环境因子对球等鞭金藻生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以球等鞭金藻为对象,运用一系列单因素实验和正交实验,分析了常量元素,维生素和微量元素等营养条件以及温度,光照,pH和通气速率等环境条件与球等鞭金藻生长的关系,确定了球等鞭金藻培养的优化营养条件和环境条件;利用柱状光生物反应器和平板式光生物反应器培养球等鞭金藻,研究了培养条件以及补加营养,流加培养和半连续培养等培养模式对球等鞭金藻生长的影响,确定了球等鞭金藻高密度培养的工艺条件;采用乙酸乙酯萃取,Sephadex G-15凝胶过滤,制备薄层层析和C_(18)反相高效液相色谱等分离纯化方法成功地分离出一种微藻生长抑制物,确定了其化学结构,并对其性质和抑藻活性进行了定性探讨;此外,还在抗氧化剂对生长抑制物抑藻效应的抵制以及环境因子对球等鞭金藻胞外碳酸酐酶活性的调节,质膜氧化还原活性与胞外碳酸酐酶活性的关系以及某些抑制剂对球等鞭金藻无机碳利用的抑制作用等方面进行了探索,为球等鞭金藻高密度大规模培养提供理论依据。主要研究结果如下:
     1、获得优化培养基配方和培养条件
     培养基配方:NaNO_3,45.5 mg;KH_2PO_4,2.195 mg;Na_2SiO_3,0.8714 mg;NaHCO_3,20 mg;微量元素溶液1 mL(MnCl_2·2H_2O,15.8336 mg;CuSO_4·5H_2O,14.9808 mg;ZnSO_4·7H_2O,0.2013 mg;Na_2MoO_4·2H_2O,0.7295 mg;CoCl_2·6H_2O,23.795 mg;FeCl_3·6H_2O,482.7 mg;Na_2EDTA,0.665 g;1 L蒸馏水配制),维生素溶液1 mL(维生素B_1,100 mg;维生素B_(12),0.5 mg,1 L蒸馏水配制);1 L海水配制。
     培养条件:温度25℃,pH 8.0,光强7500 lx,通气速率0.2 vvm。采用上述条件,在PhR-L20C光生物反应器中对球等鞭金藻进行了培养,其生物量产量达到1.3 g/L。
     2、确定了优化的培养工艺条件
     通过一系列的单因素实验和正交实验,在平板式光生物反应器中,光径,光强和通气速率分别为5 cm,7000 lx和0.375 vvm时是最佳培养条件。采用该优化条件对球等鞭金藻进行一次性培养,生物量产量达到2.2 g/L。同时还对流加培养,半连续培养和补加营养等培养工艺对球等鞭金藻生长的影响进行了研究,发现流加培养和半连续培养两种培养方式更适合该藻的培养。
     3、获得了一种生长抑制物并确定了其化学结构
     以球等鞭金藻高密度培养物的无细胞滤液对球等鞭金藻和其它微藻进行培养,发现了一种生长抑制物,研究表明该抑制物具有广泛的抗藻活性,不仅抑制自身藻细胞生长,而且抑制牟氏角毛藻等其它微藻的生长。随后对该生长抑制物的分离提取工艺进行了研究,其最适提取工艺为:pH2-3,提取时间3 h,提取料液比10:1,提取溶剂乙酸乙酯。在此基础上,运用乙酸乙酯萃取,Sephadex G-15凝胶柱层析过滤,硅胶G制备薄层层析和C_(18)反相高效液相色谱等分离纯化方法获得了该生长抑制物的纯品;采用紫外光谱,质谱,核磁共振碳谱和氢谱以及核磁共振二维谱等手段确定了其化学结构为1-羟基,丙二酸二乙酯-十二烯酸异丙酯(C_(22)H_(38)O_7),分子量为414。
     深入研究发现,该抑制物能明显降低球等鞭金藻和牟氏角毛藻等微藻细胞内叶绿素含量,硝酸还原酶,过氧化物酶和超氧化物歧化酶的活性,提高细胞内丙二醛含量和胞外可溶性蛋白质与多糖含量的比值,从而通过影响细胞的光合作用,细胞内营养平衡,细胞内活性氧浓度以及细胞表面的疏水性,对微藻细胞的生长产生强烈的抑制效应。此外,发现抗氧化剂能够明显抵制该生长抑制物对球等鞭金藻的抑制效应,其主要机理可能是抗氧化剂能够有效地清除生长抑制物胁迫下藻细胞内积累的活性氧,减轻藻细胞的膜脂过氧化伤害。
     4、探索了细胞外碳酸酐酶活性与球等鞭金藻无机碳利用的关系
     碳酸酐酶(CA)是CO_2浓缩机制组成部分,在光合CO_2固定中起着较重要的作用。我们的研究结果表明,氮,磷,Zn~(2+),无机碳,光强,通气速率和pH等因素均能调节球等鞭金藻胞外碳酸酐酶活性。此外,我们注意到细胞质膜氧化还原活性,乙酰唑磺胺(AZ)和乙氧苯唑胺(EZ)等对球等鞭金藻无机碳的利用有直接的影响,同时还发现DIDS (4′4′-diisothiocyanatostilbene-2,2-disulfonic acid)和SITS(4-acetamido-4’-isothiocyano-2,2’-stibene-disulfonate)等对球等鞭金藻无机碳的利用也有一定的影响,进而我们获知球等鞭金藻具有依赖胞外CA,膜ATP酶,带Ⅲ蛋白以及Na~+/HCO_3~-协同转运系统间接和直接利用HCO_3~-的能力。
Isochrysis galbana, a species of marine microalgae, which is of substantial interest inaquaculture for its good nutritive characteristics, especially to mollusks larvae, fish andcrustaceans in the early stages of growth. Inorder to explore ways of high density culture, aseries of researches were carried out from the basic cultures in small bottles, high densitycultures in the photobioreactors, the isolation and identify of the growth-inhibitor to themechanism of dissolved inorganic carbon (DIC) utilization in Isochrysis galbana. The mainresults are summarized as following.
