起重机提升系统和主梁扭振动力学研究及其多目标优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重机是物料搬运行业主要的运输工具,其间歇、重复、循环的工作特点会引起短时、强激励、交变的运行状态,需重点研究其在垂直和扭转方向产生的冲击和振动等动载效应。本文密切结合起重运输机械行业的工程实际需求,提出了多自由度提升系统动力学模型和多段集中质量主梁扭振动力学模型,通过自适应步长四阶Runge-Kutta法进行数值求解,结合现场试验对提升系统和主梁扭振动力学进行了研究及优化分析,研究成果可以为起重机详细设计提供理论依据。主要研究内容与创新点如下:
     (1)构建了增加自由度的提升系统动力学模型,新增自由度包括:提升钢丝绳时变刚度、减速机构扭转自由度、吊钩以及端梁垂向自由度。基于所建立的系统动力学模型,开发了Simulink求解程序,采用自适应步长四阶Runge-Kutta法高效求解,结果与试验测得的结果吻合,验证了模型的合理性。研究了各种典型工况下提升系统的动力学特性,获取了关键部件在对应工况下的动载系数,为起重机关键零部件设计载荷的选取提供了参考。首次研究了在提升速度一定的情况下,影响提升动载系数的其它因素,为保持起重机运行效率不降低的前提下,进一步减小提升动载系数提供了理论依据。
     (2)提出了多段集中质量主梁扭振模型,将主梁扭振问题转化为类传动轴系扭振问题,采用Simulink进行了数值求解,结合现场试验,验证了扭振模型的合理性。研究了吊重离地起升及突然减载工况下的扭振振型和衰减规律,分析了主梁截面、小车对重、吊钩偏心量及小车在主梁上的位置等因素对扭振的影响规律,得到了影响主梁扭振的主要因素,比较了标准工字梁和焊接箱梁扭振特性的差异,为主梁设计时考虑扭振动载及解决主梁因扭振引起的材料失效问题奠定了基础。
     (3)建立了综合考虑提升动载和主梁扭转动载等特性的主梁自重多目标优化模型,解决了以往主梁优化仅考虑自重而引起其它部件设计载荷过大的问题。采用本文建立的提升系统和主梁扭振求解模型,以5吨单梁起重机为研究对象,针对吊重离地起升工况进行了全程多目标优化。研究了不同种群规模和进化代数对优化结果的影响,得到了适合于起重机多目标优化的种群规模和进化代数;对计算得到的Pareto非劣解进行了研究分析,结果比单目标优化更为丰富,研究成果已应用在新型主梁设计中;选取不同动态特性参数作为优化目标,研究了多目标优化模型如何选取合理的优化目标。
Crane is one of the major transportation tools in material handling industry; it features intermittent, repeating, and circular working characteristics. During working, cranes may frequently start and brake. It need to focus on research in dynamic effects of the impact and vibration in the vertical direction and the reverse direction.Based on the new development projects of crane lifting mechanism and the main beam from the famous German company M2, it proposed the multi-degree freedom lifting system dynamics model and centralized multi-segment quality girder torsional vibration dynamics model. The solution was worked out though the fourth-order adaptive step Runge-Kutta method, and research and optimization analysis of the test on site to lifting system dynamics model and main beam torsional vibration dynamics model.The research results can provide a theoretical basis for the detailed design of the crane key components. Main contents and innovations are as follows:
     (1) This article established serial lifting system dynamic theoretical models which increased the degree of freedom. The increased degree of freedom included:time-varying stiffness of hoisting rope, the rotational freedom degree of deceleration mechanism, the vertical freedom degree of hook a beam end. Based on the established system dynamics model, it used Simulink tools to build a solving procedures of theoretical model, and took adaptive step size fourth-order Runge-Kutta method to solve. The solving results were compared with the experimental results. The results validate the model is reasonable. Based on the validated model, the dynamic characteristics of lifting system has been researched under different working condition. It worked out dynamic load coefficient reference value of key components under different working condition, and provide important reference to the input load choice of crane key components design. In addition, it researched other factors that influence the lifting dynamics load coefficient under the fixed lifting speed. Under the premise of the not reduced crane operating efficiency, it provided the theoretical basis for reducing vertical lifting dynamic load.
