甜瓜枯萎病菌拮抗细菌在不同耕作土壤中的分布及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从杭州菜园地、嘉兴大棚甜瓜田采集不同来源根际土壤和非根际土壤共14批(每批3份),利用平板稀释法和对峙法测定细菌、枯萎病菌数量及拮抗细菌的分布,结果显示,轮作后细菌总量明显增加,枯萎病菌数量降低,细菌和真菌比值(B/F值)增加,同时土壤中细菌数量越多,拮抗细菌的比例越高,尤其以大蒜与甜瓜轮作细菌数量最多,拮抗细菌比例也最高;细菌数量以菜园土壤中最高,甜瓜根际土壤次之,非根际土壤中数量最少。从14批土壤中共分离获得840个细菌分离物,在离体条件下测定他们对甜瓜枯萎病菌(Fusarium oxysporum f.sp melonis)的拮抗能力,结果显示43个菌株具有拮抗性,占总检测数的5.11%,其中分离自甜瓜根际土壤和非根际土壤的拮抗菌株为17个和10个,分别占5.67%和3.33%;分离自菜园蔬菜根际的拮抗菌株16个,占6.67%。经复筛后从中获得15个拮抗性较好的菌株,平板对峙法测定拮抗指数大小,结果表明,拮抗指数在2.0以上的拮抗细菌有9个,其中大多数来自根际土壤,1.0~2.0之间的有4个,1.0以下的有2株。数据显示,土壤中细菌数量的多少与拮抗细菌的分布有一定的关系,细菌总量与拮抗细菌数成正比;菜园土中细菌数量与拮抗细菌比例高于大棚甜瓜土壤;甜瓜大棚根际土壤细菌数量与拮抗细菌比例都明显高于非根际土壤,而且根际土壤中筛选出的拮抗细菌普遍拮抗指数高,离体拮抗作用强。
     选取离体拮抗作用较好的9个拮抗菌株进行拮抗稳定性和抑菌谱测定,筛选出拮抗作用较稳定且抑菌谱宽的拮抗菌株7个,各菌株的培养滤液对菌丝生长和分生孢子萌发的抑制作用测定表明,它们均表现不同程度的抑菌活性,其中菌株Hc2和Hc3的抑制作用最强,培养滤液稀释50%时能完全抑制菌丝生长;凹玻片法测定拮抗细菌培养滤液与分生孢子悬浮液混合后抑制孢子萌发率的结果表明,Ec50值越低,抑制力越强,Hc3菌株的培养滤液在5%时抑制率也达50%。
     对7株拮抗细菌处理盆栽甜瓜种子后发现,Hc1,Hc2,Hc3和Jt6四个拮抗细菌表现较好的促生作用,其中菌株Hc2对芽和胚根的促生效果最好;Hc1、Hc3和Jt6则对幼苗的生长有一定的促进作用。在对甜瓜幼苗的防效试验中,4株拮抗细菌在处理后10天有很好的防效,相对防效最高可达65.4%,但是在处理后20天,防效显著降低。
    
