相对渗透率改善剂的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油气井高产水是油田注水开发后期遇到的主要问题之一。油气井产水有许多危害,如降低原油采收率,增加地面原油脱水费用和水处理费用,加剧管线和设备的结垢和腐蚀,甚至导致关井停产,严重影响了油田的正常生产。相关学者提出了许多油气井堵水技术来控制油气井的产水量。常规的化学堵水技术在堵塞地层水道的同时,也会堵塞油流通道,使油井产油量下降,影响经济效益。而相对渗透率改善剂可笼统注入油气井,对水相渗透率的降低程度远大于对油相渗透率的降低程度,具有控水不堵油的特点。相对渗透率改善剂控水技术施工方便,具有低成本、低风险、低的环境伤害等优点,有广阔的应用前景。
     本论文研究两种类型的相对渗透率改善剂,一是超分子阳离子聚合物,二是两性聚合物/柠檬酸铝胶态分散凝胶。通过岩心流动实验,根据测试的残余阻力系数的大小,筛选出超分子阳离子聚合物MA303作为相对渗透率改善剂。MA303溶液配制方便,在岩心的注入性能好,耐冲刷性能好,可耐温90℃,耐矿化度50000mg/L,具有优秀的控水不堵油效果。
     本论文提出将胶态分散凝胶作为相对渗透率改善剂用于油气井控水的方法,该方法比使用聚合物控水的效果要好。制备了两性聚合物/柠檬酸铝胶态分散凝胶,通过粘度法、微孔滤膜法和扫描电镜法等实验手段研究了胶态分散凝胶的交联反应影响因素和交联机理。胶态分散凝胶是聚合物分子上的羧基与柠檬酸铝的配位交联反应形成的,是由分子内交联为主,相互连接较弱的凝胶小颗粒组成的分散体系,其交联反应受聚合物浓度、聚交比、温度、矿化度、pH值等因素的影响。通过岩心流动实验研究了胶态分散凝胶的控水性能,胶态分散凝胶在岩心的注入性能好,具有优秀的选择性控水效果和耐冲刷性能。
     相对渗透率改善剂在地层的吸附对其控水效果至关重要。本文采用淀粉-碘化镉法测量MA303溶液的浓度,测定了MA303在不同条件下的静态吸附量,研究了MA303的静态吸附机理和影响因素。通过岩心流动实验研究了MA303在多孔介质中的水动力学吸附机理和选择性控水机理。结果表明,静态吸附主要受聚合物种类、聚合物浓度、吸附时间、岩石颗粒成分和表面性质等因素的影响。动态吸附主要受静电引力和水动力的影响,在低的聚合物注速时,静电引力起主导作用;而在较高注速时,水动力起主导作用。聚合物注入速度增加,吸附层厚度呈线性增加。盐水注入速度(后置液)对吸附层厚度也有一定影响,吸附层厚度随盐水注速增加而增加。提高聚合物溶液和后置盐水溶液的注入速度,有利于改善地层岩石的聚合物吸附能力,提高堵水效果。相对渗透率改善剂的选择性控水机理是膨胀/收缩机理和油水分流机理。
     针对油田堵水作业成功率低的问题,本文研究了相对渗透率改善剂控水作业的地层适应性、选井原则和施工方法。在孤东油田进行了油井的相对渗透率改善剂控水作业,作业后油井产水率平均降低了6.6%,投入产出比1:3.9。
     针对我国目前老油田普遍的的油井结垢和高产水情况,提出了相对渗透率改善剂油井控水与挤注防垢复合技术。该技术具有控水和防垢的双重作用,同时节省施工成本。通过配伍性实验、静态防垢率实验、动态最低有效浓度实验和岩心流动实验筛选出合适的防垢剂,对防垢剂和相对渗透率改善剂复配体系的控水防垢性能进行了研究。实验结果表明,防垢剂SA13和相对渗透率改善剂MA303复配的防垢性能最好。
Water production from oil and gas wells is a serious problem for the oil industry. Water production causes several problems to oil wells such as reducing well productivity, increasing the operating costs of separation and the disposal of produced water. It also promotes scale and corrosion of tubular and equipments, causing premature well abandonment, and having a great effect on oil production and transportation. Many water shutoff technologies have been proposed for this problem. Conventional water shutoff technologies not only block the water channel, but also block oil passage, thus decrease the oil production, and affect the economic effect. An option that can be considered when conventional water shutoff agent cannot be applied is the injection of relative permeability modifier (RPM) that selectively reduce the permeability to water and not significantly restrict oil flow. The main advantages of RPM treatments are low cost, low risk and low environmental impact.