     (2) It proposed main beam torsion vibration model of multi-segment and three-segment concentrated mass so that the issue of main beam torsion vibration was changed to similar torsion vibration issue of transmission axles. By the Simulink program, the solving model of main beam torsion vibration was established. It validated the test on the test bench built specially and validated the rationality of torsion vibration. Based on the validated torsion vibration, it studied the distribution and attenuation regulation of torsional vibration under the working condition of hoist lifting off the ground and suddenly load shedding, and analyzed the regulation of torsion vibration caused by main beam section, the car counterweight, hook eccentricity and location of the car in the main beam and other factors. It carried out the main factors which can influent main beam torsion vibration. After comparing the torsion vibration characteristics between with beams and welded box girder, it provided the basis for considering torsion vibration dynamics load in the main beam design process and for the failure of the material caused by torsion vibration of the main beam.
     (3) Multi-objective genetic algorithm optimization model was established by a comprehensive consideration of vertical lift and the main beam torsional dynamic load etc. characteristics. It avoided the design load of other components was too large because the weight of beam was considered only during the the beam optimization. the optimization model used the established lifting system simulation model and the main beam torsional vibration simulation model.Regard5ton single beam crane as the research object, it did the multi-objective optimization according to the working condition of lifting off the ground. The paper did the research for the influence of selected different population size and evolution algebra on optimization results and analyzed the calculated Pareto optimal. By selecting a different amount of dynamic parameters as optimization objective, it studied the reasonable values of selecting optimization model amount in main beam multi-objective optimization model.
引文
[1]王洪欣.集装箱龙门起重机结构系统多目标动态优化研究[D].成都:西南交通大学,2008.
    [2]郭文孝.基于许用应力法的桥式起重机金属结构设计验证及安全性评价[D].太原:太原科技大学,2011.
    [3]赵世军.起重机械制造业的发展趋势[J].大众标准化,2005,(6):12-15.
    [4]陈道南.起重运输机械[M].北京:机械工业出版社,1982:12-14.
    [5]孙守胜.龙门起重机金属结构动力学研究[D].武汉:武汉理工大学,2008.
    [6]刘燕.双吊点变截面水平臂塔机最佳起重特性曲线的研究及应用[D].重庆:重庆大学,2004.
    [7]Chen D L. Finite element analysis of dynamic stiffness of overhead traveling crane [J]. Hoisting and conveying machinery,2005, (5):5-6.
    [8]孙焕纯.高等计算结构动力学[M].大连:大连理工大学出版社,1992:32-33.
    [9]胡宗武.起重机动载荷的简化计算[J].起重运输机械,1982,(2):2-9.
    [10]胡宗武.塔式起重机结构动载荷的数值计算方法[J].水利电力机械,1986,(2):24-26.
    [11]胡宗武.起重机的动态计算[J].起重运输机械,1987,(11):2-7.
    [12]胡宗武.起重机概率设计的基本问题[J].起重运输机械,1992,(9):3-8.
    [13]胡宗武.起重机的可靠性和概率设计[J].重工科技,1999,(1):7-13.
    [14]胡宗武.用状态空间法解起重机运行机构的动态响应[J].起重运输机械,1983,(1):4-8.
    [15]胡宗武.起重机动力学[M].北京:机械工业出版社,1988:34-34.
    [16]过玉卿.起重机起升机构动态分析与设计[J].武汉钢铁学院学报,1990,(13):32-43.
    [17]过玉卿.桥式起重机随机疲劳强度及载荷谱编制[J].机械强度,1987,(4):10-25.
    [18]Fu W J. Modeling and simulation for dynamics of single wrapped elevator [J]. Journal of System Simulation,2005, (3):635-638.
    [19]Wenming C. Dynamic analysis of crane [J]. Hoisting and conveying machinery, 2002, (2):1-4.
    [20]余永勤.桥式起重机起升机构动态响应及动载系数[C].中国机械工程学会,物料搬运学会第二届年会论文集(1).成都,1984:12-13.
    [21]程文明.起重机的动态分析方法[J].起重运输机械,2002,(2):1-3.
    [22]周敬宣.桥式起重机运行机构中自激振动的研究[J].华中理工大学学报,1997,(25):84-87.
    [23]Ham S H. Application of a topological modelling approach of multi-body system dynamics to simulation of multi-floating cranes in shipyards [C]. Proceedings of the Institution of mechanical engineers, Part K:Journal of multi-body dynamics. Kerora.2010,224:365-373.
    [24]Yuqin Z. The kinetic model and simulation calculation of the bridge crane [J]. Heavy machinery science and technology,2005, (3):1-7.
    [25]Zhang J. Container crane uprising dynamic load coefficient dynamics model and its solution [J]. Journal of shanghai maritime university,2006, (2):4-7.