     16个桔抗菌株的细菌学、Biolog和分子生物学(RenPCR)鉴定表明,阴性粘抗菌
    株大多数属于Pseudomonas spp,是土壤中的优势菌株,部分属于Burkholderta SPP.;
    Biolog 鉴定相 《 性在 0.50 以上的种有 尸ae峪lviosa;Wu订d;Presinovorans;
    叭o删censC P v个法广人。州和 Bu啪oWM c叩acm。
Fourteen batches (42 samples) of different soils were collected from vegetable garden and muskmelon field in Hangzhou and Jiaxin of Zhejiang province and the proportion of antagonistic bacteria to the total in the soils was measured. The result showed that the ratio of total number of bacteria and Fusarium oxysporum improved in the soils of crop rotation, the number of Fusarium oxysporum greatly decreased and the antagonistic bacteria increased. Especially in the soil of muskmelon and garlic rotation the number of the antagonistic bacteria was the highest. Eight hundreds and forty bacterial isolates were isolated from the soil samples and screened in vitro for antagonists against Fusarium oxysporum f.sp.melonis. It showed that 43 strains, 5.11% of total, were antagonistic to the pathogen. Among them 17 strains from the rhizosphere of muskmelon soil, 5.67% of total, were antagonists; 10 strains from the non-rhizosphere soil of muskmelon, 3.33% antagonists and 16 strains from rhizosphere soil of the vegetable garden, 6.67% of total antagonists. Fifteen strains were further tested for the antagonistic index, of which 9 strains were above 2.0 and 4 strains were between 1.0 to 2.0. The distribution of antagonistic bacteria was correlated to the total number of bacteria in the soils. In general the more the number of bacteria were in the soil, the higher the proportion of antagonistic bacterium. The proportion of the antagonistic bacteria to total number in the vegetable garden soil was higher than those of the melon soil; the proportion in the soil of rhizosphere was also higher than those of in non-rhizosphere soil. It was noted that the antagonistic bacteria from the rhizosphere soil were stronger against the pathogen than those from non-rhizosphere in vitro.
    Nine stronger antagonistic strains were further tested for their antagonistic stability and anti-fungal spectra and 7 of them selected. Their culture filtrates were tested for their effect on inhibiting mycelial growth and conidial germination. It showed that strains Hc2 and Hc3 were strongest among the 7 strains. At the concentration of 50% they completely suppressed mycelial growth. Even if at the concentration of 5% they still inhibited 50% of conidia germination. The treatments of the melon seed dressing in pots showed that 4 strains, Hcl, Hc2, Hc3 and Jt6, were not only antagonistic to the pathogens but also had effect on
    
    
    
    growth-promoting of the melon seedlings. They performed better control effect 10 days after treatment and the highest relatively control effect reached 65.4%. However, the control effect decreased obviously 20 days after the treatment. Identification of the antagonistic bacterial strains by bacteriological, Biolog and molecular biological test (RAPD-PCR) showed that among 16 Gram negative strains most of them belong to Pseudomonas spp. and they were predominant in the isolation. The species with over 0.50 of Biolog similarity were P.aeruginosa; P.putida; P.resinovorans; P.fluorescens C; P.viridilivida A Burkholderia cepacia.
引文
1.黄大昉等编.农业微生物基因工程.科学出版社,2001:316
    2. Fravel D. R., Larkin R. P.. Reduction of Fusarium wilt of hydroponically grown basil by Fusarium oxysporum strain CS-20. Crop Protection, 2002 (21): 539-543
    3.黄晓东,卢林刚.植物促生菌及其促生机理(续).现代化农业,2002 (7):13-15
    4.台莲梅,金红等.农作物病虫害生物防治研究进展.黑龙江八一农垦大学学报,2002,14 (3):21-23
    5.王玉菊,祁红英.植物土传病害的微生物防治研究进展.世界农业,1995 (1):37-39
    
    
    6. Linderman R. G.. Transaction of 15th world congress of soil science. Acapuco Mexico, 1994, Vol, 49: 3-8
    7. Linderman R. G.. Phytopathology, 1988, 78: 366-371
    8.刘永军.利用拮抗微生物防治土传病害.国外农学:植物保护,1993,6 (1):34-35
    9.张耀宏.用拮抗微生物防治土传病害的技术.农业新技术新译丛,1993,6 (2):38-40
    10. Booth, C. The genus Fusarium. C. M. London, 1971
    11. Fuches, J. G. et al. Nonpathogenic Fusarium oxysporum strain Fo47 induces resistence to Fusarium wilt in tomato. Plant disease, 1997, 81: 492-496
    12. Ruiz Roldan et al. Cross protection provides evidence for race-specific avirulence factors in Fusarium oxysporum. Physiolpgical and inclecular Pathology, 1999, 54: 63-72
    13. Larkin R. P, Hopkin D. L. etal. Supression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganism recovered from a disease-suppression soil. Phytophthology, 1996, 86:812-819
    14. Larkins R. P, Fravel D. L. Efficacy of various fungal and bacterial biocontrol organisms control of Fusarium wilt of tomato. Plant disease, 1998, 82: 1022-1028
    15. Mandeel. Q., Baker R. Mechnism involved in biological control of Fusarium wilt of cucumber wilt strains of nonpathologic Fusarium oxysporum. Phytophthology, 1991, 81: 462-469
    16.华中农业大学,南京农业大学.微生物学(第四版).北京:中国农业出版社,1999:166-168
    17.刘润进,李晓杯.丛枝菌根及其应用.北京:科学出版社,2000:1-224
    18.王艳玲,胡正男.VA菌根真菌对番茄线虫病的影响.华中农业大学学报,2000,19 (1):25-28
    19.刘润进,沈祟尧,袭维番.关于VAM菌与黄萎病菌存在侵染土中的竞争作用.土壤学报,1994(31):224-229
    20.李敏,孟祥,姜吉强等.AM真菌与西瓜枯萎病关系初探.植物病理学报,2000,30(4):327-331
    21. Barcea, JM et al. Internations between mycorrhizal Fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems In: GANGE ac vk multitrophic interactions in terrestrial systems. Blackkwell, oxford, 1996, 385-399
    22. Chen Wenshaw, Chiu ChienChih, Liu HoYih, et al. Gene transfer via pollen-tube pathway for anti-Fusarium wilt in watermelon. Biochemistry-and-Molecular-Biology-International. 1998, 46(6): 1201-1209
    