     1. The optimal medium and culture conditions of Isochrysis galbana
     The optimum medium: NaNO_3 45.5 mg/L, KH_2PO_4 2.195 mg/L, Na_2SiO_3 0.8714 mg/L,NaHCO_3 20 mg/L, MnCl_2·2H_2O 15.8336μg/L, CuSO_4·5H_2O 14.9808μg/L, ZnSO_4·7H_2O0.2013μg/L, Na_2MoO_4·2H_2O 0.7295μg/L, CoCl_2·6H_2O 23.795μg/L, FeCl_3·6H_2O 482.7μg/L, Na_2EDTA 0.665 mg/L, VB_1 100μg/L and VB_(12) 0.5μg/L were added to natural seawater.
     The optimum culture conditions: tempature 25℃, pH 8.0, light intensity 7500 1x andaeration rate 0.2 vvm. 1.3 g/L of dry cell biomass was obtained in eight days culture under theoptimal cultural conditions.
     2. The mode of high density culture in photobioreactors
     The optimal culture conditions and the fed-batch culture, semi-continuous culturesmode was established in the plate photobioreactors. Under the conditions of 5 cm light-path,7000 1x light intensity, 0.375 vvm aeration rate and semi-continuous culture mode, themaximal dry cell biomass of 2.2 g/L was determined in 8 days in plate photobioreactors. Theresults showed that the fed-batch culture, especially fed-batch culture with various feed rateand semi-continuous cultures, was more favorable for the growth of Isochrysis galbana.
     3. Isolation and identified a kind of microalgal growth-inhibitor
     A type of antialgal substanceswas found by the cultures of cell-free filtrates whichgotten from culture suspension at the three growth phases (exponential, stationary and deathphase) of Isochrysis galbana. Results showed that, as the age of Isochrysis galbana culturesadvances, the concentration of the antialgal substances in cultural liquid increases, and whichsuggested that Isochrysis galbana produced gradually antialgal substances from the exponential growth phase up to the death phase. The growth inhibitory rates of Isochrysisgalbana by cell-free filtrates at the three phases were 7.17%, 34.2% and 64.1% in day 10,respectively. The crude,antialgal substance (CEAE) was extracted out from the old culturalliquid by ethyl acetate, which also showed significant inhibitory effects on growth ofIsochrysis galbana. When CEAE concentrations was from 3.6 mg/L to 21.6 mg/L, the growthinhibitory rate of Isochrysis galbana by CEAE were 12.9%, 27.5%, 29.3%, 59.5% and 67.2%in day 6, respectively. The CEAE could significantly (P<0.05) inhibit the cell growth of thesix species of marine feed microalgae too, at the concentration of 21.6 mg/L, the growthinhibitory rate of Chaetoceros muelleri, Chaetoceros gracilis, Phaeodactylum tricornutum,Nitzschia closterium, Platymonas elliptica, Dunaliella salina was 63.3%, 59.6%, 61.1%,66.2%, 68.3% and 48.5% in day 6, respectively. And the biochemical compositions in thecells of Isochrysis galbana and the six species of marine feed microalgae also could beaffected by CEAE.
     The growth-inhibitor was successful isolated and purified from CEAE. Molecularformula of the growth-inhibitor, C_(22)H_(38)O_7, was determined by FABMS, m/z 414 [M-H]-. InUV spectrum the maximum absorption was at 278 nm that suggested the presence ofO=C-C=C functionality. The ~(13)C-NMR spectrum of the growth-inhibitor showed 22 carbonsignals, including three carbonyl carbon signals (6167.9, 167.9 and 167.89), threeoxymethylene carbon signals (δ72.0, 65.7 and 65.7), four methyl carbon signals (δ30.8, 30.8,19.8 and 19.8), one ethylene carbon signal (δ132.5 and 129.1), one quaternary carbon signal(δ77.4), one methine carbon signal (δ27.9) and eight methylene carbon resonances. Fourmethyl proton signals (δ1.72, 1.72, 0.99 and 0.99) were observed in the ~1H-NMR spectrum.The ~1H-NMR spectrum of the growth-inhibitor exhibited two doublets for two couplingprotons atδ7.53 andδ7.12, a OH group atδ3.11, a isopropyl group atδ4.08 (1H) andδ0.99(6H). According above information, the chemical structure of the growth-inhibitor wasidentified as 1-[hydroxyl-diethyl malonate]-isopropyl dodecenoic acid.
     The further investigation found that exogenously added GI significantly decreased thechlorophyll contents in Isochrysis galbana and the six species of microalgae (Chaetocerosmuelleri, Chaetoceros gracilis, Phaeodactylum tricornutum, Nitzschia closterium,Plytymonas elliptica and Dunaliella salina). And it had a very significant effect on the rationof extracellular protein to polysaccharide and activities of NR (nitrate reductase), SOD(superoxide dismutase) and POD (peroxidase) in the cells of all test microalgae. But it wasobvious to increase MDA (malonyldialdehyde) content in algal cells. The results gave hints toelucidate the species-specific antialgal mechanisms of GI. Inhibition mechanism of GI onmicroalgae is to decrease the chlorophyll contents, and decrease or increase activities of NR,SOD and POD of algal cells, and change the ratio of extracellular protein to polysaccharide, thus increase in ratio of extracellular protein to polysaccharide leads to the increase inhydrophobicity of algal cells, finally algal cells flocculate and subside. Affect uptake ofinorganic nitrogen by cells and photosynthesis might play a major in the inhibitorymechanism. And the excess active oxygens were produced under GI stress and active oxygenparticipated in the damage of GI to microalgae. It indicated that the physiological metabolismof microalgae was inhibited by GI.