     Cationic polymers and colloidal dispersion gels (CDG) as PRM for water control were studied. Supermolecule cationic polymer MA303 was selected by residual resistance factor through core flooding experiments. Its water solubility and injectivity are suitable for down-hole application. It also has a good property for selective water control with temperature resistance at 90℃and salinity resistance of 50000mg/L.
     Using CDG as RPM for water control was presented. An amphoteric polymer/AlCit CDG was prepared. The mechanism and influential factor of crosslinking reaction of CDG were studied by several experiments such as viscosity method; microporous filter membrane method and SEM method, etc. The crosslinking reaction of CDG is intramolecular crosslinking, through forming coordination link between AlCit and carboxyl in polymer molecules. The property of selective water control using CDG was studied by core flooding experiments. Its injectivity is suitable for down-hole application. The CDG treatments as RPM for water control reduce permeability to water more than to oil, and its life is long.
     Adsorption of RPM on rock surface is important in water control by squeezing RPM in oil wells. The concentrations of supermolecule cationic polymer were measured by iodine-starch colorimetric method. The hydrodynamic adsorption and the mechanism of water control were studied by coreflooding experiments. Experimental results show that adsorption of cationic polymers in porous media is affected mainly by electrostatic attraction and hydrodynamic forces. At low polymer injection rates, polymer adsorption is dominated by electrostatic forces, while it is dominated by hydrodynamic forces at polymer injection rates. The adsorbed layer thickness increases linearly with polymer injection rates. The adsorbed layer thickness is also affected by the brine injection rates in back-flush: high brine injection rate can increase the adsorption. Therefore, the adsorption of polymers can be improved using higher rates in squeezing both polymer and back-flush brine solutions, and so the water control efficiency. The mechanism of water control of RPM includes swelling/shrinking effect and segregated flow effect.
     Where RPM treatments can be successfully applied and candidate selection rules for RPM treatments were analyzed. The RPM treatment is simple to operate, and has been successfully applied in oil well in Gudong oilfield with a water cut decrease of 6.6% and a input output ratio of 1:3.9.
     In order to controlling scaling and water production, a combined technique of RPM treatment and scale inhibitor squeeze treatment in oil wells is presented, which achieves both water control and scale control purposes and saves treatment cost. The scale inhibitors combined with RPM have been selected based on laboratory experiments, including compatible tests, scale inhibition efficiency and minimum inhibitor concentration experiments and core flooding experiments. The results demonstrated that the combination of SA13 and MA303 is satisfactory for both scale and water control.