    
    23.李长松.拮抗性细菌生物防治植物土传病害的研究进展.生物防治通报,1992,8 (4):168-172
    24.郭坚华,李师默,祁红英.PGPR在土传病害生物防治中的应用.世界农业,1995,8:34-36
    25.但汉鸿,王道本.植物促生菌的防病机制.植物保护,1992,4:40-43
    26.李仲强,谭周进.耕作制度对土壤微生物区系的影响.湖南农业科学,2001,(2):24-25
    27.肖炎农.淡紫拟青霉几丁质酶对南方根线虫的影响.中国生物防治,1997,19 (1):39-41
    28. Curl E. A, Truelove B. The rhizosphere. Berlin springer Verlag. 1986
    29. Yu. Y. H, Koreau. Journal of plant pathology. 1987, 3(4): 318-319
    30.郭坚华,李师默,祁红英.PGPR在土传病害生物防治中的应用(上).世界农业,1995,(8):34-36
    31.李洪连.根际微生物多样性与棉花品种对黄萎病抗性关系研究.植物病理学报,1998,28(4):60-65
    32.王政逸.浙江小麦根围土壤腐霉的一些生态学研究.植物病理学报,1996,26 (1):28-35
    33.胡峰.两种基因型小麦根际土壤生物动态及根际效应.土壤通报,1998,29 (3):133-137
    34. Elory A. et al. Rhizosphere springer-verlag beidelberg. New York, Tokyo. 1986: 55-91
    35.朱国鹏,沈宏.根系分泌物研究方法(综述).亚热带植物科学.2002,31 (增刊):15-21
    36.熊明彪,何建平,宋光烃.根分泌物对根际微生物生态分布的影响.土壤通报,2002,33 (2):135-139
    37. Liljerothe, et al. Root exudation and rhizoplane bacterial aboundance of barley in relation to nitrogen fertilization and root growth. Plant and soil, 1990, 127: 81-89
    38.陈华癸.微生物学.北京:农业出版社,1988,130-132
    39. Beijing Agricultural University compiling (北京农大编译室). Advance in plant Rhizosphere Ecology and Bio-pretention for root disease. Beijing: people university press of china, 1996, 44-94
    40. Chaboud. A. Solation, purification and chemical compositon of maize root cap slime. Plant and soil, 1991, 73: 395-402
    41. Darrah Darrah PR.. Models of the rhizosphere Ⅱ. A quasi three-dimentional simulation of the microbial population dynamics around a growing root releasing soluable exudates. Plant and soil. 1983, 14: 138-158
    42.李振高,万焕耀等.水稻根际反硝化菌生态分布的研究.土壤学报,1987,24(2):120-125
    43.刘素萍,杨之为.根系分泌物对土壤病菌的生长有直接的影响.生态农业研究,1998,6(2):
    