     4. Relationship betweenthe the activity of carbonic anhydrase and utilization ofCO_2
     Carbonic anhydrase, a ubiquitous mental enzyme that can catalyze the transformationreaction between HCO_3~- and CO_2, is one of enzymes whose catalytic velocity is confirmed tobe the fastest. It has been taken as a component of CO_2 concentrating mechanism (CCM) andplays a role in photosynthetic CO_2 fixation. Extracellular carbonic anhydrase (CA) activity inIsochrysis galbana was influenced by several external factors. Our research demonstrated thatlight intensity, pH and ions such as NO_3~-, NH_2~-, NH_4~+, H_2PO_4~- and HCO_3~- were importantexternal factors that could regulate the extracellular CA activity in the cells of Isochrysisgalbana. The activity of CA significantly depends on the light intensity, when the lightintensity increased from 0 to 8000 lx, the CA activity increased rapidly and arrived its highestpoint at 6000 lx. With the increasing of pH values, the CA activity significant increased. Atrange of NO_3~- concentration from 0.5 mmol/L to 4 mmol/L, the CA activity was higher, andarrived to the maximal value at the concentration of 2 mmol/L; the CA activity decrease whenNO_3~- concentration was above 4 mmol/L, but the CA activity still was higher than that of thecontrol. The CA activity was pronounced increased with the increasing of NH_2~-concentrations and arrived to the highest value at the concentration of 3.5 mmol/L, thenslowly decreased when NH_2~- concentration over 3.5 mmol/L. Low NH_4~+(0.5-2 mmol/L)concentrations caused significant increase in the CA activity, but over 2 mmol/L, the CAactivity sharply decreased. The CA activity was lower under the conditions of phosphatestarvation, and a significant increase in the CA activity was observed with the increasing ofH_2PO_4~- concentration, and a maximum value was obtained at H_2PO_4~- of 0.05 mmol/L. But,against with the above factors, HCO_3~- inhibited the CA expression.
     According our data, the cells of Isochrysis galbana can also transport HCO_3~- directlydependent-ATPase as viewed by DIDS inhibition. Band three proteins and Na~+/ HCO_3~-co-transport system have been found involving in the direct transportation since SITS hasaffection on carbon acquisition. Hence, external carbonic anhydrase dehydrating HCO_3~- toCO_2 is the main pathway of DIC utilization by Isochrysis galbana. In addition, dissolved inorganic carbon (DIC) utilization is significantly inhibited by Ez (ethoxyzolamide),suggesting internal CA is essential to photosynthesis in Isochrysis galbana.
引文
[1] 张跃群,王勇军.微藻的营养价值及其应用[J].生物学教学,2002,27(6):42-44.
    [2] 王桂芹,黄权,张东鸣等.可利用微藻及其应用研究现状[J].北华大学学报(自然科学版),2001,2(6):529-533.
    [3] 管华诗,耿美玉,王长云.21世纪中国海洋药物.中国海洋药物,2004,(4):44-47.
    [4] 曾成奎.海洋生物技术[M].济南:山东科学技术出版社,1998.
    [5] 李定梅.从以色列微藻生物技术论中国微藻产业的发展[J].海洋与湖沼,1996,27(2):224-226.
    [6] 李定梅.我国微藻产业的发展概况和前景(二)[J].粮食与饲料工业,2001,6(2):19-20.
    [7] 曹健,漆丹华,高孔荣.微藻的营养价值及生产和应用开发[J].粮食与饲料工业,1997,1(5):28-31.
    [8] 孙卫明.微藻的应用与封闭式培养方式[J].齐鲁渔业,2000,17(5):22-25.
    [9] 吴开国.螺旋藻:保健食品新资源和开发应用[M].海口:南海出版公司,1998.
    [10] 胡鸿钧.螺旋藻生物学及生物技术原理[M].北京:科学出版社,2002.
    [11] 梁英,麦康森,孙世春.微藻的应用概述[J].海洋湖沼通报,1999,1(2):70-82.
    [12] 李定梅.我国微藻产业的发展概况和前景(一)[J].粮食与饲料工业,2001,1(5):28-31.
    [13] 王长海.海洋生化概论[M].北京:化学工业出版社,2004.
    [14] 程丽华,张林,陈欢林等.微藻固定CO_2研究进展[J].生物工程学报,2005,21(2):177-181.
    [15] 2002年中国环境公报.国家环保总局,2003.
    [16] 徐雷,于连生.赤潮藻的显微图形测量方法研究[J].海洋技术,2003,22(3):43-46.
    [17] 张磊,王学民,王明时.基于图像处理技术的赤潮生物自动识别[J].仪器仪表学报,2003,24(4):369-370.
    [18] 王长海,欧阳藩.紫球藻的光生物方应器培养[J].化工冶金,2000,21(1):47-51.
    [19] 王长海,温少红,欧阳藩.紫球藻的生物活性物质[J].海洋通报,1999,18(3):25-29.
    [20] 孙利芹,王长海,滕立.培养条件对紫球藻B-藻红蛋白含量的影响[J].浙江大学学报(农业与生命科学版),2007,33(1):40-44.
    [21] 王长海,钟响,鞠宝等.螺旋藻的光生物反应器高密度培养[J].食品与发酵工业,1999,25(5):7-10.
    [22] 鞠宝,王长海.光强、循环速度和温度对螺旋藻生长的影响[J].海洋通报,1999,18(3):35-40.
    [23] 田治立,王长海,于贞.纤细角毛藻培养条件优化[J].海洋科学,2005,29(2):5-7.
    [24] 孙利芹,郭尽力,王长海.影响纤细角毛藻生长的因素及其脂肪酸组成的研究[J].食品与发酵工业,2004,30(12):31-34.
    [25] 林广凤.盐生杜氏藻的生物学特性及其开发利用[J].齐鲁渔业,2006,23(11):7-9.
    [26] 王波,梁伟,孔垂雨.不同营养盐对小球藻培养的影响[J].现代渔业信息,2006,2l(5):11-16.
    [27] 王逸云,王长海.无菌条件下的小球藻培养条件优化[J].烟台大学学报(自然科学与工程版),2006,19(2):125-129.
    [28] 孙利芹,史磊,王长海.平板式光生物反应器在饵料微藻培养中的应用[J].烟台大学学报(自然科学与工程版),2007,20(2):112-115.
    [29] 华汝成.单细胞藻类的培养与利用[M].北京:农业出版社,1980.
    [30] 陈椒芬,何义潮,谭桂英等.两种新分离的海洋金藻及其对贻贝幼虫的饲养效果[J].海洋湖沼通报,1985,14(2):44-56.
    [31] Phatarpekar P V, Sreepada R A, Chhaya Pednekar et al. A comparative study on growth performance and biochemical composition of mixed culture of Isochrysis galbana and Chaetoceros calcitrans with monocultures[J]. Aquaculture, 2000, 18(181):141-155.
    [32] Kramer H J, Stevens J, Grimminger F et al. Fish oil fatty acids and human platelets: dose-dependent decrease in dienoic and increase in trienonic thromboxane generation[J]. Biochem Pharmacoll, 1996, 52(8) :1211-1217.
