology43, S313-S319.
    68. Garofalo, C., Zannini, E., Aquilanti, L., Silvestri, G., Fierro, O., Picariello, G., Clementi, F.,2012.Selection of Sourdough Lactobacilli with Antifungal Activity for Use as Biopreservatives in BakeryProducts. Journal of Agricultural and Food Chemistry60,7719-7728.
    69. Garcha S, Natt N K. In situ control of food spoilage fungus using Lactobacillus acidophilus NCDC291[J]. Journal of food science and technology,2012,49(5):643-648.
    70. Gautam, P., Shankar, J., Madan, T., Sirdeshmukh, R., Sundaram, C.S., Gade, W.N., Basir, S.F., Sarma,P.U.,2008. Proteomic and Transcriptomic Analysis of Aspergillus fumigatus on Exposure toAmphotericin B. Antimicrobial Agents and Chemotherapy52,4220-4227.
    71. Gerez, C.L., Torres, M.J., de Valdez, G.F., Rollan, G.,2013. Control of spoilage fungi by lactic acidbacteria. Biological Control64,231-237.
    72. Gourama, H.,1997. Inhibition of growth and mycotoxin production of Penicillium by Lactobacillusspecies. Food Science and Technology-Lebensmittel-Wissenschaft&Technologie30,279-283.
    73. Gourama, H., Bullerman, L.B.,1995. ANTIMYCOTIC AND ANTIAFLATOXIGENIC EFFECT OFLACTIC-ACID BACTERIA-A REVIEW. Journal of Food Protection58,1275-1280.
    74. Guo, J., Brosnan, B., Furey, A., Arendt, E., Murphy, P., Coffey, A.,2012. Antifungal activity ofLactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum.Bioengineered Bugs3,104-113.
    75. Hu, W., Schmidt, R.J., McDonell, E.E., Klingerman, C.M., Kung, L., Jr.,2009. The effect ofLactobacillus buchneri40788or Lactobacillus plantarum MTD-1on the fermentation and aerobicstability of corn silages ensiled at two dry matter contents. Journal of Dairy Science92,3907-3914.
    76. Kishimoto, N., Sugihara, S., Mochida, K., Fujita, T.,2005. In vitro antifungal and antiviral activities ofgamma-and delta-lactone analogs utilized as food flavoring. Biocontrol Science10,31-36.
    77. Kishimoto, N., Yamamoto, I., Toraishi, K., Yoshioka, S., Saito, K., Masuda, H., Fujita, T.,2003. Twodistinct pathways for the formation of hydroxy FA from linoleic acid by lactic acid bacteria. Lipids38,1269-1274.
    78. Kung, L., Taylor, C.C., Lynch, M.P., Neylon, J.M.,2003. The effect of treating alfalfa withLactobacillus buchneri40788on silage fermentation, aerobic stability, and nutritive value for lactatingdairy cows. Journal of Dairy Science86,336-343.
    79. Lan, W.T., Chen, Y.S., Wu, H.C., Yanagida, F.,2012. Bio-protective potential of lactic acid bacteriaisolated from fermented wax gourd. Folia Microbiologica57,99-105.
    80. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobbetti, M.,2000. Purificationand characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain21B. Applied and Environmental Microbiology66,4084-4090.
    81. Lavermicocca, P., Valerio, F., Visconti, A.,2003. Antifungal activity of phenyllactic acid against moldsisolated from bakery products. Applied and Environmental Microbiology69,634-640.
    82. Li, H., Liu, L., Zhang, S., Cui, W., Lv, J.,2012. Identification of Antifungal Compounds Produced byLactobacillus casei AST18. Current Microbiology65,156-161.
    83. Li, X., Jiang, B., Pan, B.,2007. Biotransformation of phenylpyruvic acid to phenyllactic acid bygrowing and resting cells of a Lactobacillus sp. Biotechnology Letters29,593-597.
    84. Li, X., Jiang, B., Pan, B., Mu, W., Zhang, T.,2008. Purification and partial characterization ofLactobacillus species SK007lactate dehydrogenase (LDH) catalyzing phenylpyruvic acid (PPA)conversion into phenyllactic acid (PLA). Journal of Agricultural and Food Chemistry56,2392-2399.