引文
[1] Lullo G.D., Rae P. New Insights into Water Control-A Review of the State of the Art[R]. SPE 77963, 2002
    [2]朱怀江,刘玉章,绳德强等.弱凝胶对油水相对渗透率的影响[J].石油学报,2002,23(3):69-72
    [3] Needham R.B., Threlkeld C.B., Gall J.W. Control of Water Mobility Using Polymer and Multivalent Cations[R]. SPE 4747, 1974
    [4]白宝君,李宇乡,刘翔鹗.国内外化学堵水调剖技术综述[J].断块油气田,1998,5(1):1-4
    [5]刘翔鹗.我国油田堵水调剖技术的发展与思考[J].石油科技论坛,2004,(1): 41-47
    [6]李宜坤,覃和,蔡磊.国内堵水调剖的现状及发展趋势[J].钻采工艺,2006, 29(5):105-106
    [7]赵福麟,戴彩丽,王业飞等.油井堵水概念的内涵及其技术关键[J].石油学报,2006,27(5):71-74
    [8]由庆,赵福麟,王业飞等.油井深部堵水技术的研究与应用[J].钻采工艺,2007,30(2):85-87
    [9]戴彩丽,赵福麟,李宜坤等.油井深部堵水合理深度的实验研究.油田化学,2006,23(3):223-226
    [10]刘一江,王香增.化学调剖堵水技术[M].北京:石油工业出版社,1999:37
    [11]徐加军,庞瑞云,张宗元等.胜三区堵水调剖技术的应用及发展方向探讨[J].中国石油大学胜利学院学报,2007,21(1):6-8
    [12]唐洪涛,王桂勋,王艳.胜坨油田油井堵水技术研究与应用[J].中国青年科技,2007,4:47-48
    [13] Mennella A., Chiappa L., Lockhart T.P., et al. Candidate and Chemical Selection Rules for Water Shutoff Polymer Treatments[R]. SPE 54736, 1999
    [14] Coste Jean-Paul, Zaitoun A.,白宝君.法国IFP选择性堵水技术[J].石油勘探与开发,2000,27(5):93-97
    [15] Eoff L., Dalrymple E.D., Reddy B.R., et al. Structure and Process Optimization for the Use of a Polymeric Relative Permeability Modifier in Conformance Control[R]. SPE 84951, 2003
    [16] Chiappa L., Andrei M., Lockhart T.P., et al. Polymer Design for Relative Permeability Modification Treatments at High Temperature[R]. SPE 80202, 2003
    [17] Ranjbar M., Clausthal T.U., Czolbe P., et al. Comparative Laboratory Selection and Field Testing of Polymers for Selective Control of Water Production in Gas Wells[R]. SPE 28984, 1995
    [18] Zaitoun A., Kohler N., Guerrini Y. Improved Polyacrylamide Treatments for Water Control in Producing Wells[J]. JPT, 1991, 7:862-867
    [19] Kohler N., Zaitoun A. Polymer Treatment for Water Control in High-Temperature Production Wells[R]. SPE 21000, 1991
    [20] Eoff L., Dalrymple E.D., Reddy B.R., et al. Development of a Hydrophobically Modified Water-Soluble Polymer as a Selective Bullhead System for Water-Production Problems[R]. SPE 80206, 2003
    [21] Eoff L., Dalrymple E.D., Reddy B.R. Development of Associative Polymer Technology for Acid Diversion in Sandstone and Carbonate Lithology[R]. SPE 89431, 2004
    [22] Kalfayan L.J., Dawson C. Successful Implementation of Resurgent Relative Permeability Modifier(RPM) Technology in Well Treatments Requires Realistic Expectations[R]. SPE 90430, 2004
    [23] Ranjbar M., Schaffie M. Improved treatment of acrylamide co- and terpolymers for water control in gas-producing and storage wells[J]. Journal of Petroleum Science and Engineering, 2000, 26(1-5):133-141
    [24] Nieves G., Fernandez J., Dalrymple E.D., et al. Field Application of Relative Permeability Modifier in Venezuela[R]. SPE75123, 2002