    [26]Zhang L. Study on the kinematical simulation of virtual prototype for the bridge crane [J]. Manufacture information engineering of china,2011, (11): 8-13.
    [27]张玉琴.桥式起重机的动力学模型与仿真计算[J].重型机械科技,2005,(3):1-4.
    [28]布劳德.起重机可靠性和统计动力学[M].北京:中国铁道出版社,1985:34-34.
    [29]杨福新.矿井提升钢丝绳动力学[M].北京:煤炭工业出版社,1987:61-62.
    [30]韩守习.基于Simulink的起重机起升机构动态仿真[J].重庆建筑大学学报,2003,25(6):67-73.
    [31]孙焕纯.变质量、变阻尼、变刚度结构系统的动力响应[J].计算结构力学及其应用,1996,(13):127-137.
    [32]Fang Y. Nonlinear coupling control laws for an overhead crane system[C]. Proceedings of the 2001 IEEE International conference on control applications. Mexico,2001:639-644.
    [33]黄德中.桥式起重机振动研究[J].水利电力机械,2003,25(5):28-31.
    [34]Ahn C W. Robust optimization design of overhead crane with constraint using the characteristic functions [J]. International journal of precision engineering and manufacturing,2006,7(2):12-17.
    [35]Berbeglia G. Dynamic pickup and delivery problems [J]. European journal of operational research,2010,202(1):8-15.
    [36]Chin C. Nonlinear dynamics of a boom crane [J]. Journal of vibration and control,2001,7(2):199-220.
    [37]De Lange J H. An experimental investigation into the behavior of a 5 ton electric overhead travelling crane and its supporting structure [D]. Tellenbosch: University of stellenbosch,2007.
    [38]Attir Khalid, John Huey, William Singhose, Jason Lawrence, David Frakes. Human operator performance testing using an input shaped bridge crane [J]. Journal of dynamic systems, measurement, and control,2006,128(4):835-837.
    [39]Lee H H. Modeling and control of a three dimensional overhead crane [J]. Journal of dynamic systems measurement and control,1998,120(4):471-476.
    [40]Lee K Y, Cha J H, Park K P. Dynamic response of a floating crane in waves by considering the nonlinear effect of hydrostatic force [J]. Ship technology research,2010,57(1):62-65.
    [41]Lee P U, Ruspini D C, Khatib O. Dynamic simulation of interactive robotic environment [C]. International conference on robotics and automation. San Diego,1994:1147-1152.
    [42]Lee H H. Modeling and control of a three-dimensional overhead crane [J]. Journal of dynamic systems measurement and control,1998,120(4):471-476.
    [43]Horst J Roos. Ein Beitrag zur formalisierung der inneren dynamischen vorgange in kransystemen wahrend der hubwerksspiele [D]. Darmstadt,1975.
    [44]M C马罗夫.起重机动力学[M].北京:中国工业出版社,1965:43-45.
    [45]S铁摩辛柯.工程中的振动问题[M].北京:人民铁道出版社,1978:102-102.
    [46]阿烈克山德罗夫.起重运输机械的制动器[M].北京:机械工业出版社,1957:62-63.
    [47]B H布劳德.起重机可靠性和统计动力学(张质文译)[M].北京:中国铁道出版社,1958:12-16.
    [48]达维道夫布勒.矿山机械动力学[M].北京:煤炭工业出版社,1957:55-58.
    [49]弗洛林斯基弗符.矿井提升钢丝绳动力学[M].北京:煤炭工业出版社,1957:23-25.
    [50]Ellis J H. Overhead electric traveling cranes [J]. Proceedings of the institution of mechanical engineers,1937,137(1):283-309.
    [51]Karmakar R. Dynamics of electric overhead traveling cranes:A bond graph approach [J]. Mechanism and machine theory,1990,25(1):29-39.
    [52]Volling K.Schwingungsverhalten von Bruckenkranen[J]. Fordern und Heben, 1973, (7):369-378.
    [53]Kos M. Bemerkungen zur dynamischen Stabilitat von Kranen [J]. Fordern und Heben,1980, (30):997-1000.
    [54]Dietrich H. Problem dynamischer Belastungen von Turm dreh kran [J]. Hebezeuge und foerdermittel,1962, (2):281-283.
    [55]Lightfoot E. Dynamic stresses in electric overhead traveling cranes due to the hoisting and lowering of loads [J]. Proceedings of the institution of mechanical engineers,1955,169(1):233-252.