    [33] Brown M R, Hohmann S. Effects of irradiance and growth phase on the ascorbic acid content of Isochrysis sp. TIso (Prymnesiophyta) [J]. J Appl Phycol, 2002, 14(3):211-214.
    [34] 郑重,李少菁,徐振祖.海洋浮游生物学[M].北京:海洋出版社,1984.
    [35] 陈峰,姜悦.微藻生物技术[M].中国轻工业出版社,1999.
    [36] Kaplan D, Cohen Z, Abeliovich A. Optimal growth conditions for Isochrysis galbana[J]. Biomass, 1986, 9(1):37-48.
    [37] Burgess J G, Iwamoto K, Miura Y et al. An optical fibre photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff.galbana T-Iso (UTEXLB 2307) rich in docosahexaenoic acid[J]. Appl Microbiol Biotechnol, 1993, 39(4-5):456-459.
    [38] Conquer J A, Holub B J. Supplementation with analgae source of docosahexenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects[J]. J Nutr, 1996, 126(12):3020-3029.
    [39] 温少红,李叙凤,王长海.微藻高度不饱和脂肪酸的研究[J].海洋通报,2000,1(8):86-91.
    [40] 李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究[J].海洋与湖沼,1999,30(1):34-39.
    [41] 戴俊彪,吴庆余.培养海洋微藻Isochrysis galbana生产EPA和DHA[J].海洋科学,1999,1(3):36-38.
    [42] 张秋会,马莺.高产EPA和DHA藻株的筛选[J].西部粮油科技,2003,1(6):51-53.
    [43] 李润,张秀荣,张万宽等.金藻中EPA的分离与分析[J].海洋科学,2001,25(8):46-48.
    [44] 李润,张万宽,倪杭生等.金藻Isochrysis galbana中DHA的分离与分析[J].应用化学,2001,1(6):454-456.
    [45] Haysahi T, Haysahi K. Calcium Spirulina, an inhibitor of enneloped virus replication, from a blue-green alga Spirulina[J]. J Natural Product, 1966, 59(1):83-87.
    [46] 戴俊彪,吴庆余.室内外培养海洋单细胞微藻的生长及生化组成[J].海洋科学,2000,24(6):29-33.
    [47] 张赛金,李文权,邓永智等.海洋微藻多糖的红外光谱分析初探[J].厦门大学学报(自然科学版),2005,1(44):212-214.
    [48] Carlos V, Ines G, Maria V L et al. Micoalgae-mediated chemicals production and wastes removal[J]. Enzyme Microb Technol, 1997, 20(8):562-572.
    [49] 陈椒芬,潘永尧。等鞭藻的生长及其主要营养成分的研究[J].海洋与湖沼,1987,18(1):55-62.
    [50] Droop M R. Auxotrophy and organic compounds in the nutrition of marine phytoplankton[J]. J Gen Microbiol, 1957, 16(1):286-293.
    [51] Molina G E, Perez S J A, Garcia Carnacho F et al. N-3 PUFAproductivity in chemostat cultures of microalgae[J]. Appl Microbiol Biotechnol, 1993, 38(5):599-605.
    [52] 李文权,李芋,廖启斌等.温度对四种海洋微藻脂肪酸组成的影响[J].台湾海峡,2003,22(2):9-13.
    [53] 蒋汉明,翟静,张媛英等.温度对海洋微藻生长及脂肪酸组成的影响[J].食品研究与开发,2005,26(6):9-12.
    [54] Renaud S M, Zhou H C, Parry D Let al. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp. (clone TISO) [J]. J Appl Phycol, 1995, 7(6):595-602.
    [55] Fidalgo J P, Cid A, Torres E et al. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana[J]. Aquaculture, 1998, 166(1-2):105-116.
    [56] 李文权,黄贤芒,陈清花等.4种海洋单胞藻生化组成的环境因子效应研究[J].海洋学报,1999,21(3):59-65.
    [57] Thompson P A, Harrison P J, Whyte J N C. Influence of irradiance on the fatty acid composition of phytoplankton[J]. J Phycol, 1990, 26(2):278-288.
    [58] 徐天宁.利用生物技术生产廿碳五烯酸和廿二碳六烯酸[J].食品与发酵工业,1995,1(1):56-64
    [59] Molina G E, Sanchez P J A. EPA from Isochrysis galbana: growth conditions and productivity[J]. Proces Biochem, 1992, 27(5):299-305.
    [60] 李文权,王清池,陈清花等.超声波对球等鞭金藻脂肪酸组成的效应研究[J].海洋科学,2000,24(4):7-9.
    [61] Richmond A, Boussiba S, Vonshak Aet al. A new tubular reactor for mass production of microalgae outdoors[J]. Phycology, 1993, 5(3):327-332.
    [62] Molina G E, Robies M A, Gimenez A et al. Comparisom between extraction of lipids and fatty acids from microalgal biomass[J]. JAOCS, 1994, 71(9):955-959.
    [63] 余若黔,刘学铭,梁世中等.小球藻(Chlorella vulgaris)的异养生长特性研究[J].海洋通报,2000,19(3):57-62.
    [64] 韩锦华,王雪青,苗惠.三种海洋微藻抗肿瘤活性的研究[J].天津科技大学学报.2006,21(4):25-28.
    [65] 宁征,孙秉一,史致丽等.铜、锌、铅、镉对海洋浮游藻的毒性效应.青岛海洋大学学报,1990,20(4):50-58.
    [66] 黄仿,武宝.两种海洋浮游藻耐热性的研究[J].广西师范大学学报(自然科学版),1996,14(2):76-79.
    [67] 李峰民,胡洪英.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18-21.
    [68] Nakai S, Inoue Y, Hosomi Met al. Growth inhibition of blue-green algae by allelopathic effect of macrophytes[J]. War Sci Tech, 1999, 39(8):47-53.
    [69] 张培玉,蔡恒江,肖慧等.孔石莼与2种海洋微藻的胞外滤液交叉培养研究[J].海洋科学,2006,30(5):1-4.
    [70] Sole J, Ladona E G, Ruardij P. Modelling allelopathy among marine algae[J]. Ecol Model, 2005, 183(4):373-384.
    [71] Arzul G, Segue L M, Guzman L et al. Comparison of allelopathic properties in three toxic Alexandrium species[J]. J Exp Mar Biol Ecol, 1999, 232(2):285-295.