    85. Lind, H., Jonsson, H., Schnurer, J.,2005. Antifungal effect of dairy propionibacteria-contribution oforganic acids. International Journal of Food Microbiology98,157-165.
    86. Magnusson, J.,2003. Antifungal activity of lactic acid bacteria, Acta Universitatis Agriculturae Sueciae-Agraria, pp.38pp.-38pp.
    87. Magnusson, J., Schnurer, J.,2001. Lactobacillus coryniformis subsp. Coryniformis strain Si3produces abroad-spectrum proteinaceous antifungal compound. Applied and Environmental Microbiology67,1-5.
    88. Magnusson, J., Strom, K., Roos, S., Sjogren, J., Schnurer, J.,2003. Broad and complex antifungalactivity among environmental isolates of lactic acid bacteria. Fems Microbiology Letters219,129-135.
    89. Mandal, N.C., Das, S., Mandal, V.,2009. Antifungal activity from a food grade lactic acid bacteriumPediococcus acidilactici. Abstracts of Papers of the American Chemical Society237,126-126.
    90. Mauch, A., Dal Bello, F., Coffey, A., Arendt, E.K.,2010. The use of Lactobacillus brevis PS1to in vitroinhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley.International Journal of Food Microbiology141,116-121.
    91. Mizushima, N.(2007). Autophagy: process and function. Genes&Development,21(22),2861-2873.
    92. Mizushima, N., Levine, B., Cuervo, A. M.,&Klionsky, D. J.(2008). Autophagy fights disease throughcellular self-digestion. Nature,451(7182),1069-1075.
    93. Montalban-Lopez, M., Sanchez-Hidalgo, M., Valdivia, E., Martinez-Bueno, M., Maqueda, M.,2011.Are Bacteriocins Underexploited? NOVEL Applications for OLD Antimicrobials. CurrentPharmaceutical Biotechnology12,1205-1220.
    94. Mu, W., Chen, C., Li, X., Zhang, T., Jiang, B.,2009. Optimization of culture medium for the productionof phenyllactic acid by Lactobacillus sp SK007. Bioresource Technology100,1366-1370.
    95. Muhialdin, B.J., Hassan, Z., Sadon, S.K.,2011. Antifungal Activity of Lactobacillus fermentum Te007,Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5on Selected Foods.Journal of Food Science76, M493-M499.
    96. Nakata, H., Hasegawa, H., Sakurai, H., Tamura, M.,2010. Distinctive Flavor and Strong AntifungalActivity in a Sourdough Bread Made Using Unique Lactic Acid Bacteria Obtained from a Sugar Factory.Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku KogakuKaishi57,85-90.
    97. Ndagano, D., Lamoureux, T., Dortu, C., Vandermoten, S., Thonart, P.,2011. Antifungal Activity of2Lactic Acid Bacteria of the Weissella Genus Isolated from Food. Journal of Food Science76,M305-M311.
    98. Niku-Paavola, M.L., Laitila, A., Mattila-Sandholm, T., Haikara, A.,1999. New types of antimicrobialcompounds produced by Lactobacillus plantarum. Journal of Applied Microbiology86,29-35.
    99. Nishino, N., Wada, H., Yoshida, M., Shiota, H.,2004. Microbial counts, fermentation products, andaerobic stability of whole crop corn and a total mixed ration ensiled with and without inoculation ofLactobacillus casei or Lactobacillus buchneri. Journal of Dairy Science87,2563-2570.
    100. Nakatogawa, H., Suzuki, K., Kamada, Y.,&Ohsumi, Y.(2009). Dynamics and diversity in autophagymechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology,10(7),458-467.
    101. Okkers, D.J., Dicks, L.M.T., Silvester, M., Joubert, J.J., Odendaal, H.J.,1999. Characterization ofpentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistaticeffect on Candida albicans. Journal of Applied Microbiology87,726-734.
    102. Prachyakij, P., Charernjiratrakul, W., Kantachote, D.,2008. Improvement in the quality of a fermentedseaweed beverage using an antiyeast starter of Lactobacillus plantarum DW3and partial sterilization.World Journal of Microbiology&Biotechnology24,1713-1720.