    [56]Franzen H. Einfluss von schwingungen auf die konstruktion eines brueckenkran tragwerkes [J]. DVS Berichte,1997,187(3):120-126.
    [57]Zhang Z X, Shang W J, Hu G J, Zhang J Y. Theory analysis and test validation of quayside container crane dynamic coefficient of lifting [J]. Port operation, 2005, (5):1-4.
    [58]Mu Y D, Lu N L. Lifting Dynamic coefficient an analysis for horizontal jib tower crane [J]. Construction machinery,2004, (1):39-44.
    [59]GB/T3811-1983,起重机设计规范[S].北京:中国标准出版社,2001.
    [60]曾春.基于ANSYS的桥式起重机桥架结构有限元动态分析研究[D].武汉:武汉理工大学,2006.
    [61]苏嘉科.桥式起重机的起升动载荷—几种动载系数公式的讨论[J].起重运输机械,1985,(2):24-29.
    [62]Jerman B. An enhanced mathematical model for investigating the dynamic loading of a slewing crane [J]. Proceedings of the institution of mechanical engineers, Part C:Journal of mechanical engineering science,2006,220 (4): 421-433.
    [63]Barros F J. Dynamic structure multi paradigm modeling and simulation [J]. ACM transactions on modeling and computer simulation (TOMACS),2003,13 (3):259-275.
    [64]Yang J H. Adaptive coupling control for overhead crane systems [J]. Mechatronics,2007,17(2):143-152.
    [65]Yi J. Anti-swing and positioning control of overhead traveling crane [J]. Information sciences,2003,155(1):19-42.
    [66]Wehking K. Dampfungsverhalten von drahtseilen [J]. Fordern und heben,1999, 49(1-2):60-61.
    [67]龙靖宇.起重机建模及载荷历程动态仿真[J].起重运输机械,2005,(8):51-54.
    [68]Wilde D.H. Effects of emergency braking on muti-rope tower-mounted friction winders [J]. Colliery guardian,1964, (20):683-690.
    [69]周勇.利用Simulink对集装箱起重机防摇系统进行建模与仿真[J].港口装卸,2003,(1):13-15.
    [70]薛伟.林用起重机起吊木捆偏摆系统的动力学模型与仿真[J].东北林业大学学报,2011,39(6):87-89.
    [71]Wang B F, Zhang R F, Zhang G Z. Dynamic model and control of slewing crane load sway [J]. China mechanical engineering,2001,12(11):1214-1217.
    [72]Lee K Y, Cha J H, Park K P. Dynamic response of a floating crane in waves by considering the nonlinear effect of hydrostatic force [J]. Ship technology research,2010,57(1):62-62.
    [73]Solihin M I. Optimal PID controller tuning of automatic gantry crane using PSO algorithm[C].5th International symposium on mechatronics and its applications. Amman,2008:1-5.
    [74]Agostini M J. Generating swing-suppressed maneuvers for crane systems with rate saturation [J]. Control systems technology,2003,11(4):471-481.
    [75]Lew J. Experimental study of anti-swing crane control for a varying load [C]. Proceedings of the American control conference. Denver, Colorado,2003: 1434-1439.
    [76]Cheng W M, Zhong B, Zhang Z Q, Wang J N. Dynamic analysis for the structure of the container crane hydraulic anti-sway system [J]. China railway science,2007,28(2):20-23.
    [77]黄凯.起重机非线性摇摆系统的仿真和分析[J].起重运输机械,2007,(2):16-17.
    [78]郭立观.港口集装箱起重机智能防摇控制系统研究与仿真[D].太原:太原科技大学,2009.
    [79]Appleton B J A, Patra J, Mohamed Y, AbourRizk S. Special purpose simulation modeling of tower cranes [C]. Proceedings of the winter simulation conference. Canada,2002:1709-1715.
    [80]Sun G. Multibody dynamic simulation of mobile lattice crane during rotating [J]. Journal of Shen Yang architectural and civil engineering institute,2004, 20(4):10-15.
    [81]Lwe A. Chemische Reaktions technik mit Matlab und Simulink [M].Hannover: Wiley-VCH,1995:5-24.
    [82]原思聪. MATLAB语言及机械工程应用[M].北京:机械工业出版社,2008:22-22.
    [83]范影乐.Matlab仿真应用详解[M].北京:人民邮电出版社,2001:65-66.