    [72] Fogg G E. Symbiosis of hydra and algae—Ⅲ. Extracellular products of the algae[J]. Comp Biochem Physiol, 1965, 16(1):77-84.
    [73] Hellebust J A. Excretion of some organic compounds by marine phytoplankton[J]. Limnol Oceanogr, 1965, 10(2):192-206.
    [74] Keating K I. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure[J]. Science, 1978, 199(3):971-973.
    [75] Pratt R. Studies on Chlorella vulgaris.V some properties of the growth-inhibitor formed by Chlorella cells[J]. Am J Bot, 1942, 29(29):142-148.
    [76] Imada N, Kobayashi K, Isomura K et al. Isolation and identification of an Autoinhibitor produced by Skeletonema costatum[J]. Nippon Suisan Gakkaishi, 1992, 58(9):1687-1692.
    [77] Liu J G, Zhang C W, Cohen Z et al. Physiological inhibitory of OCS in arachidonic acid-rich Parietochloris incisa (Trebouxiophyceae, Chlorothyta ) [J]. Chinese J Ocean Limnol, 2001, 19:21-25.
    [78] Zhang C W, Richmond A. Cell-growth inhibitory activity in altra-highdensity cultures of Nannochloropsis oculsta[C]. 8th International Conference on Applied Algology-Abstracts 52, 1999.
    [79] Proctor V W. Studies of algal antibiosis using Hamatococcus and Chlamydomonas[J]. Limnol Oceanog, 1957, 2:126-139.
    [80] Craigie JS, McLachlan. Excretion of coloredultraviolet absorbing substances by marine algae[J]. Can J Bot, 1964, 42(1):23-33.
    [81] Sellem F, Pesando D, Bodennec G et al. Toxic effects of Gymnodinium cf. mikimotoi unsaturated fatty acids to gametes and embryos of the sea urchin Paracentrotus lividus[J]. Water Res, 2000, 34(2):550-556.
    [82] McCrracken M D, Middaugh R D, Middaugh R S. A chemical characterization of an algal inhibitor obtained from Chlamydomonas[J]. Hydrobiologia, 1980, 70(3):271-276.
    [83] Yamada N, Murakami N, Morimoto T et al. Auto-growth inhibitory substance from the fresh-water cyanobacterium Phormidium tenue[J]. Chem Pharm Bull , 1993, 41(10):1863-1865.
    [84] Richmond A, Wu Z C, Zarmi Y. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path: the optimal population density and cell-growth inhibition[J]. Biomol Eng, 2003, 20(4-6):229-236.
    [85] 岳国锋,周百成.条斑紫菜对无机碳的利用[J].海洋与湖沼,2000,31(3):246-251.
    [86] Raven J A, Falkowski P G. Oceanic sinks of autospheric CO_2[J]. Plant Cell Environ, 1999, 22:741-755.
    [87] Raven J A, Johnston A M. Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources[J]. Limnol Oceanogr, 1991, 36(8):1701-1714.
    [88] Kaplan A, Reinhold L. CO_2 concentratingmechanisms in photosynthetic microorganisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(0):539-570.
    [89] Leonid E F. Models of CO_2 concentrating mechanisms in microalgae taking into account cell and chloroplast structure[J]. BioSystems, 1997, 44(1):41-57.
    [90] Aizawa K, Miyachi S. Carbonic anhydrase located on cell surface increases the affinity for inorganic carbon in photosynthesis of Dunaliells tertiolects[J]. FUSS Lett, 1984, 173(1):41-44.
    [91] Aizawa K, Miyachi S. Carbonic anhydrase and C02 concentrating mechanisms in microalgae and cyanobacteria[J]. FEMS Microbio] Lett, 1986, 39(3):215-233.
    [92] Nimer N A, Warren M, Merrett M J. The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO_2-limiting conditions in the marine diatom Skeletonema costatum[J]. Plant Cell Environ, 1998, 21(8):805-812.
    [93] Reinfeler J R, Kraepiel A M L, Morel F M M. Unicellular C4 photosynthesis in a marine diatom[J]. Nature, 2000, 407(6807):996-999.
    [94] Bhatti S, Huertas I E, Colman B. Acquisition of inorganic carbon by the marine haptophyte Isochrysis galbana (Prymnesiophyceae) [J]. J Phycol, 2002, 38(5):914-921.
    [95] Chen X W, Gao K S. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum[J]. J Plant Physiol Molecular Biol, 2004, 30(5):511-516.
    [96] Ghoshal D, Husic H D, Goyal A. Dissolved inorganic carbon concentration mechanism in Chlamydomonas moewusii[J]. Plant Physiol Biochem, 2002, 40(4):299-305.
    [97] Gehl K A, Colmaa B, Sposato L M. Mechanism of.inorganic carbon uptake in Chlorelle saccharophila: the lack of involvement of carbonic anhydrase[J]. J Exp Bot, 1990, 41(11):1-7.
    [98] Espinoza E V, Nunez R M, Cebrero F N. Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff.galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium[J]. Aquacul Eng, 2002, 25(4):207-216.
    [99] 周汝伦,孙爱淑,杨震.金藻8701人工培养的生态条件研究[J].青岛海洋大学学报,1986,24(2):181-186.
    [100] 周汝伦,孙爱淑,杨震.等鞭金藻8701培养液的营养组成研究[J].海洋湖沼通报,1994,1:17-24.
    [101] Sanchez S, Martinez M, Espinola F. Biomass production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium[J]. Biochem Eng, 2000, 6(1):13-18.
    [102] Grima M E, Perez S J A, Garcia C F et al. Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbana ALII-4[J]. J Appl Phycol, 1995, 7(2):129-134.
    [103] Cho J Y, Jin H J, Lim H J et al. Growth activation of the microalga Isochrysis galbaana by the aqueous extract of the seaweed Monostroma nitidum[J]. J Appl Phycol, 1999, 10(6):561-567.
    [104] Turpin D H. Effect of inorganic N availability on algal photosynthesis and carbon metabolism[J], J Phycol, 1991, 27(1):14-20.
    [105] Jones C G, Lawton J H, Shachak M. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: Evidence of phosphorus and nitrogen limitation[J]. Aquatic Bot, 2006, 85(2):103-111.
    [106] Shimoda K, Aramaki Y, Nasuda J. Food sources for three species of Nihonotrypaea (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis[J]. J Exp Mar Biol Ecol, 2007, 342(2):292-312.