    34-36
    44. Li-H-L(李洪连), Fang-w-p(房卫平). Mechanism of biochemistry for anti-yellow dwarf of cotton Ⅱ. Effect of exeuation of different anti-presertie (化学生态学) 1998, 2: 177-180
    45. Smikey Rw, cookR. J. Relationship between take-all of wheat and photosphere pH in soils fertilized with mumonium VS Nitraunitragen[J]. Phytopothol, 1973, 63: 882-890
    46.王震宇等.重茬大豆生长发育障碍机制初探.大豆科学,1991,10(1):31-36
    47.许艳丽等.重迎茬大豆土壤微生物生态分布特征研究.大豆重迎茬研究,哈尔滨哈尔滨工程大学出版社,1995:12-16
    48.张庆平.荞麦根分泌物对小麦全蚀病菌的抑制及根际微生物种群数量观察.内蒙古农业科技,1994,(1):8-9
    49. Rovira A. D. Plant roor excretions in relation to the rhizosphere effect. Plant and soil, 1956, 36 (2): 178-194
    50.北京农业大学植保系植物生态病理教研室编译.植物根际生态学与根病生物防治进展.北京:中国人民大学出版社.1990,78-84
    51.王大力,林伟宏.CO2浓度升高对水稻根系分泌物的影响-总有机酸、甲酸和乙酸含量变化.生态学报,1999,19(4):570-572
    52.Booth C (陈其瑛译).镰刀菌属.北京:农业出版社,1988
    53.黄仲生,杨玉茹.中国黄瓜枯萎病菌生理小种鉴定及防治.华北农学报,1994,9 (4):81-86
    54.戚佩坤.瓜类枯萎病菌专化型研究简介.华南农业大学学报,1995,16 (4):110-114
    55.谢大森,陈家旺.西瓜枯萎病研究进展.江西农业大学学报,1997,19 (4):42-44
    56. Crall J M. Physiologic races in Fusarium oxysporum f. so. niveum. Phytopathology, 1963, 53(3): 873
    57. Netzer D. Physiologic races and soil population level of Fusarium wilt of watermelon. Phytoparasitica, 1976, (4): 131-136
    58.许勇,张海英.西瓜抗枯萎病育种分子标记辅助选择的研究.遗传学报,2000,27 (2):151-157
    59.孙玉宝,张国桥,杜念华等.甜瓜抗枯萎病的遗传与育种.长江蔬菜,2000,2 (2):1-3
    60.冯东沂,李宝栋.黄瓜枯萎病病原菌研究及抗病育种进展.中国蔬菜,1994,(5):56-58
    61.黄秀娟,吴定华.黄瓜抗枯萎病离体鉴定技术的研究.华南农业大学学报,2001,22 (1):39-41,45
    62.Yoshihisa Homma.日本土传病害防治现状(下).世界农业,1993,(6):41-43
    63.马利平,高芬,乔雄梧.家畜沤肥浸渍液对黄瓜枯萎病的防治及作用机理探析,植物病理学报,
    
    1999,29 (3):270-274
    64.郝秀娟,王万立,刘耕春等,土壤添加物防治作物土传病害研究概述.天津农业科学,2000,16 (2):52-54
    65. P. Trion Feui, Nisini, G. colla. E. Granati. et al. Rootstock resistance to Fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 2002, 93: 281-288
    66. Park, C S. Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putidaand nonpathogenic isolates of Fusarium oxysporum. Phytopathology, 1988, 78 (2): 190-194
    67. Robert P, Larkin, DonaldL, et al. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusariumoxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology, 1996, 86(2): 812-819
    68. Singh PP et al. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 1998, 89(3): 92-99
    69. Maurhofer M, Keel C, Haas D, et al. Influence of plant species on disease suppression by Pseudomonas fluorenscens CHAO with enhanced antibiotic production. Plant Pathology, 1995, 44(1): 40-51
    70.刘志萍,李开本,翁启勇等,农作物病虫害生物防治的研究进展,世界农业,1998,12:30-32
    71.田波.植物病毒病害生物防治途径的探讨.生物防治通报,1985,1 (2):41-45
    72. F. J. Louws, M Wilson, H. L. Campbell. Field control of Bacterial spot and Bacterial speck of Tomatollsing a plant Activator. Plant disease, 2001, 85 (5): 481-488
    73.黄大昉.遗传工程微生物在生物防治中的应用.生物防治通报,1993,9 (1):32-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700