    [84]Bogosyan S, Gokasan M, Turan A, Wies R W. Development of remotely accessible Matlab/simulink based electrical drive experiments[C]. IEEE international symposium on in industrial electronics. Fairbanks:University of Alaska Fairbanks,2007:2984-2989.
    [85]Wang B F. A simulation study in the lifting process of the hydraulic lifting mechanism of cranes [J]. Construction machinery and equipment,1998, (2): 4-9.
    [86]Cha J H. Dynamic response simulation of a heavy cargo suspended by a floating crane based on multi-body system dynamics [J]. Ocean engineering, 2010,37(14):1273-1291.
    [87]陈桂明.应用Matlab建模与仿真[M].北京:科学出版社,2001:43-44.
    [88]Schmidt H. Systems biology toolbox for Matlab:A computational platform for research in systems biology [J]. Bioinformatics,2006,22(4):514-515.
    [89]孙民,王志远,付为刚.桥式起重机起吊过程的动力学分析[J].机械,2010,37(5):12-14.
    [90]张氢,杨林,喻艳,吴凤宇.65t集装箱岸桥动力仿真建模及其在起升工况分析中的应用[J].机械设计,2007,24(5):5-6.
    [91]李占芳.矿井提升钢丝绳的动力学研究[J].煤矿安全,2007,38(10):11-14.
    [92]李玉瑾.提升机钢丝绳弹性振动理论与动力学特性分析[J].起重运输机械,2003,(4):32-36.
    [93]李路妹.桥式抓斗卸船机起升机构动力响应的仿真研究[D].上海:上海海事大学,2006.
    [94]李铭.QTJ160t铁路起重机动力学性能试验分析[J].铁道车辆,1992,(6):16-20.
    [95]梁兆正.提升钢丝绳动态分析的分段线性化解法[J]..应用数学与计算数学学报,1996,10(2):35-43.
    [96]段雷.矿井提升系统动力学仿真分析[J].煤炭科学技术,2010,(7):75-77.
    [97]王承程.起重机起升动载系数分析的新方法及其应用[J].起重运输机械,2009,(2):80-83.
    [98]范元勋.基于Adams/Matlab的桥式起重机起升动载荷的联合仿真[J].重型机械,2011,(5):0-32.
    [99]范勤.VC++与Matlab混合编程的起重机动态特性仿真[J].武汉科技大学学报,2011,34(1):52-56.
    [100]陈旭.基于Simulink的轮胎式龙门起重机负载系统动态仿真[J].集装箱化,010,21(12):22-27.
    [101]高继勇.桥式起重机动态分析与优化设计[J].机械设计,1994,11(6):13-17.
    [102]Boustany F. Adaptive control of an overhead crane using dynamic feedback linearization and estimation design[C]. IEEE international conference on robotics and automation. Nice,1992:1963-1968.
    [103]Burg T, Dawson D, Rahn C, Rhodes W. Nonlinear control of an overhead crane via the saturating control approach of Teel[C]. IEEE international conference on in robotics and automation. Minneapolis,1996:3155-3160.
    [104]Butler H. Model reference adaptive control of a gantry crane scale model [J]. Control systems,1991,11(1):57-62.
    [105]李之中.起重机械制动器试验系统[J].山西科技,2004,(1):57-58.
    [106]余会荣.基于Simulink的岸边集装箱起重机减摇系统仿真[J].港口科技,2011,(1):30-32.
    [107]Mahfouf M, Ismail I, Zissis G. Neural fuzzy based 3D anti-sway modeling and control design for overhead cranes [J]. Platform,2001,2(2):38-46.
    [108]付文刚.基于Simulink的变频调速起升机构动载的研究[D].上海:上海海事大学,2007.
    [109]Schroder E. Fokus krane-krankonstruktion-einfache modellbildung von hubwerksystemen [J]. Hebezeuge und fordermittel,2003,43(11):524-526.
    [110]卢倩.大型钢结构井架起吊过程中钢丝绳的力学分析[J].矿山机械,2008,36(3):46-50.
    [111]叶哲伟.钻机钢丝绳提升系统力学模型及分析[J].石油矿场机械,2008,37(1):32-35.
    [112]张霖波.龙门起重机动刚度探讨[J].港口装卸,1998,(3):10-11.
    [113]党丽丽.转子振动等效刚度的研究[J].机械工程师,2009,(4):89-91.
    [114]严世榕.竖井提升钢丝绳容器系统在提升过程中的动力学仿真[J].中国有色金属学报,1998,8(2):618-622.