    [107] Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation[J]. Limnol Oceanog, 1996, 43(1):129-135.
    [108] Theodorou M E, Elrifi I R, Turpin D Het al. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum[J]. Plant Physiol, 1991, 95(4):1089-1095.
    [109] 范代娣.细胞培养与蛋白质工程[M].北京:化学工业出版社,2000.
    [110] Wen Z Y, Chen F. Optimization of nitrogen sources, for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis[J]. Enzyme Microb Technol, 2001, 29(6-7):341-347.
    [111] Becker E W. Microalgae: biotechnology and microbiology[M]. New York: University of Cambridge Press, 1994.
    [112] Philips S. A biology of the algae[M]. London: Cambridge University Press, 1997.
    [113] Blum J J. Phosphate uptake by phosphate-strayed Euglena[J]. J Gen Physiol, 1966, 49 (6) : 1125-1137.
    [114] Li Y O, Li Z K, Geng Y H. Effect of N, P concentration on growth rate[J]. Acta Ecol Sinica, 2006, 26(2):317-325.
    [115] Burns B D, Beardall J. Utilization of inorganic carbon by marine microalgae[J]. J Exp Mar Biol Ecol, 1987, 107(17) :75-86.
    [116] Liu H, Yin B S. Annual cycle of carbon, nitrogen and phosphorus in the Bohai Sea: A model study[J]. Cont Shelf Res, 2007, 27(10-11):1399-1407.
    [117] 廖启斌,李文权,陈清花等.营养盐对三角褐指藻脂肪酸含量与百分组成的影响[J].海洋环境科学,2000,19(2):6-9.
    [118] 姚南瑜.藻类生理学[M].大连:大连工学院,1987.
    [119] Brown M R, Jeffrey S W, Volkman J K. Nutritional properties of microalgae for mariculture[J]. Aquaculture, 1997, 151(1-4):315-331.
    [120] Watanabe F, Nakano Y, Tamura Yet al. Vitamin B_(12) metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii[J]. Biochim Biophys Acta , 1991, 1075(1-2):36-41.
    [121] 袁有宪,曲克明,辛福言.海水单胞藻培养液中微量元素的最佳浓度[J].中国水产学,1998,5(2):45-51.
    [122] 袁有宪,曲克明.海水中痕量元素对海洋生物作用的进展[J].水产学报,1995,19(3):250-257.
    [123] 陈椒芬,谭桂英,潘永尧.光照时间、强度和温度对角毛藻增殖率的影响[J].海洋科学,1982,2:38-40.
    [124] Findlay G P, Hope A B, Pitman M G et al. Ionic fluxes in cells of Chara corallina[J]. Biochimi Biophys Acta, 1969, 183(3):565-569.
    [125] Raven J A, Geider R J. Temperature and algal growth[J]. New Phytol, 1988, 110(4):441-461.
    [126] Persson I, Tjerneld F, Hahn H g. Semicontinuous cellulase production in an aqueous two-phase system with Trichoderma reesei rutgers C30[J]. Enzyme Microb Technol, 1984, 6(9):415-418.
    [127] Pernet F, Rejean T, Demers E et al. Variation of lipid class and fatty acid composition of Chaetocoros muelleri and Isochrysis sp. grown in a semicontinuous system[J]. Aquaculture, 2003, 221(1-4):393-406.
    [128] Otero A, Garcta D, Fabregas J. Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae[J]. J Appl Phycol, 1997, 9(5):465-469.
    [129] 徐志标,裴鲁青,骆其君等.绿色巴夫藻的光生物反应器半连续培养研究[J].海洋水产研究,2005,26(4):64-69。
    [130] 朱艺峰,吴松杰,郭小强.半连续培养氮磷浓度、更新率对三角褐指藻采收量的影响[J].海洋科学,2000,11(24):35-38。
    [131] 朱艺峰,林霞,徐同成等.光、氮和半连续培养更新率对微绿球藻生长与采收量的影响[J].中国水产科学,2004,11(2):159-165.
    [132] Scott J M. The feeding rates and efficiencies of a marine ciliate, Strombidium sp., grown under chemostat steady-state conditions[J]. J Exp Mar Biol Ecol, 1985, 90(1) :81-95.
    [133] Sukeni A, Wahnon R. Biochemical quality of marine unicellular alga with special emphasis on lipid composition: I. Isochrysis galbana[J]. Aquaculture, 1991, 97 (1) :61-72.
    [134] Otero A, Fabregas J. Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates [J]. Aquaculture, 1997, 159(1):111-123.
    [135] Otero A, Domnguez A, Lamela T et al. Steady states of semicontinuous cultures of a marine diatom: effect of saturating nutrient concentrations[]]. J Exp Mar Biol Ecol, 1998, 227 (1) :23-33.
    [136] 孙建明,吴垠,桂远明等.海洋微藻全封闭、连续式培养初步试验[J].水产科学,2003,3(22):22-24.
    [137] 牟哲松,张炯明.金藻3011露天培养技术初探[J].科学养鱼,1999,5:29-30.
    [138] 胡鸿钧.螺旋藻生物学及生物技术原理[M].北京:科学出版社,2002.
    [139] 王长海.海洋生化工程概论[M].化学工业出版社,2004.
    [140] 陈烨,骆其君,马斌等.角毛藻光衰减特性及其在光生物反应器培养中的应用[J].宁波大学学报(理工版),2004,17(2):143-146.
    [141] Richmond A. Efficient utilization of high irradiance for production of photoautotropic cell mass: a survey[J]. J Appl Phycol, 1996, 8(4-5):381-387.
    [142] Blanchemain A, Grizeau D. Eicosapentaenoic acid content of Skeletonema costatum as a function of growth and irradiance; relation with chlorophyll a content and photosynthetic capacity[J]. J Exp Mar Biol Ecol, 1996, 196(1-2):177-188.
    [143] Brown M R, Dunstan G A, Jeffrey S W et al.The influence of irradiance on the biochemical composition of the prymnesiophyte Isochrysis sp. (clone T-ISO) [J]. J Phycol, 1993, 29(5): 601-612.
    [144] Mignone C F, Rossa C A. A simple method for designing fed-batch cultures with linear gradient feed of nutrients[J]. Proces Biochem, 1993, 28(6):405-410.