    [25] Mitchell W., Martin A.N., Stemberger D., et al. Innovative Business Partnership Produces Effective Water Conformance Treatments[R]. SPE 84623, 2003
    [26] Pietrak M.J., Stanley F.O., Weber B.J., et al. Relative Permeability Modifier Treatments on Gulf of Mexico Frac-Packed and Gravel-Packed Oil and Gas Wells[R]. SPE 96945, 2005
    [27] Lullo G.D., Rae P., Curtis J. New Insights into Water Control-A Review of the State of the Art-PartⅡ[R]. SPE 79012, 2002
    [28] Nelson S.G., Kalfayan L.J., Rittenberry W.M. The Application of a New and Unique Relative Permeability Modifier in Selectively Reducing Water Production[R]. SPE 84511, 2003
    [29] Santos J.A.C.M., Melo R.C.B., Lullo G.D. Case History Evaluation of RPMs on Conform Fracturing Applications[R]. SPE 94352, 2005
    [30] Castano R., Villamizar J., Diaz O., et al. Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America[R]. SPE 77412, 2002
    [31] Mack J.C., Smith J.E. In-Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency[R]. SPE 27780,1994
    [32]李明远,董朝霞,吴肇亮.部分水解聚丙烯酰胺/柠檬酸铝交联体系分类探讨[J].油田化学,2000,17(4):343-345
    [33]陈铁龙,郑晓春,吴晓玲.影响较态分散凝胶成胶性能因素研究[J].油田化学,2000,17(1):62-65
    [34]冯锡兰,曹文华,林梅钦等.胶态分散凝胶吸附滞留行为的研究[J].石油学报,2000,21(4):97-100
    [35]李睿姗,唐银明,方秋珍等.胶态分散凝胶的渗流特性研究[J].江汉石油科技,2003,13(1):22-24
    [36]彭勃,李明远,纪淑玲等.聚丙烯酰胺胶态分散凝胶微观形态研究[J].油田化学,1998,15(4):358-361
    [37]罗宪波,蒲万芬,武海燕等.交联聚合物溶液的微观形态结构研究[J].大庆石油地质与开发,2003,22(5):60-62
    [38]卢祥国,姚玉明,杨凤华.交联聚合物溶液流动特性及其评价方法[J].重庆大学学报(自然科学版),2000,23(增刊):107-110
    [39] Smith J.E., Mack J.C. Gels Correct In-Depth Reservoir Permeability Variation[J]. Oil Gas J., 1997, 1:33-39
    [40]李明远,林梅钦,郑晓宇等.交联聚合物溶液深部调剖矿场试验[J].油田化学,2000,17(2):144-147
    [41]李明远,郑晓宇,林梅钦等.交联聚合物溶液深部调剖先导试验[J].石油学报,2002,23(6):72-76
    [42]姚峰,袁玉锋,曹全芳.高含水断块交联聚合物堵水调剖研究与应用[J].西南石油学院学报,2004,26(5):57-59
    [43]黄煦,郭雄华,栾林明等.适合胜利孤东油田的聚合物/无机铝弱凝胶体系及其试应用[J].油田化学,2002,19(1):77-79
    [44]谢朝阳,俞庆森,李建阁等.胶态分散凝胶深度调剖技术在大庆油田聚驱开发中的应用[J].浙江大学学报(理学版),2002,29(5):535-541
    [45] Liang J., Sun H., Seright R.S. Why do gels reduce water permeability more than oil permeability[R]. SPE 27829, 1995
    [46] Sparlin D.D., Hagen R.W.Jr. Controlling water in producing operations[J]. World Oil, 1984, 205(6):137-142
    [47] Mennella A., Chiappa L., Bryant S.L., et al. Pore-scale Mechanism for Selective Permeability Reduction by Polymer Injection[R]. SPE 39634, 1998
    [48] Dawe R.A., Zhang Yuping. Mechanistic study of the selective action of oil and water penetrating into a gel emplaced in a porous medium[J]. Journal of Petroleum Science and Engineering, 1994,12(2):113-125
    [49] Singleton M.A., Sorbie K.S., Shileds R.A. Further Development of the Pore Scale Mechanism of Relative Permeability Modification by Partially Hydrolysed Polyacrylamide[R]. SPE 75184, 2002
    [50] Zaitoun A., Bertin H., Lasseux D. Two-Phase Flow Property Modifications by Polymer Adsorption[R]. SPE 39631, 1998