    [115]于兰峰,王金诺,郑杰民,王晓平.塔式起重机静态刚度现状与分析[J].起重运输机械,2004,(7):1-4.
    [116]陈惠贤.基于Simulink的矿井提升机钢丝绳的动力学仿真及分析[J].矿山机械,2009,36(9):44-47.
    [117]Xiuyun Q. Analysis on damping ratio of single factor and simulation of many factors optimize combination with suspension girder in ppr[J]. Journal of xinjiang agricultural university,2003,35(6):2-3.
    [118]吴天行.塔式起重机结构振动的力学模型和动载荷计算[J].建筑机械,1987,(9):4-5.
    [119]Sun G, Kleeberger M. Dynamic responses of hydraulic mobile crane with consideration of the drive system [J]. Mechanism and machine theory,2003, 38(12):1489-1508.
    [120]Howe T. Evaluation of the transient response of a DC motor using Matlab/simulink [D]. Queensland:University of Queensland,2003.
    [121]Koepke M E S. Die modellbildung von hubwerken tagungsband der sps/ipc [J]. Drives,2002, (2):10-12.
    [122]Muller G, Ponick B. Elektrische Maschinen:Theorie rotierender elektrischer Maschinen [M]. Verlag technik,1974:39-43.
    [123]Yang H Y, Yang J, Xu B. Computational simulation and experimental research on speed control of VVVF hydraulic elevator [J]. Control engineering practice, 2004,12(5):563-568.
    [124]刘硕.基于Matlab三相异步电机的建模与仿真[J].东方电机,2006,34(1):65-68.
    [125]陶瑞莲.基于Matlab三相异步电动机起动建模及仿真[J].南京工业职业技术学院学报,2009,9(2):21-23.
    [126]谢丽蓉.鼠笼异步电动机机械特性的研究[J].中国电机工程学报,2008,28(21):68-72.
    [127]Benhidjeb A. Fuzzy control of an overhead crane performance comparison with classic control [J]. Control engineering practice,1995,3(12):1687-1696.
    [128]武汉起重机厂.20/5t-16.5m桥式起重机测试报告[R].武汉:武汉钢铁学院起重机研究室,1988.
    [129]吕杰.基于Matlab的臂架型起重机起升机构动力学分析[J].科技创新导报2011,(20):99-100
    [130]Ren H L, Wang X L, Hu Y J, Li C G. Dynamic response simulation of lifting load system of ship-mounted cranes [J]. Journal of system simulation,2007. 19(12):2665-2668.
    [131]赵春晖.起重机械国际标准现状和发展趋势与我国起重机械标准的对比[J].起重运输机械,2006,(4):9-13.
    [132]王建勋.4200立辊轧机主传动系统扭振研究[D].郑州:郑州大学,2008.
    [133]庞乐.大型汽轮发电机组轴系扭振安全性分析[D].北京:华北电力大学,2011.
    [134]张光辉,江春来,陈锡侯.电梯曳引机扭振测试新方法的研究[J].机械制造,2008,46(8):1-3.
    [135]张海燕.船舶轴系扭振的产生及消减方法[J].武汉船舶职业技术学院学报,2009,8(2):12-14.
    [136]Balachandran B, Li Y Y, Fang C C.A mechanical filter concept for control of non-linear crane-load oscillations [J]. Journal of sound and vibration,1999,228 (3):651-682.
    [137]张洪亭,张德培.桥式起重机大车传动系统扭振分析[J].机械设计,1990,(4):10-12.
    [138]Farkas J. Economy of higher-strength steels in overhead traveling cranes with double-box girders [J]. Journal of constructional steel research,1986,6(4): 285-301.
    [139]李英.装载机动力传动装置扭振力学模型建立和扭振分析[J].工程机械,1996,27(9):11-16.
    [140]姚志斌.柴油机扭转振动诊断综述[J].汽车工程,2004,26(2):149-152.
    [141]姜冲博,唐心龙.双质量飞轮扭振减振器的发展[J].农机使用与维修,2009,(3):22-24.
    [142]王东辉.双质量飞轮的汽车动力传动系扭振特性分析[D].长春:吉林大学,2003.
    [143]潘四平.ZK6121WD客车双质量飞轮的设计与研究[D].长春:长春理工大学,2009.
    [144]王勤.轧机主传动系统的扭振分析与建模[J].冶金设备,2009,(4):6-9.
    [145]徐世彦.汽车动力传动系双质量飞轮式扭振减振器的研究[D].长春:吉林大学,2007.