    [145] Suznki T, Moci H. Automaric supplementation of minerals in fed-batch culture to high cell mass concentration[J]. Biotechnol Bioeng, 1985, 27(2):192-207.
    [146] 王克明.流加培养对杜氏盐藻生物量的影响[J].浙江科技学院学报,2005,17(3):167-170.
    [147] 王克明,杨静,庄术宏.采用流加技术提高盐藻生物量的研究[J].海洋通报,1999,18(4):64-69.
    [148] 张义明,郭祀远.钝顶螺旋藻的混合营养分批和流加培养[J].华南理工大学学报(自然科学版),1999,27(9):85—88.
    [149] 孙艳妮,殷明炎,刘建国.雨生红球藻的信号物质[J].海洋湖沼通报,2001,3:22—28.
    [150] Legrand C, Rengefors K, Fistarol G O et al. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects[J]. Phycologia, 2003, 42(4):406-419.
    [151] Suzuki M, Wakana I, Denboh T et al. An allelopathic polyunsaturated fatty acid from red algae[J]. Phytochemistry, 1996, 43(1):63-65.
    [152] Ikawa M M, Sasner J J, Haney J F. Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology[J]. Hydrobiologia, 1997, 356(1-3):143-148.
    [153] 陈德辉,刘永定,宋立荣.蓖齿眼子菜对栅藻和微囊藻的化感作用及其参数[J].水生生物学报,2004,28(2):163-168.
    [154] 南春容,董双林.大型海藻孔石莼抑制浮游微藻生长的原因初探——种群密度及磷浓度的作用[J].中国海洋大学学报,2004,34(1):48-54.
    [155] 张婷,宋立荣.铜绿微囊藻与三种丝状蓝藻之间的相互作用[J].湖泊科学,2006,18(2):150-156.
    [156] 刘世枚,黎尚豪.两种蓝藻种群间的相互作用[J].植物学报,1991,33(2):110-117.
    [157] Zheng L, Su J Q, Maskaoui K et al. Microbial modulation in the biomass and toxin production of a red-tide causing alga[J]. Mar Pollut Bull, 2005, 51(8-12):1018-1025.
    [158] 李寿田,周健民,王火焰等.植物化感作用机理的研究进展[J].农村生态环境,2001,17(4):52-55.
    [159] 和丽忠,陈锦玉,董宝生等.国内植物化感作用研究概况[J].云南农业科技,2001,1:37-41.
    [160] 何池全,叶居心.石菖蒲(Acorustatarinowii)克藻效应的研究[J].生态学报,1999,19(5):754-758.
    [161] 国家海洋局.海洋监测规范(HY003.4-91)[M].北京:海洋出版社,1991.
    [162] 张震斌,陈镇东,刘莲生.海洋化学原理和应用[M].北京:海洋出版社,1999.
    [163] Parson T, Maita Y R, Lalli C M. Amanual of chemical and biological methods for seawater analysis[M]. London: Pergamon Press, 1989.
    [164] 张志良,翟伟箐.植物生理学实验指导[M].北京:高等教育出版社,2002.
    [165] Giannoplities C N, Ries S K. Superoxid dismutase purification and quantitative relationship with water soluble protein in seadling[M]. Plant Physiol, 1977, 59(0):315-318.
    [166] Evans S S. The distribution of peroxidase in extreme dwarf and normal tomato[J]. Phytochemistry, 1965, 4(4):449-503.
    [167] Mundt S, Kreitlow S, Jansen R. Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051[J]. J Appl phycol, 2003, 15(2-3):263-267.
    [168] Aaronson S, Bensky B. Effect of aging of a cell population on lipids and drug resistance in Ochromonas danlca[J]. J Protozool, 1967, 14(1):76-78.
    [169] Uchida T, Satorutoda Y, Matsuyama Met al. Interactions between the red tide dinoflagellates Heterocapsa circuiarisquama and Gymnodinium mikimotoi in laboratory[J]. J Exp Mar Biol Ecol, 1999, 241(2):285-299.
    [170] Imada N, Kobayashi K, Tahara K et al. Production of an Autoinhibitor by Skeletonema costatum and its effect on the growth of other phytoplankpyrenoidosa[J]. Nippon Suisan Gakkaishi, 1991, 57(12):2285-2290.
    [171] Mandalam R K, Palsson B O. Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at highcell densities[J]. Am J Bot, 1995, 82(8): 955-963.
    [172] 刘建国,孙艳妮,殷明焱.无机碳与雨生红球藻(Haematococcus pluvialis)细胞调节物质[J].海洋与湖沼,2004,35(5):459-465.
    [173] 林永成,周世宁.海洋微生物及其代谢产物[M].北京:化学工业出版社,2003.
    [174] 王利群,王勇,董英等.硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆[J].生物工程学报,2003,19:632-635。
    [175] 李锋民,胡洪营,门玉洁等.化感物质对小球藻抗氧化体系酶活性的影响[J].环境科学,2006,27(10):2091-2094.
    [176] 唐学玺,李永祺.抗氧化剂对扁藻久效磷毒害的抑制效应[J].环境科学,2000,21(1):87-89.
    [177] Kirobe T, Hansen J L S. Phytoplankton aggregate formation: Observation of pattern and mechanisms of cell sticking and the significance of exopolymeric material[J]. J Plankton Res, 1993, 15(9): 993-1018.
    [178] Cai Chunguang, Liu Junshen, Cai Weimin. Action membrane of extracellular polymers on the aerobic granulation[J]. China Environ Sci, 2004, 24(5):623-626.
    [179] Emma I, Brian C, George S et al. Active transport of CO_2 by three species of marine microalgae[J]. J Phycol, 2000, 36(20):314-320.
    [180] Skirrow G. The dissolved gases carbon dioxide. In: Riley J P, Skirrow G ed. Chemical Oceanography[M]. 1975, London: Academic Press.
    [181] Fridlyand L E. Models of CO_2 concentrating mechanisms in microalgae taking into account cell and chloroplast structure[J]. Biosystems, 1997, 44(1):41-57.
    [182] Riebesell U, Wolf-Gladrow D A, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates[J]. Nature, 1993, 351(6409):249-251.