    [51] Barreau P., Bertin H., Lasseux D. Water Control in Producing Wells: Influence of an Adsorbed-Polymer Layer on Relative Permeabilities and Capillary Pressure[R]. SPE 35447, 1997
    [52] Barreau P., Bertin H., Lasseux D., et al. Polymer Adsorption Effect on Relative Permeability and Capillary Pressure: Investigation of Pore Scale Scenario[R]. SPE 37303, 1997
    [53] White J.L., Goddard J.E., PhiiIips H.M. Use of Polymers to Control Water Production in Oil Wells[J]. JPT, 1973, 25(2):143-150
    [54] Stavland A., Nilsson S. Segregated Flow is the Governing Mechanism of Disproportionate Permeability Reduction in Water and Gas Shutoff[R]. SPE 71510, 2001
    [55] Liang J., Seright R.S. Further Investigations of Why Gels Reduce Water Permeability More Than Oil Permeabililty[R]. SPE 37249, 1997
    [56] Nilsson S., Stavland A., Jonsbraten H.C. Mechanistic Study of Disproportionate Permeability Reduction[R]. SPE 39635, 1998
    [57] Liang J., Seright R.S. Wall-Effect/Gel-Droplet Model of Disproportionate Permeability Reduction[R]. SPE 59344, 2000
    [58]王世强,王笑菡,王勇.油田结垢及防垢动态评价方法的应用研究[J].中国海上油气(工程),1997,9(1):39-53
    [59]李景全,赵群,刘华军.河南油田江河区油井防垢技术[J].石油钻采工艺,2002,24(2):57-60
    [60]巨全义,罗春勋,武平仓.低渗注水油田地层结垢的防治技术[J].油田化学,1994,11(2):113-117
    [61]严新新(译).挤注作业新型防垢剂[J].采油工艺情报,1991,(4):87-97
    [62]巨全义,管慧珠.油田开发中的化学防垢技术[J].石油钻采工艺,1990,(4):69-74
    [63]何高荣,陈博武,蒋毅章,等.PAPEMP与西部冷却水处理[J].工业水处理,2002,22(1):19-22
    [64]李本高,祁鲁梁,李永存.石化工业水处理技术[M].北京:中国石化出版社,1999:82-83
    [65] Dyer S.J., Graham G.M. The effect of temperature and pressure on oilfield scale formation[J]. Journal of Petroleum Science and Engineering, 2002, 35(1-2):95-107
    [66]马广彦.采油井地层深部结垢防治技术[J].石油勘探与开发,2002,29(5):82-84
    [67]曹维政,石京平,张栋杰,等.储层结垢与防治物理模型应用[J].矿物岩石,2002,22(4):78-82
    [68]张贵才,葛际江,何晓娟,等.化学剂防碳酸钙垢的机理研究进展[J].西安石油大学学报(自然科学版),2005,20(5):59-62
    [69]陈立华,游佩珍,易明新(译).利用数学模型对防垢剂的挤注处理进行成本效果分析[J].国外油田工程,1997,8:18-21
    [70] Kokal S.L., Raju K.U., Hector Bayona. Cost-Effective Design of Scale-Inhibitor Squeeze Treatments Using a Mathematical Model[R]. SPE 29819, 1996
    [71] Sorble K.S., Gdanski R.D. A Complete Theory of Scale-Inhibitor Transport and Adsorption/Desorption in Squeeze Treatments[R]. SPE 95088, 2005
    [72] Smith J.E. The Transition Pressure: A Quick Method for Quantifying Polyacryamide Gel Strength[R]. SPE 18739, 1989
    [73]纪淑玲,彭勃,林梅钦等.粘度法研究胶态分散凝胶交联过程[J].高分子学报,2000,13(1):65-68
    [74]林梅钦,韩飞雪,李明远等.核微孔滤膜评价交联聚合物溶液封堵性质的研究[J].膜科学与技术,2003,23(2):11-14
    [75]郑晓宇,王涛,佟倩倩等. HPAM/AlCit交联聚合物溶液微孔膜过滤行为研究[J].石油大学学报(自然科学版),2003,27(6):87-907
    [76]彭勃,李明远,纪淑铃等.聚丙烯酰胺胶态分散凝胶体系粒度研究[J].油田化学,1999,16(3):254-257
    [77]林梅钦,李建阁,康燕等. HPAM/柠檬酸铝胶态分散凝胶形成条件研究[J].油田化学,1998,15(2):160-163
    [78]李明远,郑晓宇,肖建洪等.交联聚合物溶液及其在采油中的应用[M].北京:化学工业出版社,2006:9-12
    [79]赵福麟.EOR原理[M].东营:石油大学出版社,2001:39-40