    [146]龚乐年.浅析机组轴系扭振时的机械(模态)阻尼[J].电网技术,1995,19(8):29-33.
    [147]Chang C Y. Fuzzy projection control law and its application to the overhead crane [J]. Mechatronics,2008,18(10):607-615.
    [148]汤姆逊WT.振动理论及其应用[M].北京:煤炭工业出版社,1980:51-52.
    [149]余群.缆索起重机的仿真与优化设计研究[D].武汉:武汉理工大学,2002.
    [150]Han C L, Qi Y G, Xu X D. Structural optimization of gantry cranes girder [J]. Construction machinery,2009, (7):22-23.
    [151]Li C X, Wang J, Dong C W, Zhang Y P. Combining Ansys with Matlab to simulate and optimize the process of steel-box girder bridge by incremental launching method [J]. Computer and communications,2008,26(6):10-13.
    [152]刘淑香.集装箱龙门起重机结构系统动态优化设计[J].机械设计与制造,2009,(5):37-39.
    [153]Golafshani, A R. Modeling and optimal control of tower crane motions [D]. Waterloo:University of Waterloo,1999.
    [154]Miller C J. Preliminary design of precast, segmental box-girder bridges using optimization [J]. Canadian journal of civil engineering,1979,6(1):120-128.
    [155]徐新辉.基于Ansys分析的龙门起重机箱型主梁优化设计[D].武汉:武汉理工大学,2005.
    [156]宁朝阳.箱形梁桥式起重机主梁优化设计[D].长沙:中南林学院,2005.
    [157]夏铝.120ton龙门起重机结构分析及基于遗传算法的主梁结构优化[D].重庆:重庆大学,2011.
    [158]樊艳.大型双梁桁架门式起重机结构设计及优化研究[D].重庆:重庆大学,2009.
    [159]Xia J F, Liu Z M. Optimization design of joist gantry crane girder [J]. Mechanical engineer,2007, (3):13-14.
    [160]庞延波.双梁桁架式龙门起重机主梁优化设计及模态分析[D].成都:西南交通大学,2007.
    [161]Shi Y J. Optimization design of crane girder in portal frames buildings [J]. Industrial construction,2001,31(1):16-17.
    [162]Hartmann G C, Kokot V, Seefeldt R. Numerical optimization of casting processes-leveraging coupled process simulation and multi-object optimization to the manufacturing level [C]. International congress on FEM technology. Berlin, Germany,2003:2-11.
    [163]Schoenauer M, Xanthakis S. Constrained GA optimization[C]. The fifth international conference on genetic algorithms. Urbana Champaign,1993:1-9.
    [164]Hoffmann, K., et al., Fordertechnik:Bauelemente, ihre Konstruktion und Berechnung[M]. Vol.1.2005:Oldenbourg Industrieverlag.2005.1:20-23.
    [165]Huang K, Zhao H, Wang W R. Muti-object optimum design of tooth profile with micro-segment gear hobs [J]. Journal of mechanical transmission [J],2000, 24(4):6-8.
    [166]Gao L F. The multi-object fuzzy optimization dynamic-state model about resource allocation [J]. Journal of Liaoning technical university (Natural science edition),2001,20(5):679-681.
    [167]Wen R L, Yan J P. Study on multi object optimization of engine mounting system [J]. Journal of southeast university,1996, (6):1-5.
    [168]Lin K L, ASCE S M, Multiple heavy lifts optimization [J]. Journal of construction engineering and management,1996,122(4):354-362.
    [169]Rao S S. Multi-objective optimization of fuzzy structural systems [J]. International journal for numerical methods in engineering,2005,24(6): 1157-1171.
    [170]Chafekar D. Multi objective GA optimization using reduced models[C]. Systems, Man, and Cybernetics international meeting, Part C:Applications and reviews. Blacksburg.2005,35(2):261-265.
    [171]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990:29-31.
    [172]Chen J L, Jiang X J, Zhu D Q, Deng L K. Multi-object optimization of hybrid active power filter based on genetic algorithm [J]. Journal of tsinghua university (Science and technology),2006,46(l):5-8.
    [173]Li B, Chen L P, Zhong Y F. Research on product configuration optimization based on multi-object genetic algorithm [J]. China Mechanical engineering, 2004,15(20):1819-1822.
    [174]Liang C J, Guo J Q, Yang Y Multi-objective hybrid genetic algorithm for quay crane dynamic assignment in berth allocation planning [J]. Journal of intelligent manufacturing,2011,22(3):471-479.