    103. Prema, P., Smila, D., Palavesam, A., Immanuel, G.,2010. Production and Characterization of anAntifungal Compound (3-Phenyllactic Acid) Produced by Lactobacillus plantarum Strain. Food andBioprocess Technology3,379-386.
    104. Reich, L.J., Kung, L., Jr.,2010. Effects of combining Lactobacillus buchneri40788with various lacticacid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science andTechnology159,105-109.
    105. Rhee, K.H.,2004. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and haveanti-mutagenic properties. International Journal of Antimicrobial Agents24,423-427.
    106. Rizzello, C.G., Cassone, A., Coda, R., Gobbetti, M.,2011. Antifungal activity of sourdough fermentedwheat germ used as an ingredient for bread making. Food Chemistry127,952-959.
    107. Ross, R.P., Morgan, S., Hill, C.,2002. Preservation and fermentation: past, present and future.International Journal of Food Microbiology79,3-16.
    108. Rouse, S., Harnett, D., Vaughan, A., van Sinderen, D.,2008. Lactic acid bacteria with potential toeliminate fungal spoilage in foods. Journal of Applied Microbiology104,915-923.
    109. Roy, U., Batish, V.K., Grover, S., Neelakantan, S.,1996. Production of antifungal substance byLactococcus lactis subsp lactis CHD-28.3. International Journal of Food Microbiology32,27-34.
    110. Ryan, L.A.M., Dal Bello, F., Arendt, E.K.,2008. The use of sourdough fermented by antifungal LAB toreduce the amount of calcium propionate in bread. International Journal of Food Microbiology125,274-278.
    111. Ryan, L.A.M., Dal Bello, F., Arendt, E.K., Koehler, P.,2009. Detection and Quantitation of2,5-Diketopiperazines in Wheat Sourdough and Bread. Journal of Agricultural and Food Chemistry57,9563-9568.
    112. Ryan, L.A.M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P., Arendt, E.K.,2011. Lactobacillusamylovorus DSM19280as a novel food-grade antifungal agent for bakery products. InternationalJournal of Food Microbiology146,276-283.
    113. Saito, T.,2004. Selection of useful probiotic lactic acid bacteria from the Lactobacillus acidophilusgroup and their applications to functional foods. Animal Science Journal75,1-13.
    114. Sanchez, A., Herrero, M., Garcia, L.A., Diaz, M.,2007. Isolation and efficiency of lactic acid bacteriaof interest in cider production. Journal of Biotechnology131, S184-S185.
    115. Sathe, S.J., Nawani, N.N., Dhakephalkar, P.K., Kapadnis, B.P.,2007. Antifungal lactic acid bacteriawith potential to prolong shelf-life of fresh vegetables. Journal of Applied Microbiology103,2622-2628.
    116. Schaefer, L., Auchtung, T.A., Hermans, K.E., Whitehead, D., Borhan, B., Britton, R.A.,2010. Theantimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interactionwith thiol groups. Microbiology-Sgm156,1589-1599.
    117. Schmidt, R.J., Kung, L., Jr.,2010. The effects of Lactobacillus buchneri with or without a homolacticbacterium on the fermentation and aerobic stability of corn silages made at different locations. Journalof Dairy Science93,1616-1624.
    118. Schwenninger, S.M., Lacroix, C., Truttmann, S., Jans, C., Spoerndli, C., Bigler, L., Meile, L.,2008.Characterization of Low-Molecular-Weight Antiyeast Metabolites Produced by a Food-ProtectiveLactobacillus-Propionibacterium Coculture. Journal of Food Protection71,2481-2487.
    119. Schwenninger, S.M., Meile, L.,2004. A mixed culture of Propionibacterium jensenii and Lactobacillusparacasei subsp paracasei inhibits food spoilage yeasts. Systematic and Applied Microbiology27,229-237.
    120. Sjogren, J., Magnusson, J., Broberg, A., Schnurer, J., Kenne, L.,2003. Antifungal3-hydroxy fatty acidsfrom Lactobacillus plantarum MiLAB14. Applied and Environmental Microbiology69,7554-7557.