    [80]李卓美.高分子泥浆降失水剂的分子结构与其耐盐性能的关系(Ⅰ).油田化学,1986,3(1):28-38
    [81] Denys K., Fichen C., Zaitoun A. Bridging Adsorption of Cationic Polyacrylamides in Porous Media[R]. SPE 64984, 2001
    [82] Chiappa L., Mennella A., Lockhart T.P., et al. Polymer adsorption at the brine/rock interface: the role of electrostatic interactions and wettability[J]. Journal of Petroleum Science and Engineering, 1999, 24(2-4):113-122
    [83]国家经济贸易委员会. SY/T 6576-2003用于提高石油采收率的聚合物评价的推荐作法[S].北京:中国标准出版社,2003
    [84] Zitha P, Chauveteau G, Zaitoun A. Permeability-dependent propagation of polyacrylamides under near-wellbore flow conditions[C]. SPE 28955, 1995
    [85] Chauveteau G, Denys K, Zaitoun A. New insight on polymer adsorption under high flow rates[C]. SPE 75183, 2002
    [86] Ogunberu A L, Asghari K. Water permeability reduction under flow-induced polymer adsorption[C]. SPE 89855, 2004
    [87] Grattoni C A, Luckham P F, Jing X D, et al. Polymers as relative permeability modifiers: adsorption and the dynamic formation of thick polyacrylamide layers[J]. Journal of petroleum science and engineering, 2004, 45(3-4):233-245
    [88]孔柏岭,唐金星,谢峰.聚合物在多孔介质中水动力学滞留研究[J].石油勘探与开发,1998,25(2):68-70
    [89]国家技术监督局. GB/T 1632-93聚合物稀溶液粘数和特性粘数测定[S].北京:中国标准出版社,1993
    [90]何曼君,陈维孝.高分子物理[M].上海:复旦大学出版社,1990:114-1159
    [91] Zaitoun A., Kohler N., Guerrini Y. Improved Polyacrylamide Treatments for Water Control in Producing Wells. SPE18051,1989
    [92] Zaitoun A., Kohler N., Montemurro M.A. Control of Water Influx in Heavy Oil Horizontal Wells by Polymer Treatment. SPE24661, 19926
    [93] Gruenenfelder M.A., Zaitoun A., Kohler N., et al. Implementing New Permeability Selective Water Shutoff Polymer Technology in Offshore Gravel-Packed Wells[R]. SPE27770, 1994
    [94] Chen Tielong, Zhao Yong, Peng Kezong, et al. A Relative Permeability Modifier for Water Control of Gas Wells in a Low-Permeability Reservoir. SPE35617,1996
    [95] Stanley F.O., Hardianto, Marnoch E., et al. Improving Hydrocarbon/Water Ratios in Producing Wells-an Indonesian Case History Study. SPE36615, 1996
    [96] Burrafato G., Pitoni E., Vietina G., et al. Rigless WSO Rreatments in Gas Fields-Bullheading Gels and Polymers in Shaly Sands: Italian Case History. SPE 54747, 1999
    [97] Zaitoun A., Kohler N., Bossie-Codreanu D., et al. Water Shutoff by Relative Permeability Modifiers: Lessons from Several Field Applications[R]. SPE 56740, 1999
    [98] Romo G.A.F., Leyva H.H., Aguilar R.B., et al. Advanced Technology to Reduce Water Cut: Case Studies from Pemex Southern Region[R]. SPE 103638, 2006
    [99]闫方平,任韶然,樊泽霞等.井下挤注用防垢剂的选择与实验评价方法[J].石油与天然气化工, 2007,36(6):495-499
    [100]张克从,张乐惠.晶体生长[M].北京:科学出版社,1981:72-81
    [101]林培滋,黄世煜,初惠萍.碳酸钙结垢及聚合物的影响研究[J].石油与天然气化工,1997,26 (4): 232-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700