    [175]Tamaki H, Kita H, Kobayashi S. Multi-objective optimization by genetic algorithms:A review [C]. Proceedings of IEEE international conference on evolutionary computation. Nagoya,1996:517-522.
    [176]Chen J L, Jiang X J, Zhu D Q, Deng L K. Multi-object optimization of hybrid active power filter based on genetic algorithm [J]. Journal-tsinghua University, 2006,46(1):5-8.
    [177]卢康.气辅成型工艺参数智能多目标优化方法研究[D].杭州:浙江工业大学,2007.
    [178]Schoenauer M, Xanthakis S. Constrained GA optimization[C]. The fifth international conference on genetic algorithms. Urbana champaign,1993:1-9.
    [179]毕春长,丁予展.遗传算法在起重机箱形主梁优化设计中的应用[J].起重运输机械,1999,(9):1-5.
    [180]Tam C. Genetic algorithm for optimizing supply locations around tower crane [J]. Journal of construction engineering and management,2001,127(4): 315-321.
    [181]张玲.遗传算法机理的研究[J].软件学报,2000,11(7:945-952.
    [182]陈慧琴.基于人工神经网络的遗传算法理论及应用[D].武汉:武汉理工大学,2003.
    [183]邹琳.基于遗传算法的挤压模具多目标优化设计与研究[D].武汉:华中科技大学,2004.
    [184]杨春松.基于进化类混合算法的桥门式起重机结构优化[D].成都:西南交通大学,2006.
    [185]王金诺.起重运输机金属结构[M].北京:中国铁道出版社,2002:101-102.
    [186]Abid M, Akmal M H, Parvez S. Optimization of box type girder of overhead crane [J]. Global design to gain a competitive edge,2008, 1(期号):609-618.
    [187]Ning C Y. Application of Ansys in overhead traveling crane girder design [J]. Hoisting and conveying machinery,2008, (5):12-17.
    [188]Chen J, Fan Y, Hou Y, Wang X D. Design and study on steel structure for large-scale double-girder-truss cranes [J]. Chinese journal of construction machinery,2009, (1):15-16.
    [189]Wang Y Q, Chen Q, Chen H, Shi Y J. The lightized design of portal frames with heavy cranes [J]. Industrial construction,2002, (7):17-19.
    [190]Pan Y B. Optimization of main girder for overhead traveling crane with improved artificial immune genetic algorithm [J]. Hoisting and conveying machinery,2007, (8):15-18.
    [191]Niu C M, Zhang H W, Ouyang H. A comprehensive dynamic model of electric overhead cranes and the lifting operations [J]. Proceedings of the institution of mechanical engineers, Part C:Journal of mechanical engineering science,2012, 226(6):1484-1503.
    [192]Qin D C, Zhu Q. Structural topology optimization of box girder based on method of moving asymptotes (MMA) [C]. International conference on intelligent computation technology and automation. Changsha,2010:402-405.
    [193]Venetsanosl D T, Magoula E A T, Provatidis C G. Performance-based optimization of the welded box of a single girder overhead traveling crane according to ec3 and ecl[C].8th. world congress on computational mechanics. Venice,2008:31-32.
    [194]Xia Y J, Lu N L, Luo B. Some discussions on dynamic hoisting load coefficient φ_2 of tower crane with horizontal boom [J]. Construction machinery and equipment,2005, (1):11-15.
    [195]胡宗武.起重机传动机构的动载荷和动力系数(续)[J].起重运输机械,1978,(3):10-13.
    [196]Musio M, BLUM A. Assessment of the possibility of increasing a load carrying strength of truss bridges of overhead traveling cranes [J]. Transport problems, 2012,7(3):41-53.
    [197]孙训方.材料力学(上册)[M].北京:高等教育出版社,1994:32-32.
    [198]Chen R, Sun D Y, Sung W P. Structural optimization research on girder of 200t bridge crane based on Ansys [J]. Advanced materials research.2012, 430(10):1708-1711.
    [199]王金诺.起重机设计手册[M].北京:中国铁道出版社,1998:56-60.
    [200]Robert T, Pierre L, Colin R, etc. Experimental testing of large scale structural models and components using innovative shake table, dynamic, real-time hybrid simulation and multi-directional loading techniques[C].3rd international conf. on advances in exp. struct, eng. Montreal,2009:1-11.
    [201]于玲,贾春强.Matlab遗传算法工具箱函数及应用实例[J].机械工程师,2004,(11):27-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700