    [183] Rotatore C, Colman B, Kuzma M. The active uptake of carbon dioside by the marine diatoms Phaeodactylum tricornutum and Cyclotella sp[J]. Plant Cell Environ, 1995, 18(8): 913-918.
    [184] 骆其君,裴鲁青,潘双叶等。坛紫菜自由丝状体对无机碳的利用[J].水产学报,2002,26(5):477-480.
    [185] Aizawa K, Miyachi S. Carbonic anhydrase and CO_2 concentrating mechanisms in microalgae and cyanobacteria[J]. FEMS Microbiol Lett, 1986, 39(3): 215-233.
    [186] Huertas E, Montero O, ubian L M. Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae[J]. Aquacul Eng, 2000, 22(3): 181-197.
    [187] John M M, Colman B. Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) [J]. J Phycol, 1997, 33(33): 988-990.
    [188] Korb R E, Salville P J, Johnston A M et al. Sources of inorganic carbon for photosynthesis by three species of marine diatom[J]. J Phycol, 1997, 33(3): 433-440.
    [189] Herfort L, Thake B, Roberts J. Acquisition and Use of Bicarbonate by Emiliania huxleyi[J]. New Phytologist, 2002, 156(3): 427-436.
    [190] Tsuzuki M, Miyachi S. The function of carbonic anhydrase in aquatic photosynthesis [J]. Aquatic Bot, 1989, 34(1-3): 85-104.
    [191] 缪晓玲.海洋浮游藻类DIC利用[J].宁德师专学报,1998,10(2):88-91.
    [192] Giordano M, Maberly S C. Distribution of carbonic anhydrase in British marine macroalgae[J]. Oecologia, 1989, 81(4): 534-539.
    [193] Mercado J M, Javier F L G, Figueroa F L et al. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae[J]. J Exp Mar Biol Ecol, 1998, 221 (2): 209-220.
    [194] Sultemeyer D, Schmid C, Pock H P. Carbonic anhydrase in higher plants and aquatic microorganisms[J]. Physiol Plant, 1993, 88(1):179-190.
    [195] Merrett M J, Oong L F, Nimer N A. Nitrate availability and calcite production in Emiliania huxleyi Lohmann[J]. Eur J Phycol, 1993, 28(4):243-246.
    [196] Findenegg G R. Inorganic carbon transport in microalgae I: Location of carbonic anhydrase and HCO_3~-/OH~- exchange[J]. Plant Sci Lett, 1979, 17(1):101-108.
    [197] Nimer N A, lglesias-Rodriguez M D, Merrett M J. Bicarbonate utilization by marine phytoplankton species[J]. J Phycol, 1997, 33(4): 625-631.
    [198] 陈雄文,高坤山.赤潮藻中肋骨条藻的光合作用对海水pH和N变化的响应[J].水生生物学报,2004,28(6):635-639
    [199] 缪晓玲.海洋浮游藻类细胞外碳酸酐酶活性分析.宁德师专学报(自然科学版),1998,10(3):176-181.
    [200] 邹定辉,高坤山.高CO_2浓度对大型海藻光合作用及有关过程的影响[J].生态学报,2002,22(10):1750-1757
    [201] Beer S, Israel A. Photosynthesis in Ulva fasciata Ⅳ. pH, carbonic anhydrase and inorganic carbon conversions in the unstirred layer[J]. Plant cell Environ, 1990, 13(6):555-560.
    [202] Drechsler Z, Sharkia R, Cabantchik Z I et al. Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells[J]. Planta, 1993, 191(1): 34-40.
    [203] Drechsler Z, Sharkia R, Cabantchik Z I et al. The relationship of arginine groups to photosynthetic HCO_3~- uptake in Ulva sp. mediated by a putative anion exchanger[J]. Planta, 1994, 194(2):250-255.
    [204] Jormalainen V, Honkanen T, Vesakoski O et al. Polar extracts of the brown alga Fucus vesuculosus (L.) reduce assimilation efficiency but do not deter the herbivorous isopod Idotea baltica (Pallas) [J]. J Exp Mar Biol Ecol, 2005, 317(2):143-157.
    [205] 王富芳,李路,刘尚义.作物必须微量元素及其生理功能[J].作物杂志,1994,(4):34-36.
    [206] Alzuet G, Llusar S F, Borras J et al. Coordinative versatility of the carbonic anhydrase inhibitor benzolamide in zinc and copper model compounds[J]. J Inorganic Biochem, 1999, 75(3):189-198.
    [207] Pandey N, Sharma C P. Carbonic anhydrase activity and stomatal morphology associated with zinc deficiency-induced changes in FABA bean[J]. Phytomorphology, 2000, 50(34):261-265.
    [208] 董文轩,沈隽,孟繁静.锌铜处理对苹果属植物叶内CA活性的影响[J].果树科学,1995,12(1):10-14.
    [209] 郭敏亮,高煜珠,王忠.用酸度剂测定植物碳酸酐酶活性[J].植物生理学通讯,1988,6:59—61.
    [210] 程丽华,张林,陈欢林等.微藻固定CO_2研究进展[J].生物工程学报,2005,21(2):177-181.
    [211] 王山杉,刘永定,邹永东等.微囊藻碳酸酐酶活性在不同环境因素下的调节与适应[J].生态学报,2006,26(8):2443-2448.
    [212] 缪晓玲.海洋浮游藻类细胞质膜氧化还原活性与细胞外CA活性的关系[J].实验生态学报,2001,34(4):313-317.
    [213] Rubinstein B, Stern A I. The role of plasma membrane redox activity in light effects in plants[J]. J Bioenerg Biomembr, 1991, 23(3): 393-408.
    [214] Wolf G D, Riebesell U. Diffusion and reactions in the vicinity of plankton: A refined model for inorganic carbon transport[J]. Mar Chem, 1997, 59(1-2): 17-34.
    [215] Santos F T. A noval role of 4, 4'-disothiocyanatosilbene-2, 2'-disulfonic acid as an activator of the phosphatase activity catalyzed by plasma membrane Ca~(2+)-ATP[J]. Biochem, 1999, 38: 1552-1558.
    [216] Nimer N A, Merrett M J. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) [J]. New Phytol, 1992, 121(2):173-177.
    [217] 岳国锋,王金霞,朱明远等.藻类无机碳营养的研究进展(Ⅱ)-藻类利用无机碳的机理及其调节[J].海洋科学,2003,27(6):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700