    121. Stoyanova, L.G., Ustyugova, E.A., Sultimova, T.D., Bilanenko, E.N., Fedorova, G.B., Khatrukha, G.S.,Netrusov, A.I.,2010. New antifungal bacteriocin-synthesizing strains of Lactococcus lactis ssp. lactis asthe perspective biopreservatives for protection of raw smoked sausages. American Journal ofAgricultural and Biological Sciences5,477-485.
    122. Strom, K., Schnurer, J., Melin, P.,2005. Co-cultivation of antifungal Lactobacillus plantarum MiLAB393and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FemsMicrobiology Letters246,119-124.
    123. Strom, K., Sjogren, J., Broberg, A., Schnurer, J.,2002. Lactobacillus plantarum MiLAB393producesthe antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and3-phenyllactic acid. Applied and Environmental Microbiology68,4322-4327.
    124. Tanaka, O., Komatsu, T., Oshibe, A., Cai, Y., Miyazaki, S., Nakanishi, K.,2009. Production of3-Hydroxypropionaldehyde in Silage Inoculated with Lactobacillus coryniformis Plus Glycerol.Bioscience Biotechnology and Biochemistry73,1494-1499.
    125. Taylor, C.C., Kung, L.,2002. The effect of Lactobacillus buchneri40788on the fermentation andaerobic stability of high moisture corn in laboratory silos. Journal of Dairy Science85,1526-1532.
    126. Valerio, F., Lavermicocca, P., Pascale, M., Visconti, A.,2004. Production of phenyllactic acid by lacticacid bacteria: an approach to the selection of strains contributing to food quality and preservation. FemsMicrobiology Letters233,289-295.
    127. Voulgari, K., Hatzikamari, M., Delepoglou, A., Georgakopoulos, P., Litopoulou-Tzanetaki, E.,Tzanetakis, N.,2010. Antifungal activity of non-starter lactic acid bacteria isolates from dairy products.Food Control21,136-142.
    128. Wang, H., Sun, Y., Chen, C., Sun, Z., Zhou, Y., Shen, F., Zhang, H., Dai, Y.,2013. Genome shuffling ofLactobacillus plantarum for improving antifungal activity. Food Control32,341-347.
    129. Wang, H., Yan, Y., Wang, J., Zhang, H., Qi, W.,2012a. Production and Characterization of AntifungalCompounds Produced by Lactobacillus plantarum IMAU10014. Plos One7.
    130. Weinberg, Z.G., Ashbell, G., Hen, Y., Azrieli, A., Szakacs, G., Filya, I.,2002. Ensiling whole-crop wheatand corn in large containers with Lactobacillus plantarum and Lactobacillus buchneri. Journal ofIndustrial Microbiology&Biotechnology28,7-11.
    131. Wessels, S., Axelsson, L., Hansen, E.B., De Vuyst, L., Laulund, S., Lahteenmaki, L., Lindgren, S.,Mollet, B., Salminen, S., von Wright, A.,2004. The lactic acid bacteria, the food chain, and theirregulation. Trends in Food Science&Technology15,498-505.
    132. Yang, E.J., Chang, H.C.,2010. Purification of a new antifungal compound produced by Lactobacillusplantarum AF1isolated from kimchi. International Journal of Food Microbiology139,56-63.
    133. Yang, E.J., Kim, Y.S., Chang, H.C.,2011. Purification and Characterization of Antifungaldelta-Dodecalactone from Lactobacillus plantarum AF1Isolated from Kimchi. Journal of FoodProtection74,651-657.
    134. Zhang, C., Brandt, M.J., Schwab, C., Gaenzle, M.G.,2010. Propionic acid production bycofermentation of Lactobacillus buchneri and Lactobacillus diolivorans in sourdough. FoodMicrobiology27,390-395.
    135. Zhang, T., Li, L., Wang, X.-f., Zeng, Z.-h., Hu, Y.-g., Cui, Z.-j.,2009. Effects of Lactobacillus buchneriand Lactobacillus plantarum on fermentation, aerobic stability, bacteria diversity and ruminaldegradability of alfalfa silage. World Journal of Microbiology&Biotechnology25,965-971.
    136. Zheng, Z., Ma, C., Gao, C., Li, F., Qin, J., Zhang, H., Wang, K., Xu, P.,2011. Efficient Conversion ofPhenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM. Plos One5,65-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700